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Optimization

Optimization problem:

Minimize f(x)

Subject to x & Q2

O Universal challenges:

1) Continuous nonlinearity
2) Discrete nonlinearity Wy - z;i:.’;i‘;‘:\:\:%\‘\

3) Large-scale nature

4) Unreliable problem data




Optimization

Optimization problem:

Minimize f(x)

Subject to x & Q2

O Universal challenges:
500 decisions
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2) Discrete nonlinearity
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Possibilities = almost infinity

3) Large-scale nature

4) Unreliable problem data




Optimization

Optimization problem:

Minimize f(x)

Subject to x & Q2

O Universal challenges:
Energy systems
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2) Discrete nonlinearity

J

Millions of constraints

3) Large-scale nature

4) Unreliable problem data




Optimization

Optimization problem:

Minimize f(x)

Subject to x & Q2
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1) Continuous nonlinearity : |
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This talk uses the $400B power grid to illustrate our tools and techniques.



Power Systems

O Power system:

¢ A large-scale system consisting of
generators, loads, lines, etc.

¢ Used for generating, transporting
and distributing electricity.

ISO, RTO, TSO

YV V VYV VY

Unit commitment (UC)
Optimal power flow (OPF)
Security analysis

State estimation



Power Operational Problems

Unit commitment: Optimize the ON/OFF

status of each generator.
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Optimal power flow: Optimize the flows

and parameters.
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Security analysis: Guarantee robustness to

faults.

State estimation: Find the state of system

based on noisy measurements and bad data.
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Modeling of Power Systems

[ Consider two nodes i and j connected via a line:

Nodal voltage (x) Nodal voltage (x))

l Line current l
- ' -
I

Complex power = (Nodal voltage) x (Line current)®

sk b3
Pij +Qij V-1 =a(x, _xj) Ve

/N \

Active power  Reactive power Nonlinearity (due to laws of physics)



Nonlinearity in Power Systems

1 Nonlinear laws of physics (assuming voltage magnitudes are fixed):

P, P,

Bus 1




Power Operational Problems

Challenge 1: Nonlinearity due to laws of physics

L Complexity: Strongly NP-complete with long history since 1962.
L Common practice: Approximation

O FERC Study: Annual cost of approximation > S 1 billion

ARPA-E is setting up a $3.5M cash prize competition

Challenge 2: Nonlinearity due to discrete variables U.S.-Canada Power System Outage Task Force

Final Report on the

August 14, 2003 Blackout

Challenge 3: Astronomical number of security constraints : in the
United States and Canada:

Causes and
Recommendations

Challenge 4: Making decisions based on noisy and bad data

Blackout due to state estimation and
security analysis April 2004




Nonlinear Laws of physics

1 Due to nonlinearity, there are different types of solutions:

Point A: Local solution mm) industry

Point B: Global solution
mm) our method

Point C: Near-global solution

Find a near-global solution with a high optimality
guarantee using convex optimization

Global cost
Optimality Guarantee > » 100

Near-global cost

A number between 0 % and 100 %
12



Findings for Power Systems

O To find a global solution, we proposed a method based on SDP.

(1 SDP worked for IEEE benchmark examples and several real data sets.

O For the first time, this method found and certified global minima for benchmark systems.

cyclic ' Theorem: SDP works under positive

LMPs with phase-shifting transformers.

Distribution

acyclic ' Theorem: SDP works under positive

? locational marginal prices (LMPs).
7 el

Physics of power networks (e.g., passivity) reduce computational complexity for power
optimization problems (joint work with Steven Low and Somayeh Sojoudi)

13



Findings for Power Systems

L SDP may not be exact for ISOs’ large-scale systems (some negative LMPs).

U To find a near-global solution, we proposed a method named Penalized SDP.

