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Take home messages

- The need to constrain greenhouse gas budgets inevitably
leads to the need for the solution of inverse problems

- These inverse problems:

- Require (intelligently) choosing among many
uncomfortable assumptions

- Are becoming increasingly statistically sophisticated and
computationally demanding

- Done carefully, can lead to fundamental insights with
management and policy implications
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Photo courtesy of Bartshé Miller

Tioga Pass, January 12 2015
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Perturbation of the global carbon cycle caused by anthropogenic activities,
averaged globally for the decade 2004-2013 (GtCO./yr)
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Uncertainty associated with the future
of natural carbon sinks is one of three
major sources of uncertainty in future
climate projections
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Source: Fnedlingstem et al. (2006) showing projections
from coupled carbon and climate simulations for

several models.




@it ) BRIEFINGROOM ISSUES THEADMINISTRATION PARTICIPATE 1600

ime « Briefing Koom = Statements & Keleases

The White House

Office of the Press Secretary @enman Wiweet [srae +

For Immediate Releasa November 11, 2014

FACT SHEET: U.S.-China Joint Announcement on Climate
Change and Clean Energy Cooperation

President Obama Announces Ambitious 2025 Target to Cut U.S. Climate Pollution by 26-28 Percent from
2005 Levels

Building on strang progress dunng the first six years of the Administration, today President Obama announced a
new larget to cut net greenhouse gas emissions 26-28 percent below 2005 levels by 2025. At the same time
President Xi Jinping of China announced largels to peak CO» emissions around 2030, with the intention lo try lo

peak early, and to increase the non-fossil fuel share of all energy to around 20 percent by 2030




{ Global Carbon Project 2013; Figure based on Kirschke et al. 2013, Nature Geoscience
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Andres et al. (2014); Global Carbon Project

How do we know emissions?
Self reporting
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How do we know emissions”?
nventories '




How do we know emissions? Observations
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Take home messages
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- These inverse problems:

- Require (intelligently) choosing among many
uncomfortable assumptions

- Are becoming increasingly statistically sophisticated and
computationally demanding

1 - W -y g e B |~ i - B W W e ¥ -\-1-1-,--1,-\! . 5 =
» LJone careiully. can lead (o tungamental insi




Overall inverse problem

y = h(Z)‘i‘E}. +8h +€re.*p +8ag

g

- Find z given v, where:
atmospheric concentration observations
(some places, some times)

surface fluxes (everywhere, all the time)
.): atmospheric transport
measurement error
atmospheric transport model error
. “representation” error (finite resolution in v)
- “aggregation” error (finite resolution in z)




Overall inverse problem ALL vary in space

B and time
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Observations, y -




Atmospheric transport, A(.)
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How to inform

processes?




Mixed linear model
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y=h{z)+e, +8, +& ,+E . Y
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V= HZ + £ Linear forward model

High spatiotemporal resolution for z

z=Xp+&

Y= pr’ e H:‘ + ¢ BIC for model selection
(space-time correlated
residuals)

E~N ({]Q] Stationary in space, nonstationary

i in time, parametric model, not

sparse Vv

£~N (ﬂ. R.] Independent, variable variance ReML for parameter
estimation




Can evaluate

models’ process
representations
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Increasing cost of inversions

Regional CO,
inversions over North
America for one year
at 1° x 1°; 3-hourly
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N Y2 <t al. (BG 2010; Env. Mod. Soft. 2013)

Branch & bound algorithm for model selection
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N Y22 and Michalak (GMD 2013)

Matrix multiplication & posterior covariances
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Both algorithms require ()(n” ) operations instead of ()(n’) for direct solution.




Best Estimates

Uncertainties

. Chatterjee et al. (JGR 2012, ACPD 2013)

Ensemble SRF approaches

GEnSRF GEnSRF
TC1ES00_L15001005

' uEmolTimes)

Figure 4. TCI (top) flux estimates and (botom) associated uncertainties aggregated to the monthly scale
for (a and b) GIM and (¢ h) three different GEnSRF nns.

Features:
* No dynamical model
» Kalman smoother

« Heterogeneous (in space and time) observational network




Real-Time Large-Scale Parallel Intelligent
CO, Data Assimilation System

Data Carbon-Climate
Assimilation Surveillance
System




Take home messages

- The need to constrain greenhouse gas budgets inevitably
leads to the need for the solution of inverse problems
- These inverse problems:

- Require (intelligently) choosing among many
uncomfortable assumptions

- Are becoming increasingly statistically sophisticated and
computationally demanding

- Done carefully, can lead to fundamental insights with
management and policy implications




Miller et al. (PMNAS, 2013)
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Miller et al. (PNAS, 2013)

Estimated methane ﬂu.’i.?,?




Estimated methane fluxes
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Rurnmant source is nearly double
what inventories suggest.

Oil and gas emissions are 5x those
n EDGAR 4.2 for TX/OK/KS.
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Miler ot al. (PNAS, 2013) |

-y W S -

Estimated methane fluxes

This ‘e '.5

study (2007-2008 averagel |
ﬂ" ¢ ' = d‘ = = 0

: . i Il a Pl i

Ruminant source is nearly double
what inventories suggest.

Oil and gas emissions are 5x those
in EDGAR 4.2 for TX/OK/KS.
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Fang et al. (BG 2014) u

Confronting model flux patterns with obs

# models

vanability in atmospheric
observations for much of
the year, but they do
better dunng growing
SEeason.




Fang et al. (GBC in revision)

Providing process information directly at

target scales

-

Drift Coefficients,

¢ Lag. Precip 30
 Rela. Humidity
¢ Spec. Humidity
O Air Temp.

Models explain flux
patterns well when
flux patterns are
dominated by
patterns in radiation




Slide modified from: Yoichi Shiga

Solar Induced Fluorescence

SIF emitted during photosynthesis and is therefore
potentially a promising measure of GPP

Fluorescence -
photon

Photochemistry Decay

Source: http://www.nasa.gov/press/goddard/2014/march/satellit
e-shows-high-productivity-from-us-corn-beit/#.UBQK4_IdVEG

Source: Frankenberg, 2011




Shiga et al. (in prep)

Differences at 1° x 1°, aggregated over
March to October
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Take home messages

- The need to constrain greenhouse gas budgets inevitably
leads to the need for the solution of inverse problems

- These inverse problems:

- Require (intelligently) choosing among many
uncomfortable assumptions

- Are becoming increasingly statistically sophisticated and
computationally demanding

- Done carefully, can lead to fundamental insights with
management and policy implications
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