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Outline — two main parts

= Multigrid (in space)
« Motivation and background
- Reducing communication in parallel multgnd

» Multigrid in time
« Motivation and basic approach
« MGRIT - multignd reduction (MGR) in tme

« Parallel open source code XBraid
« Brief iterature survey

« Thanks, summary and conclusions
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Multigrid will play an important role
for addressing exascale challenges

= For many applications, the fastest and most
scalable solvers are multigrid methods

Elasticity / Flasticity

= Exascale solver algorithms will need to:
- Exhibit extreme levels of parallelism (exascale = 1B cores)
- Minimize data movement & exploit machine heterogeneity e A
- Demonstrate resilience to faults Chromodynamics

= Multilevel methods are ideal

+ Key feature: Optimal O(N) .¢

= Research challenge:

- No optimal solvers yet for some applications, P _
even in serial! ‘

« Parallel computing increases difficulty
Hedrmboltz Modes
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Multigrid solvers have O(N) complexity,
and hence have good scaling potential

lime lo Solution

Number of Processors (FProblem Size)

* \Weak scaling — want constant solution time as problem size grows
In proportion to the number of processors
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Multigrid (MG) uses a sequence of coarse
grids to accelerate the fine grid solution

smoothing

prolongation
(interpolation)

S Algebraic multigrid
Mul t:gn d (AMG) only uses
V-cycle = matrix coefficients
Error approximated on It[ No actual grids!
a smaller coarse grid
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Straightforward MG parallelization yields
optimal-order performance for V-cycles

Level 1 Level 2 Level L

= ~ 1.5 million idle cores on Sequoia!

= Multigrid has a high degree of concurrency .
- Size of the sequential component is only O(log N)!
- This is often the minimum size achievable

= Parallel performance model has the expected log term
Ty = 0(log N)(comm latency) + U(l},)(cumm rate) + 0(Q,)(flop rate)
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Parallel computing imposes restrictions
on multigrid algorithm development

» Avoid sequential techniques
- Classical AMG coarsening
» Gauss-Seidel smoother
- Cycles with large sequential component
— F-cycle: O(log? N)
— We-cycle: O(2°8N) = O(N)

T speedun for subsurfooe

[ | C Qntrol mmmunicaﬁﬂn probiems with new coarsering

k ard interpedation apgpeoach
» Galerkin coarse-grid operators (*74P) can
lead to high communication costs in AMG

» Need both CS and Math advances!

- New methods have n_ew convergence and
robustness characteristics

Magretic: Tex Cormpressicon

- Successful addressing issues so far GERCTR Y SR . Y0

MG semoother rosearch
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Parallel AMG in hypre now scales to
1.1M cores on Sequoia (IBM BG/Q)

Total times (AMG-PCG)
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= mx ndenotes m MPI tasks and n OpenMP threads per node
= Largest problemabove: 728 unknowns on 1.1M cores
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Current spatial-MG research focuses on
reducing parallel communication costs (1)

= Non-Galerkin AMG replaces the usual coarse-grid
operators with sparser ones
- Speedups from 1.2x - 2.4x over existing AMG
- In hypre 2.10.0b




Current spatial-MG research focuses on
reducing parallel communication costs (2)

« Mult-additive AMG exploits a theoretical identity to inherit
the parallelization benefits of additive methods and the
convergence properties of multiplicative

- Additive MG is good at overlapping communication and
computation, but converges slower than mulitiplicative MG

- Speedups of 2x over existing AMG
« In hypre 2.10.0b

1

Comm
Comp
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Current spatial-MG research focuses on
reducing parallel communication costs (3)

« AMG domain decomposition (AMG-DD) employs cheap
global problems to speed up convergence
« Constructs problems algebraically from an existing method
» Potential for FMG convergence with only log N latency!

» Implementing parallel code
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Parallel Time Integration




Traditional time integration will
become a sequential bottleneck

From Kalhy Yelick's lalk fifked "Ten Ways o Wasle a Parallel Compuler "

* Transistors (in Thousands)
® Freguency (Mez)

& res

bl 7% bRt PR 1 199 =000 PiaL ] <ML

= Clock rates are no longer increasing — faster speed is now
achieved through more concurrency

= Parallel time integration methods are needed!
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How on Earth can this be possible?