@z o\ % ;

y = kﬁ\ A% Case Cost Guarantee | Time (sec)
/ ) LA Polish 2383wp 1874322.65 990.316% 529
e feen S - Polish 2736sp | 130827020 | 99.970% 701

3 e ‘ Polish 2737sop 777664.02 09.995% 675
Polish 2746wop 1208453.93 99.985% 801
Polish 2746wp 1632384.87 99.962% 699
Polish 3012wp 2608918.45 99.188% 814
Polish 3120sp 2160800.42 99.073% 910

We generalized to and incorporated unit commitment, state estimation, security
analysis, transmission switching, and distributed control

Our research revitalized the area: :I'hl_s.work
significantly
+** Follow-up work in academia contributed to the

initiation of the

ARPA-E Grid
¢ Many talks at FERC’s summer workshops in 2012-17 Competition

¢ Interest from industry




Convexification

Arbitrary Real/Complex Polynomial
Optimization

min a8 Myz —> trace{Mozz}

TGCTK

st. oMz <a;, 1=1,2,....m

SDP relaxation

min trace{ M W
WeH" { 0 }
s.t. trace{ M;W} <a;, i=1,2,....,m

W =0

Penalized SDP

11‘1,3,11 trace{ Mo W} + X g(W)
s.t. trace{ M;W} <a;, i=1,2,...m
W =0

+ valid inequalities

W >0 and ran =1



Convexification

Arbitrary Real/Complex Polynomial
Optimization
min J'H;‘?\[Oll' — tl‘aCe{j\[().l'.l'H} P TETTT T e e e m e m e e e mmmm_———— -i
TEC" : . . 3 :
i , 1 Geometric interpretation: I
st. o Mir<a;, 1=1,2,....m i H
i :
1
SDP relaxation i :
1 I
1 1
. [ T , 1 1
i, trace{ MW} i High rank :
luti !
st trace{ MiW} < as, i=1,2,..m ! s0ution !
1 1
1 I
4 1
Wzo H Low rank i
. I solution I
Penalized SDP H :
e e e e e e

11‘1{i/n trace{ Mo W} + X g(W)

s.t.  trace{ M;W} <a;, i=1,2...m

W =0

+ valid inequalities 16




Convexification

Arbitrary Real/Complex Polynomial
Optimization

11181 tH Moz =—> trace{MyzazH)}
Te n

st. "Mz <a;, 1=1,2,....m

SDP relaxation

min trace{ M W
W cH" { 0 }

s.t. trace{ M;W} <a;, i=1,2,....,m

W =0

Penalized SDP

11‘1}/11 trace{ MoW} + A g(W)

s.t.  trace{ M;W} <a;, i=1,2...m
W =0

+ valid inequalities

1 1
1 1
i Valid Inequalities: i
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I ¢ :
1

1 ® 1
I ¢ 1
| . :
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
| :
1

1 b 1
| :
1

1

1 1
I ® 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1



Outline

Sparse Optimization

Distribution

Data Analytics

Algorithm for Sparse
Optimization

0 Testing on several real-
world systems with over

13,000 buses Control Theory

Structured Optimization —>

—>

Notion of
generalized
weighted graph

Notions of OS and
treewidth

Statistical learning
method

Low-complexity
methods

Optimal distributed
control

18



Outline

Sparse Optimization

Distribution

Data Analytics
=Z

Algorithm for Sparse
Optimization

0 Testing on several real-
world systems with over

13,000 buses Control Theory

Structured Optimization —>

—

Notion of
generalized
weighted graph

Notions of OS and
treewidth

Statistical learning
method

Low-complexity
methods

Optimal distributed
control

19



Structured Optimization

(1 How does structure affect complexity?

min x; + ax3 + bxixs + cx1x0
X1,X2

ﬂ Trick: Xf = (X12)2 — X32

min X3 + ax3
XER4

ﬂ SDP relaxation: XX~ — W

Xixj — Wi

min  Wa3 + aWa + bW3p + cWho
Wes4

s.t. W11 — W34 < 0
Wi —1=0 Due to structure, SDP is always exact.

W >0 20




Structured Optimization

min Xf — aox22 CoX1 X
X1,X2

4 2 -
s.t. Xy +ajx; + Cix1xp <«

Generalized weighted graph:

O Vertices: variables
O Edges: couples
O Weight sets: coefficients

21



Structured Optimization

Real-valued Optimization:

{1,2,3}

{0,1,5} {-1,-2,-4} Sign assignment

 Local property: the weight set of each edge is sign definite.

L Global property: the number of positive sets around each cycle is even.

