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Op#miza#on	

q  Universal	challenges:	

1)  Con(nuous	nonlinearity	

2)  Discrete	nonlinearity	

3)  Large-scale	nature	

4)  Unreliable	problem	data	
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Possibili(es	=	almost	infinity	

Each	decision	=	0	or	1	

500	decisions	
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Millions	of	constraints	

Tens	of	thousands	of	variables	

Energy	systems	
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Op(miza(on	

Data	

System	

Decision/Ac(on	

This	talk	uses	the	$400B	power	grid	to	illustrate	our	tools	and	techniques.	



q 	Power	system:		

v  A	large-scale	system	consis(ng	of	
generators,	loads,	lines,	etc.		

v  Used	for	genera(ng,	transpor(ng	
and	distribu(ng	electricity.		

Ø  Unit	commitment	(UC)	

Ø  Op(mal	power	flow	(OPF)	

Ø  Security	analysis	

Ø  State	es(ma(on	

ISO,	RTO,	TSO	

Power	Systems	
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Power	Opera#onal	Problems	

State	 es#ma#on:	 Find	 the	 state	 of	 system	

based	on	noisy	measurements	and	bad	data.	

Unit	commitment:	Op(mize	the	ON/OFF	

status	of	each	generator.	

Op#mal	power	flow:	Op(mize	the	flows	

and	parameters.	

Security	analysis:	Guarantee	robustness	to	

faults.	

Generators	 Loads	
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Modeling	of	Power	Systems	
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q 	Consider	two	nodes	i	and	j	connected	via	a	line:	
	

i j

Complex	power		=		(Nodal	voltage)	x	(Line	current)*	
			

Nodal	voltage	(xi)	

Line	current		

Ac(ve	power	 Reac(ve	power	

Nodal	voltage	(xj)	
	

Nonlinearity	(due	to	laws	of	physics)	



Nonlinearity	in	Power	Systems	
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q 	Nonlinear	laws	of	physics	(assuming	voltage	magnitudes	are	fixed):	
	

(P12,P23,P31)	

(P1,P2,P3)	



ARPA-E	is	se^ng	up	a	$3.5M	cash	prize	compe((on	

q  Complexity:	Strongly	NP-complete	with	long	history	since	1962.	

q  Common	prac(ce:	Approxima(on	

q  FERC	Study:	Annual	cost	of	approxima(on	>	$	1	billion	

Blackout	due	to	state	es(ma(on	and	
security	analysis	

Power	Opera#onal	Problems	

Challenge	1:	Nonlinearity	due	to	laws	of	physics	

Challenge	2:	Nonlinearity	due	to	discrete	variables		

Challenge	3:	Astronomical	number	of	security	constraints	

Challenge	4:	Making	decisions	based	on	noisy	and	bad	data	
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Nonlinear	Laws	of	physics	

q 	Due	to	nonlinearity,	there	are	different	types	of	solu(ons:	
	

Point	A:	Local	solu(on		

Point	B:	Global	solu(on	

Point	C:	Near-global	solu(on	A	

B	 C	

industry	

our	method	

C	

Find	a	near-global	solu#on	with	a	high	op#mality	
guarantee	using	convex	op#miza#on	

Op(mality	Guarantee	≥						

	

Global	cost	

Near-global	cost	
	100	

A	number	between	0	%	and	100	%	
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q  To	find	a	global	solu(on,	we	proposed	a	method	based	on	SDP.	

q  SDP	worked	for	IEEE	benchmark	examples	and	several	real	data	sets.	

q  For	the	first	(me,	this	method	found	and	cer(fied	global	minima	for	benchmark	systems.	

Theorem:	 SDP	 works	 under	 posi(ve	
loca(onal	marginal	prices	(LMPs).	
	

Theorem:	 SDP	 works	 under	 posi(ve	
LMPs	with	phase-shiging	transformers.	
	