To T 7 %

R

You can't solve at a given time point until you know the solution at the previous point
... and you can't compute the previous point until you know the one beforethat ... efc.

= |s this really any different from space (e.g., diffusion)?
X 2 2 92 2 9 X

~ T A A AT A AT

... and the dependence is in both directions (is this harder or easier?)

= MG is used routinely to solve the spatial problem
= Why not use it to solve the time problem too?
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One approach for parallel-in-time:
leverage spatial multigrid research

smoothing

\ (relaxation)
.-: —_—

- prolongation
B S8 (interpolation)

restriction

Multigrid . 1
V-cycle - .

Error appoxfmated on h
a smaller coarse grid
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Time stepping is sequentiai
« Simple advection equation, u, = —cu,

« |nibal condition is a8 wave

T””u /

-

Space -
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Multigrid-in-time converges to the
serial space-time solution in parallel

= Simple advection equation, u, = —cu,

« |nitial condition is a wave

—

Sp ac-e J r
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Multigrid-in-time converges to the
serial space-time solution in parallel
= Simple advection equation, u, = —cu,

= Multilevel structure allows for fast data propagation

Iteration 1




Significantly more parallel resources can
be exploited with multigrid in time

Senal time steppfng Multigrid in time

{ (lime) ——

@ Parallelize in space only @ Parallelize in space and time
@ Store only one time step @ Store several time steps
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It’s useful to view the time integration
problem as a large block matrix system

= General one-step method
i =lway)+g;, i=L2...N

= Linear setting: time marching = block forward solve
+ O() direct method, but sequential

I Uy 9
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£
= Qur approach is based on multigrid reduction (MGR) methods
(approximate cyclic reduction)

- ((N) iterative method, but highly parallel
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MGR dates to 1979 (Ries & Trottenberqg)
and we are extending it “in time” (MGRIT)

.t

& R — Foot
B A e A |
ST S at I\ — C-point
= Relaxation alternates between F and C-points | F-relaxation
- F-relaxation = integration over each coarse interval v
- WA
* Coarse system is a time re-discretization f"ﬁt":uarse Petrov-Galeridin )
- Replaces the exact Petrov-Galerkin system system is not practical

= approximate it

« Non-intrusive approach cgior e
- Time discretization is unchanged ( PO }
la
: b 1) [

- User only provides time integrator @

Lawrence Livermore National Laboratory ppmp— . =




MGRIT is O(N) for simple parabolic
problems, implicit & explicit, 1D-3D

2D heat equation, implicit backward Euler, F/FCF-relaxation

Gnd=2%2vx2"| (445) | (557) | (66.9) | (7,7.11) | (8,8,13)
V-cycles 10 " 1" 1" 1

Explicit method: Use either an implicit scheme or spatial
coarsening on coarse grids for stability

Extends to nonlinear problems with FAS formulation
= Also O(N) for nonlinear diffusion

Similar convergence for any coarsening factor
But larger factors require Iarger (sequential) F-relaxation intervals

Two-level MGRIT with F—relaxatmn Is equivalent to parareal
- Popular method, typically not viewed as multigrid
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Parallel speedups can be huge, but
not in the way we are accustomed

= Parallel time integration is
driven entirely by hardware

- Time stepping is already O(N)

time [seconds)

= Useful only beyond some
parallel scale

- There is a crossover point VO e Nisaeane
. N&Ed 10-100x more parallelism 3D Heat Equation: 33° x 4097,
Just to break even 8 procs in space, 6x speedup

= The more time steps, the more speedup potential
+ Applications that require lots of time steps will benefit first
« Speedups (so far) up to 49x on 100K cores
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XBraid is open source and designed
to be both non-intrusive and flexible

= User defines two objects:
« App and Vector @@@*

= User also writes several wrapper routines:
« Phi, Init, Clone, Sum, SpatialNorm, Access, BufPack, BufUnpack
« Coarsen, Refine (optional. for spatial coarsening)

= Example: Phi(app, u, status)

« Advances vector u from time tsfart to fstop and
returns a target refinement factor

= Code stores only C-points to minimize storage

- Ability to coarsen by large factors means fewer parallel resources

- Memory multiplier per processor~ O(log N) with time coarsening,
O(1)with space-time coarsening
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Compressible Navier-Stokes (nonlinear) —
speedups to 7.5x with typical MG scallng