L The proposed conditions include several existing ones ([Kim and Kojima,
2003], [Padberg, 1989], [Bose, Gayme, Chandy, and Low, 2012], etc.).

22



Structured Optimization

e EEEmmm—— |
I o 3 3 I
I Complex-valued Optimization: !
| |
i O Sign-definite set : “T “ is sign definite if T and —T are separable in R? i
i 14 x2 1x p x2 :
: x3 ' x3 :
: . -
1 x > \\\ x4 1
l 4 T I
[ o I
| ' |
: PR !
b e e e e e e e e e e e e e e e e e e e J
e EEEmmm—— |
| |
i Physics of power grids reduce computational complexity. i
I A I
i : ;
! Coefficients of x; x; ° '
o 2 s -
= =N : :
[ qij qji L I
: ' :
| |
I Sign definite due to passivity I
| |
| |
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Graph Notions

O Tree decomposition: Map the graph G into a

tree T:

¢ Each node of T is a bag of vertices of G
¢ Each edge of G appearsin one node of T
¢ If a vertex shows up in multiple nodes of

T, those nodes should form a subtree

L Width of T: Max cardinality minus 1

V4 V3 Vz V1
() e

I @ ® |© @
d f

Q

OHOHD®
mdsicicle

Bags of vertices

Vertices

Treewidth of G: Minimum width

Treewidth =1

25



Graph Notions

v, Vs V, A
O Tree decomposition: Map the graph G into a —O— @ @ @ @
tree T: I mm) O—O—@—®
¢ Each node of T is a bag of vertices of G b d f G ORORG
¢ Each edge of G appearsin one node of T Vertices Bags of vertices
¢ If a vertex shows up in multiple nodes of
T, those nodes should form a subtree Treewidth of G: Minimum width

L Width of T: Max cardinality minus 1

K

Treewidth = 2

26



Graph Notions

J OS-vertex sequence: [Hackney et al, 2009]

¢ Partial ordering of vertices

** Assume 0,0,,..0, is asequence.

% 0. has a neighbor w; not connected to
the connected component of O, in the
subgraph induced by O,,...,0;

OS: Maximum cardinality among all
OS sequences

OS-vertex sequence: C —>» D —> B

OS-vertex sequence: C —» A

27



Low-Rank Solution

L Roughly speaking, very sparse graphs have high OS and low treewidth.

J We can use these notions to find low-rank solutions.

Example: Low-rank PSD completion Bpickity gomengraph:

-_—

O Minimizing every nonzero weighted sum of the red entries gives a low-rank matrix.




Low-Rank Solution

min H Mo Sparsity Graph G: Generalized

st. oM <a;, i=1,2,...m Welghted graph

ﬂ SDP

n‘;‘if_n trace{ MW}

st trace{ M;W} < a;, i=1,2,....m ﬁ

W =0

Often infinitely many low-

rank and high-rank solutions

Embedding +
penalization of
red entries

Theorem: SDP has a solution such that

Rank{W°"'} < |G’| — min {OS(QS)
g/s

_ _ (G'-6)Cgs C Q’}
win trace{MoW}+ 3} Wi
(4,k)eg’

st trace{ M;W} <@, i=12 ..m

W =0 = TW(G) +1 for G’ as enriched supergraph

O This result includes the recent work Laurent and Varvitsiotis, 2012. -



Treewidth in Power Systems

Tree decomposition for IEEE 14-bus system:

Case studies:

System G | tw{G} || System G | Bound on tw{G}
IEEE 14-bus 2 Polish 2383wp 23
IEEE 30-bus 3 Polish 2736sp 23
New England 3 Polish 2746wop 23
39-bus
IEEE 57-bus 5 Polish 3012wp 24
IEEE 118-bus 4 Polish 3120sp 24
IEEE 300-bus 6 Polish 3375wp 25

Treewidth of EU Grid < 35
Treewidth of NY < 40

Theorem: The rank of SDP solution is
upper bounded by Treewidth + 1.

Complexity of solving optimization over
a grid depends on its treewidth (related
work by Bienstock & Munoz 2015).

