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Motivation

Many physical systems are characterized by delay and noise. Their evolution
depends not only on the values of their dynamical variables at current times
time, but also on previous history.

Examples:

@ Coupled optical systems such as fiber - | I Lit+)
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Problem and approach

@ Two types of delay:

» Retarded dissipation = delayed backaction of a
thermal reservoir
Dykman and Schwartz, PRE (2012)
Franosch et al 2011
» Dynamical delay
Delay due to a finite time of
propagation-communication, coupled lasers, ...
Maturation or latency in populations
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Problem and approach

@ Two types of delay: < f(OKT') >=
R e . ATkgTo(t —t')
» Retarded dissipation = delayed backaction of a s .
thermal reservoir s Q J
Dykman and Schwartz, PRE (2012) < f(OH(F') >

Franosch et al 2011
» Dynamical delay
Delay due to a finite time of
propagation-communication, coupled lasers, ...
Maturation or latency in populations
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@ Problem: Study rates of rare events in systems with delay.
The trajectories most likely to be followed in rare events.

@ Goal : Predict scaling behavior of the rates of interstate switching and
population extinction
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Fluctuation induced escape - Classical and No Delay

In noise driven systems:
One noise realization leads to a one system trajectory - switching to a new

state or extinction.
[Onsager and Malchup (1953), Feynman & Hibbs (1965)]

To find the rate of occurrence of a rare event, look for the most probable
realization of the noise trajectories that bring the system to that state.
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Escape/Extinction rate:

quasienergy
T

W x exp(—R/D)

R is the minimum action
D is the noise intensity.
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A c,odd‘“a‘e

There are many such
path realizations!

Goal: Extend theory that includes the delay.
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Outline

@ Variational formulation to stochastic escape for systems with delay.
@ Derive rates of switching and extinction.

@ Examples to compare our theory with numerical simulations.

@ Odds and ends and extensions

@ Conclusions
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The general problem setup

The stochastic dynamics are described
by the Langevin equation:

q(t) = K(a(t). q(t — 7)) + G(a(1)f(t).
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The general problem setup

The stochastic dynamics are described
by the Langevin equation:

q(t) = K(a(t).q(t — 7)) + Ga(t))f(D).

K(ga) = K(gs) = 0 (attractor g4 and saddle gs),
f(t) is the noise vector, and G(q(t)) scales the noise.

The probability density is given by
PHf(D)] x exp (~Re/D). Rilf(0)] = [ dta HOF(E— ()

Noise (t) F(t) = inverse of the pair correlator of f(t),
Gaussian, stationary, Jdt F(t—t)o(t —t") =2DZs(t —t")
and weak on average D is the noise intensity.

Systams with Delay




Fluctuation characterization near the attractor

Examine linearized system near qa:
X(t) = KOX(t) + KPX(t — 7).
N\ A ) = 9K(aa.q0)/00.  K® = 9K(qs)/0;
Gaussian noise f(t) characterization:
onm(t) = (fa()m(0)).
| & :

Fluctuations spend most of the Fluctuations near the attractor (in Fourier space)

time around qa dq(w) = G(w)f(w).

Fluctuation amplitude and G(w) = — (iwI + KM 1+ K@ e"‘““") " Gqn),
correlations about q4 depend

explicitly on delay With correlations:

Assume stability does not (8Gn(w)dqm(w’)) = 47[G(w)P(w)G T (w)]nmd(w + ).

change for small delay.
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Variational Problem for Large Rare Fluctuations
Switching or escape rate W x exp (—R /D)
R = min (Refi0] + [ dtx(0lacn - K(@(e).att — ) - G@Ho )
q.f.x . on
x/(1) is the Lagrange multiplier.

Minimize R with the constraint that the noise drives the system to the target
state
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Variational Problem for Large Rare Fluctuations
Switching or escape rate W ~ exp (—R /D)

R = min (Rf[f(t)] + / g dtx(t)[q(t) — K(q(t).q(t — 7)) — G(Q)f(t)]) :
q.f.x —o0
x(t) is the Lagrange multiplier.

Minimize R with the constraint that the noise drives the system to the target
state

@ Optimal path - the most probable path to follow in a large rare fluctuation
@ Determined by the most probable force realization of the noise.
@ Used to compute the mean escape times

Boundary conditions:

lim;_, q(t) =qa lim;_ f(t) =0
lime_ Q(t) = Qs lime_s + X(t) =0
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Delayed Hamiltonian Equations of Motion

The variational equations for the coupled most probable fluctuational paths

@ Equations of Motion: 4R /dx(t) = 0 (causal)
q(t) = K(a(t).q(t — 7)) + Ga(t)f(?).
@ Optimal Noise: 4R /éf(t) = 0 (causal)
L& ue a A
5| dF- ) - & an)x(®) =o.
@ Optimal Lagrange multiplier: 6R/dq(t) = 0 (acausal)

X(t) = —da | x(OK(a(0). a(t — 7)) +x(t + T)K(a(t +7).qa(1) |
~daco (X(DG(a(®)1(1))
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Perturbation Theory

Assume K is a smooth and q(t — 7) = q- is close to q(t)

1K(q.9) — K(9.9;)|| £ ~/lq —q-|

Rla.f.x] = RO[q.f.x] + R"[q.f. x].
Minimize R(©) to get
q9(t). x (). (1)

Evaluate R(") using zero order solution

First order result:

A = / dtx® ()[(q 9 )K(Q. q')lg=q'—qo(1)-
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One-dimensional examples

We consider two systems driven by white Gaussian noise.

q(t) = K(q(t). q(t — 7)) + G(q)f(1)

1) Kue(q(2). q(t — 7)) = —q?() + q(t)—q(t — 7).
2) Ku(q(t), q(t — 7)) = —q°(t) —vq(t)+q(t — 7),
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One-dimensional examples

We consider two systems driven by white Gaussian noise.

q(t) = K(q(1). q(t — 7)) + G(q)f(1)

1) Kue(q(1). q(t — 7)) = —¢°(1) + q(t)—q(t — 7),
2) Km(q(t).q(t — 7)) = —q°(t) —vq(t)+q(t — 7).