* Coupled Xbraid with existing
code Strand2D (DOD project)

- ~ 500 lines of Xbraid wrapper code
plus minor changes to Strand2D

- ~ 3 weeks with minimal outside help

Iteration 1 Iteration 5 lteration 13

Velocity magnitude
at time step 5120
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XBraid uses FMG to get adaptivity in time
(and space) — not yet fully implemented

= User returns refinement factor in Phi() ._
« Example time grid hierarchy W \

= (’-point (coarse grid) - F-point

Levelo EEE, 4 e, %
Level 1 | b i
Level 2 | b
Natice
= User requests refinement factors on the finest B
grid which generates a new grid and hierarchy j Coots
ettt I /
— Y
Level 0 | b i t i i &
Level 1 | } +
Level 2 I "

Lawrence Livermore National Laboratory pop—




Space-time coarsening, multi-step
methods, and future work

= Space-time coarsening speeds up computations \ hy, b,
and greatly reduces memory use

:L;.:L.
+ User writes optional Coarsen() & Refine() \
- Works well for implicit diffusion Q\ th,, 4h,
- Convergence degrades for explicit diffusion near CFL

‘ﬁ,_\ﬁ_

Multi-step methods
- Convert to one-step by grouping unknowns

Other problems and applications
- Hyperbolic problems and CFD (DOD project)
- Power grid application

Pursue fairly non-intrusive approaches in XBraid (if possible)

Full space-time multjgrid and Newton-based appmaches B
+ More intrusive. but can be more effective
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Nearly 50 years of research exists

but has only scratched the surface

= Earliest work goes back to 1964 by Nievergelt
- Led to multiple shooting methods. Keller (1968)

= Space-time multigrid methods for parabolic problems
- Hackbusch (1984): Horton (1992); Horton and Vandewalle (1995)
- The latter is one of the first optimal & fully parallelizable methods to date

= Parareal was introduced by Lions, Maday, and Turincini in 2001
- Probably the most widely studied method
- Gander and Vandewalle (2007) show that parareal is a two-level FAS multigrid method

= Discretization specific work includes
- Minion, Williams (2008, 2010) — PFASST, spectral deferred correction / parareal
- DeSterck, Manteuffel, McCormick, Olson (2004, 2006) — FOSLS

= Research on these methods is ramping up!
- Ruprecht, Krause, Speck, Emmett, Langer, ... this is not an exhaustive list
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Our Parallel MG Research Team
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Vesaln Hoh Hormced Tzanio Danmsl Anders Jacob Hanayot Ulnke
Dobrev Falgout (il rvaan Kikw Dsa-Kutfuor |'stersson  Schroder  Vassievskl Wanq Yang

= University collaborators and summer interns

« U Boulder (Manteuftel, McCormick, Ruge, Jones, O Neill, Mitchall, Southwortn), Menn State (Eranmick, XU,
Jiketanov), UCSD (Bank), Ball State (Livshis), U Wuppertal (Kanl), Memonal University (MacLachian),
U Winots (Gropp. Olson, Piene), KU | owven (Fricdbol) U Cologne (| anser)
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Some relevant mini-symposiums

» Multigrid Methods

« Tuesday 10:00 AM / 2:15 PM (MS202 / MS226): Advances in Multigrid
Methods and Their Applications - Parts | and Ill, Room 259

- Tuesday 4:25 PM (MS254): Advancements in Generalizing Algebraic Multigrid
Methods, Room 151G

= Parallel Time Integration

- Wednesday 10:55 AM / 2:00 PM (MS261 / MS286). Parallel Methods for Time
Integration - Parts | and Il, Room 250E

= There are many other related talks and posters scattered
throughout the program, so please look for them

b
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Summary and Conclusions

Multigrid methods are ideal for exascale
- Optimal, naturally resilient to faults, minimize data movement

Parallel time integration is needed on future architectures
« Major paradigm shift for computational science!

Success with approaches for reducing communication
» Non-Galerkin AMG, Mult-additive AMG, AMG-DD

MGRIT algorithm extends multigrid reduction “in time”

« Non-intrusive yet flexible approach (open-source code XBraid)
- Demonstrated speedups for parabolic problems and CFD

- Exploring other application areas
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Thank You!
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