30




Non-convexity Localization

min o Myx

re

S.t. AI'H.“?\[‘I;I' < a;. i =1,2, ...,

m

]

11‘11i}1 trace{ MW}

s.t.  trace{ M;W} <a;, i=1,2,....m
W =0
11‘1‘111 trace{ MoW} + A\ g(WV)
2,.

W =0

s.t. trace{ M; W} <a;, =1,

.y

Sparse

———)

Low-rank meeses)

Rank-1

—)

SDP works if G has no edges:

(LP)
e Assume SDP fails.

* Can we identify what edges
caused the failure?

* Localized non-convexity v.s.
uniform non-convexity?

Approach for localized case:
Penalty over problematic edges

31



Problematic Edges

Rank of W

a0

_____________________

________________
................................

12,34 19,13,14 == 6,9,13==9,12 ,13:

LoITL L, JTITTIT 0 W ITA T

l Submatrices
of W

Max rank of submatrices

Problematic edges:
Identified based on
high-rank submatrices

IEEE 300-bus: 2
Polish 2383-bus : 11

32



Near-Global Solutions

Strategy: Penalize reactive loss over
problematic lines (proposed a systematic
method)

(J Modified IEEE 118-bus:
** 3 ]ocal solutions

¢ Costs: 129625, 177984, 195695

129625.04,

129625.031 b

129625.021 ' 1
Rank 2
P &

- >
129625.011

Rank 1 4

SDP

COSt 12962500 1

129624.99 1

1206298 02 04 0.6 0.8 1

Lambda

Case TW Cost Guarantee | Time (sec)
Chow’s 9 bus 2 5296.68 100% <5
IEEE 14 bus 2 8081.53 100% <5
IEEE 24 bus 4 63352.20 100% <5
IEEE 30 bus 3 576.89 100% <35
NE 39 bus 3 41864.40 99.994% <5
IEEE 57 bus 5 41737.78 100% <5
IEEE 118 bus 4 129660.81 99.995% <5
IEEE 300 bus 6 719725.10 99.998% 13.9
Polish 2383wp 23 1874322.65 99.316% 529
Polish 2736sp 23 1308270.20 99.970% 701
Polish 2737sop 23 777664.02 99.995% 675
Polish 2746wop 23 1208453.93 99.985% 801
Polish 2746wp 24 1632384.87 99.962 % 699
Polish 3012wp 24 2608918.45 99.188% 814
Polish 3120sp 24 2160800.42 99.073 % 910

Case Minima Cost Guarantee
WB2 2 877.78 100%
WB3 2 417.25 100%
WBS 2 946.58 99.995%
WBS Mod 3 1482.22 100%
LMBM3 5 5694.54 100%
LMBM3_50 2 5823.86 99.807%
case22loop 2 4538.80 100 %
case30loop 2 2863.06 100%
case30loop Mod 3 2861.88 100%
case39 Mod4 3 557.15 99.999%
casel 18 Modl 3 129625.19 99.999%
casel18 Mod2 2 85987.59 100 %
case300 Mod2 2 474643.46 99.996%

7000 simulations

33




Penalty Design

Why was penalty chosen as loss?
Il{;‘ifll trace{ MoW } + A g(W)
s.t. trace{ M;W} <a;, 1=1,2,....m

W =0

First try: g(W) = |[|[W]|.

** Compressed sensing and phase retrieval
¢ Need nlog n measurements for a much

simpler problem [Candes and Recht].

Proposed penalty:
g(W) = trace{ MW}

Guess for solution of original QCQP: x.

e M >0
° ]\/[JZ* =0
e Zero is a simple eig of M.

Theorem: SDP is exact if the solution is in
a vicinity of x..

Algorithm design: How to find the best M?