Physics	of	power	networks	(e.g.,	passivity)	reduce	computa(onal	complexity	for	power	
op(miza(on	problems	(joint	work	with	Steven	Low	and	Somayeh	Sojoudi)	

Findings	for	Power	Systems	

acyclic	

cyclic	
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q 	SDP	may	not	be	exact	for	ISOs’	large-scale	systems	(some	nega(ve	LMPs).	

q 	To	find	a	near-global	solu(on,	we	proposed	a	method	named	Penalized	SDP.	

Findings	for	Power	Systems	

 

We	generalized	to	and	incorporated	unit	commitment,	state	es(ma(on,	security	
analysis,	transmission	switching,	and	distributed	control	

 

Our	research	revitalized	the	area:		

v  Follow-up	work	in	academia		

v  Interest	from	industry		

v Many	talks	at	FERC’s	summer	workshops	in	2012-17	

This work 
significantly 

contributed to the 
initiation of the 
ARPA-E Grid 
Competition 
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SDP	relaxa(on	

Convexifica#on	

Penalized	SDP	

W = xxH

Rank-1	SDP														global	min	x 

Rank-1	SDP													near-global	min	x 

Arbitrary	Real/Complex	Polynomial	
Op#miza#on	

+	valid	inequali(es	 15	
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SDP	relaxa(on	

Convexifica#on	

Penalized	SDP	

Arbitrary	Real/Complex	Polynomial	
Op#miza#on	

+	valid	inequali(es	 16	

Low	rank	
solu(on	

High	rank	
solu(on	

Geometric interpretation: 



SDP	relaxa(on	

Convexifica#on	

Penalized	SDP	

Arbitrary	Real/Complex	Polynomial	
Op#miza#on	

+	valid	inequali(es	 17	

Valid Inequalities: 



Outline	

Structured	Op(miza(on	
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q 	How	does	structure	affect	complexity?	
	

Structured	Op#miza#on	

20	

	Trick:		

SDP	relaxa(on:		

Due to structure, SDP is always exact. 



Structured	Op#miza#on	
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Generalized	weighted	graph:	

q  Ver(ces:	variables	
q  Edges:	couples	
q Weight	sets:	coefficients	



Structured	Op#miza#on	
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Real-valued	Op#miza#on:	

q  The	proposed	condi(ons	include	several	exis(ng	ones	([Kim	and	Kojima,	
2003],	[Padberg,	1989],	[Bose,	Gayme,	Chandy,	and	Low,	2012],	etc.).	

Sign	assignment	

q  Local	property:	the	weight	set	of	each	edge	is	sign	definite.	

q  Global	property:	the	number	of	posi(ve	sets	around	each	cycle	is	even.	



Structured	Op#miza#on	
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Complex-valued	Op#miza#on:	
q  Sign-definite	set	:	“T	“		is	sign	definite	if	T	and	–T	are	separable	in	R2	

Physics	of	power	grids	reduce	computa#onal	complexity.		

Sign	definite	due	to	passivity	

Coefficients	of xi xj 	
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	Bags	of	ver(ces	Ver(ces	

q 	Tree	decomposi#on:	Map	the	graph	G	into	a	
tree	T:		

v  Each	node	of	T	is	a	bag	of	ver(ces	of	G	
v  Each	edge	of		G	appears	in	one	node	of	T	
v  If	a	vertex	shows	up	in	mul(ple	nodes	of	

T,	those	nodes	should	form	a	subtree	
q Width	of	T:	Max	cardinality	minus	1	

Treewidth of G: Minimum width 

Graph	No#ons	

25	

H

A

BC

DEF

G

A,	C	 A,	B	

C,	F	 B,	E	 B,	D	

F,	H	 F,	G	

Treewidth	=	1	

A,	B	

B,	E	 B,	D	
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A B

C

D E H

F

G

A,	B,	C	

B,	C,	E	

C,	E,	D	

B,	E,	G	

B,	G,	F	

E,	G,	H	

Treewidth	=	2	

A,	B,	C	

B,	C,	E	 B,	E,	G	

B,	G,	F	



q  OS-vertex	sequence:	[Hackney	et	al,	2009]	

v  Par(al	ordering	of	ver(ces	
v  Assume	O1,O2,…,Om	is	a	sequence.	
v  Oi	has	a	neighbor	wi	not	connected	to	

the	connected	component	of	Oi	in	the	
subgraph	induced	by	O1,…,Oi	

OS: Maximum cardinality among all 
OS sequences 

Graph	No#ons	
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A

B

C D

C	 D	 B	OS-vertex	sequence:	

A

B

C D

OS-vertex	sequence:	 C	 A	



Low-Rank	Solu#on	

q  Roughly	speaking,	very	sparse	graphs	have	high	OS	and	low	treewidth.	

q We	can	use	these	no(ons	to	find	low-rank	solu(ons.	