U(a)
Let0 < v < 1
qg=0

Same for no noise and delay:

K =(1-7)q(t) — g*(1)

ga=1—~v and gs=0

When noise is added, the particle escapes by passing over the barrier.

n = 1 — v is the distance to the bifurcation point.
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One-dimensional example — additive noise results
Switching rate: Rux ~ z(1 —77)(1 —7)* and Ry =~ (1 +7)(1 — 7).

Mean time to switch: T,,, = == exp(R/D)
The pre-factor uses theory in which there is no delay. [Kramers (1940)]
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One-dimensional example — additive noise results
Switching rate: Rux ~ (1 —7)(1 —7)* and Ry =~ g(1 +7)(1 — 7).

Mean time to switch: T,,, = == exp(R/D)
The pre-factor uses theory in which there is no delay. [Kramers (1940)]

Model K, Model K
5.5 - — 5.5 - - -
---1=0.25 . C
'—% : _—1:=O.5 =
: Ps
o
o
o
—1=05 o
2. 2 " = 4 - z : M
P50 200 250 300 350 %35 100 125 150 175
1/D 1/D

Theory — solid and dashed lines; MC Simulations — data points. v = 0.4
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One-dimensional example — multiplicative noise

We consider the same two systems driven by multiplicative white Gaussian

noise, G(q) = v/ q(1).

g(t) = K (q(t). q(t — 7)) + /q(1) f(t)

1) Kue(q(t)- q(t — 7)) = —q2(t) + q(t) — 7q(t — 7).
2) Ke(q(t).q(t — 7)) = —G%(t) —~q(t) + q(t — 7).

Mean time of extinction: U@
after the system has reached the
extinction state, we must make 4g=0
sure it will not leave it.

q
Careful with K, \

Delayed population growth prob- .
lem q=1-7
Think of chickens and eggs...
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One-dimensional example — multiplicative noise
results

Extinction rate: Rue ~ 5(1 —77)(1 — )2 and Ry ~ 5(1 +7)(1 —7)?
Mean time to extinction: T. = 225 exp(R/D)

1—+)2

Model K Model K

-—-1=0.25 e - -1=0.05

—=5 R 5| —=0.5 ;
o 4.5 - -~ 1 ) A ,l’"
E i -
= 54
(@) (@)
2 3-5 S 2 )
3 E Q- >
2.5 : : s : : : % - - F :
4% S0 S 6 & U &> & 5 30 35 40 45 50
1/D 1/D

Theory — solid and dashed lines; MC Simulations — data points. v+ = 0.4
The simulations use the lto formulation of the Milstein method.
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Direct Variation and First Order Additive Theory
T dependence

Using the K, and K., delay models where G(q) = 1:

D=0.0072,y=04

D =0.0072,v=04

i ;. S j_~u §
---Model K, . 4l --Model K &)
3 | = y ¢ ) Ym i
l_o) .....
235 et e
g &5
— 3. "'*’u’\.__’vvv.. .
=y
1 % 01 02 03 04
T
Lines/dashes are theory-Symbols are direct Lines/dashes are theory-Symbols are Monte
variation Carlo
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Direct Variation and First Order Multiplicative Theory
dependence

Assume noise is white.
Singular multiplicative noise - models extinction

pr—

Using the K, and K,; delay models where G(g) = /(q):

D =0.02205.v =04 D = 0.02205.v = 0.4

o : ' o QS
---Model K, ‘

Iog1 0[Ta]

—Model K.:ir
-— - --Model K
5 - - === 2 : : -
- 0 0.25 0.5 0.75 1 0 0.1 0.2 0.3 0.4
T T

Lines/dashes are theory-Symbols are direct

variation
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Generalizations to Non-Gaussion Noise
Variational theory may be extended to systems driven discrete noise

T

@ Shot noise ¢

@ Poisson noise Poisson Noise f(£) = g3 8(t — t)
Amplitude g mean frequncy v
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Generalizations to Non-Gaussion Noise
Variational theory may be extended to systems driven discrete noise

NI

@ Shot noise 1

@ Poisson noise Poisson Noise f(t) = g > o(t — t)
Amplitude g mean frequncy v

Extend perturbation to Poisson only noise

Switching vs. g

Letv=K(q,q)/gv >> 1. Then

Ro ~ /q " x(q)dgr(q) ~ g~ {Inv(q) + In[in v(q)]}

InfT.)

In the limit g << 1, action exhibits

non-power law scaling:

s (1—A.,-)(65—C'7a)ln( C'Js—éa) 1

I 82 a2 zs
g gviy a (Poisson amplitude
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Conclusions

@ The problem of large rare fluctuations in dissipative and reaction systems
with delay is reduced to a variational problem. The solution describes
most probable paths followed in rare events and after a target state has
been reached.

@ The delayed Hamiltonian equations are acausal: the evolution along the
trajectory depends both on the evolution before and after a given instant
of time.

@ Delay can stabilize or destabilize the escape process.

@ Delay can enhance or diminish the effective barrier measured by the
mean escape times along the optimal path.

@ The exponent of the escape rate scales with the distance to the
bifurcation point for both additive and multiplicative noise.
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