Recovery region for x :

Ry =4z | gz, M) = 0}

34
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Data Analytics

Data |:>

Nonlinearity

Noise
Bad data

Algorithm

|:> Information

z, = (vv*',M,) + w, + 17, re M

1 {

measurement unknown state noise

bad data

U Penalized SDP: Two-term objective to handle non-convexity and noise estimation

minimize
WeH"™
veR™

subject to

(W, M) +p x |||y

<W, MT) + Vr = Ty,
W > 0.

reM,

36



State Estimation

Theorem: For carefully designed M and y, if the number of bad data measurements is

not too high, we have

WPt — avv*||p < /T x trace{ WepPt} x |lw||;

0.00016
0.00012 ¢
w

£ 0.00008 }
o

0.00004 ¢

0

0 60 120 180 240 300 360
Number of Bad Measurements

PEGASE 1354-bus system
(bad data with no noise)

1 The above framework allows studying and mitigating the worst attacks
possible on power grids.

37
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Low-Complexity Distributed Computation

Goal: Design a low-complex =0
algorithm for sparse conic
optimization (LP/QP/QCQP/ — () —)
SOCP/SDP a
/SDP) =0
[ minimize Ezvtr(AiWi) Sum of agents’ objectives
subject to : tr(B;Wi) = b; Vi=1,...,p; and i€V
tr(C:W;) < ¢} Vji=1...,¢; and i€V |[Local constraints
W; =0 VieV
3 tr(DPW;) =df Vk=1,...,r; and i€V
JEN([i]
Z tr(Eiijj) < eg) Vk=1,..., s; and i€V Overlapping constraints
W, ;,1; j)=W;(I;;,I;;) ¥V (i,5) € EF

39




Low-Complexity Distributed Computation

O Distributed Algorithms for Big Data: ADMM-based dual decomposed SDP (related

work: [Parikh and Boyd, 2014], [Wen, Goldfarb and Yin, 2010], [Andersen,

Vandenberghe and Dahl, 2010]).

Algorithm for Conic Optimization:
» Based on over-relaxed ADMM
» Has a guaranteed convergence

» Communications between agents

» Basic operations and eigenvalue decomposition.

000000

Code written in C++

Tested on Amazon EC2 (36 cores, 60 GB RAM) |

| pi=5,¢i=0 [ pi=0,qi=5 | pi=5,qi =5 |

Popj

3.939822e4-06

6.475070e+-06

9.458764e+06

8000 agents with 40x40 local matrices

Doy

3.939368e-+-06

6.475035e+06

9.458743e+06

iter

325

1264

2810

Full-scale SDP: 57.6 billion variables

tcpu (min)

2.218

7.973

19.539

titer (S€C per iter)

0.410

0.378

0.417

Decomposed-SDP: 12.8 million variables

Optimality

99.98%

99.9994%

99.9997%

MOSEK, SeDumi, SDPT3: take months to solve

40




Low-Complexity Second-order Methods

First-Order versus Interior-Point

\ Exponential in digits

1077 [

100

Error

Linear in digits

0 500 1000 1500
Time (s)

FOM: O(n) time x O(1/¢) iters
IPM: O(n®) time x O(log(1/¢)) iters

Sparsity-Exploiting IPM:
O(n) time x O(log(1/¢)) iters

(We also developed a rank-exploiting IPM.)

 Consider 40 power systems.

O Solve three SDP problems for each system:

> MAX 3-CUT (o)
» Lovasz Theta (x)
» MAX BISECTION (A)

102
10" F
w, 10 <
@
£
E Sy
5 107 ~ " n=13659 _
X . . ]
A« Time periter= 14 s|
102 F AX )
S
103 NN N L
109 10" 102 103 104 10°

problem size [#]
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Distributed Control

Optimization for differential equations: Optimal control, dynamic programming,
system ID, robust control, etc.

Distributed control

(NP-hard: Witsenhausen’s example)

100 -
90
80}
70
60 -
50~

(a) Decentralized (b) Localized

Time

40}
30}

20 L - e

10} 4 7 4

PRttt

P b PR EE R G

o
N
S
[=)]
[oo]
-
o
iy
N
—
>
-—h
<D
—
@
no
o
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Distributed Control

Result 1: Design based on penalized SDP (rank at most 3).

Result 2: Design based on a closed-form formula:

— { &(V)|B|» |
(1- p(A + BK ))\/E{[z[o0][2}

1- p(A+BKg) + ~<V)KdzB-z}
(1- p(A + BKa))\/E{uc[oo][Z}

(1+ /T (Ka)) J(K.) 2 T(Ka) > J(K.)

Result 3: Design a controller with kK communication links:

26

min  J(K) + A|K||; ool —

KeS Sia} L
O 46l

44
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