?	 ?	 ?	 ?	 ?	 ?	 ?	

?	 ?	 ?	 ?	 ?	 ?	 ?	

?	 ?	 ?	 ?	 ?	

?	 ?	 ?	 ?	 ?	 ?	

?	 ?	 ?	 ?	 ?	 ?	

?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	

?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	

?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	

?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	

Enriched	supergraph:	

?	 ?	 ?	 ?	 ?	 ?	

?	 ?	 ?	 ?	 ?	 ?	

?	 ?	 ?	

?	 ?	 ?	 ?	

?	 ?	 ?	 ?	

?	 ?	 ?	 ?	 ?	 ?	 ?	

?	 ?	 ?	 ?	 ?	 ?	 ?	

?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	

?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	

q  Minimizing	every	nonzero	weighted	sum	of	the	red	entries	gives	a	low-rank	matrix.	

?	 ?	 ?	 ?	 ?	

?	 ?	 ?	 ?	 ?	

?	 ?	 ?	

?	 ?	 ?	 ?	

?	 ?	 ?	 ?	

?	 ?	 ?	 ?	 ?	 ?	

?	 ?	 ?	 ?	 ?	 ?	

1	

2	

3	

4	

5	

6	

7	

8	
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Sparsity	graph:		Example:	Low-rank	PSD	comple#on	



Theorem:	SDP	has	a	solu(on	such	that	

=	TW(G)	+1	for	G’	as	enriched	supergraph	

Low-Rank	Solu#on	

SDP		

q  This	result	includes	the	recent	work	Laurent	and	VarvitsioCs,	2012.	 29	

Sparsity	Graph	G:	Generalized	

weighted	graph	

Embedding	+	
penaliza(on	of	
red	entries

Ogen	infinitely	many	low-

rank	and	high-rank	solu(ons	



Tree	decomposi#on	for	IEEE	14-bus	system:	

Treewidth	of	NY	<	40	

Case	studies:	

Treewidth	of	EU	Grid	<	35	

Theorem:	The	rank	of	SDP	solu(on	is	
upper	bounded	by	Treewidth	+	1.	

Treewidth	in	Power	Systems	

Complexity	of	solving	op(miza(on	over	
a	grid	depends	on	its	treewidth	(related	
work	by	Bienstock	&	Munoz	2015).	

	

30	



Sparse	

Low-rank	

Rank-1	

 
SDP	works	if	G	has	no	edges:													
                                                
                                                  (LP) 
                                                     

•  Assume	SDP	fails.		

•  Can	we	iden#fy	what	edges	
caused	the	failure?		

•  Localized	non-convexity	v.s.	
uniform	non-convexity?	

 

Non-convexity	Localiza#on	

Approach	for	localized	case:	
Penalty	over	problema(c	edges	
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Rank	of	W	 Max	rank	of	submatrices	

W	 Submatrices	
	of	W	

Problematic edges: 
Identified based on 
high-rank submatrices 
                                                     

IEEE 300-bus: 2 
 

Polish 2383-bus :  11 
                                                     

Problema#c	Edges	
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Strategy:	 Penalize	 reac(ve	 loss	 over	
problema(c	lines	(proposed	a	systema(c	
method)	
                                                     

q Modified	IEEE	118-bus:		

v  3	local	solu(ons	
v  Costs:		129625,	177984,	195695	

	

SDP	
cost	

Lambda	

                                                     

                                                     

 
7000	simula(ons		

 

Near-Global	Solu#ons	
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v  Compressed	sensing	and	phase	retrieval	

v  Need		n	log	n		measurements	for	a	much	

simpler	problem	[Candes	and	Recht].	

Why	was	penalty	chosen	as	loss?	
	

	
Proposed	penalty:	
	

	
		

	
	
Algorithm	design:	How	to	find	the	best	M?	
	
 

Penalty	Design	

First	try:	

Guess	for	solu#on	of	original	QCQP:		x*	
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Theorem:	SDP	is	exact	if	the	solu(on	is	in	
a	vicinity	of	x*.  
 

x* 

Recovery	region	for	x : 
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Data	Analy#cs	

measurement	 unknown	state	 noise	 bad	data	

q 	Penalized	SDP:	Two-term	objec(ve	to	handle	non-convexity	and	noise	es(ma(on	

36	

Nonlinearity	
Noise	

Bad	data	
Data	 Informa(on	

Algorithm	



State	Es#ma#on	

	PEGASE	1354-bus	system	
(bad	data	with	no	noise)	
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Theorem:	For	carefully	designed	M	and	μ,	if	the	number	of	bad	data	measurements	is	

not	too	high,	we	have	

q  The	above	framework	allows	studying	and	mi(ga(ng	the	worst	awacks	
possible	on	power	grids.	
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Sum	of	agents’	objec(ves	

Local	constraints	

Overlapping	constraints	

Low-Complexity	Distributed	Computa#on	

Goal:	 Design	 a	 low-complex	
algorithm	 for	 sparse	 conic	
op(miza(on	 (LP/QP/QCQP/
SOCP/SDP)	
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Low-Complexity	Distributed	Computa#on	

q  Distributed	Algorithms	for	Big	Data:	ADMM-based	dual	decomposed	SDP	(related	

work:	 [Parikh	 and	 Boyd,	 2014],	 [Wen,	 Goldfarb	 and	 Yin,	 2010],	 [Andersen,	

Vandenberghe	and	Dahl,	2010]).	

		Algorithm	for	Conic	Op#miza#on:		
Ø  Based	on	over-relaxed	ADMM	
Ø  Has	a	guaranteed	convergence	
Ø  Communica(ons	between	agents	
Ø  Basic	opera(ons	and	eigenvalue	decomposi(on.		

40	

q  Code	wriwen	in	C++	
q  Tested	on	Amazon	EC2	(36	cores,	60	GB	RAM)	
q  8000	agents	with	40x40	local	matrices	
q  Full-scale	SDP:	57.6	billion	variables	
q  Decomposed-SDP:	12.8	million	variables	
q  MOSEK,	SeDumi,	SDPT3:	take	months	to	solve	



(We	also	developed	a	rank-exploi(ng	IPM.)	

Low-Complexity	Second-order	Methods	

First-Order	versus	Interior-Point	

Linear	in	digits	

Exponen(al	in	digits	

FOM:	O(n)	(me	×	O(1/ε)	iters	
IPM:	O(n6)	(me	×	O(log(1/ε))	iters	

Sparsity-Exploi#ng	IPM:	
O(n)	#me	×	O(log(1/ε))	iters	

n	=	13659	
Time	per	iter	≈	14	s	

q  Consider	40	power	systems.	
	
q  Solve	three	SDP	problems	for	each	system:	

Ø  MAX	3-CUT	(o)		
Ø  Lovasz	Theta	(x)		
Ø  MAX	BISECTION	(Δ)	
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Distributed	control	

Distributed	Control	

(NP-hard:	Witsenhausen’s	example)	
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Op#miza#on	for	differen#al	equa#ons:	Op(mal	control,	dynamic	programming,	
system	ID,	robust	control,	etc.	
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Distributed	Control	

Result	1:	Design	based	on	penalized	SDP	(rank	at	most	3).	

Result	3:	Design	a	controller	with	k	communica(on	links:		

min
K2S

J(K) + �||K||1

Result	2:	Design	based	on	a	closed-form	formula:	
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Conclusions	
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Op#miza#on	is	hard	in	the	worst	case,	but	
real-world	problems	may	not	be	too	hard.	
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