Cluster-based reduced-order modelling

From shear flows to engine tumble motion
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Motivation
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Brown & Roshko (1974) Barros er al. (2014)

How can we identify physical mechanisms in an
unsupervised manner directly from data?

» Analysis of physical mechanisms.
» Quick exploratory studies for optimization and parameter analysis.

» Robust models for real-time feedback control applications.




Cluster analysis for structure identification

Part of pattern recognition/machine learning
How to find a hidden structure or groups in data?

Applications: Data compression, Tracking, 3D
reconstruction, territorial behavior, etc.

Goal: Organize data {x™}M_, into clusters such
that there is a

e high intra-cluster similarity and
e low inter-cluster similarity

What does “similar” mean? E.g.:
d(x!y) _— ||X o yHE

What are the points c; that generate these

subsets?
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K-means algorithm

Given a data points/observations {x™}™_. where x = [x1,...,xn]"
Initialization: K cluster centers
L1 snvp B

Assign each x™ to its closest cluster
center cj

Update each cluster center cy
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Iterate until converged

Minimization of total cluster variance




Dynamical model

Cluster transition probability matrix
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nik := # of transitions from Cy to C;
ny = # of data points in cluster Cy
» P defines a one-step time-homogeneous Markov chain where
Px = Prob(c; | ci)
» Evolution of probability distribution
Poi=Ppmn — pPa=P"po

» Convergence to unique, stationary distribution

P = lim P"pg

m—0K




CROM applied to Lorenz attractor data
= | Kaiser, Noack, Cordier, Spohn, Segond, Abel, Daviller, Osth, Krajnovié, Niven, 2014, JFM

Lorenz system (Lorenz, 1963) with o =10, 3 =8/3 and p = 28.
Data set: x™ := x(tm) = [x(tm), ¥(tm), z(tm)]”

Kinematics Dynamics Graphical representation

from cluster k _

I i3sn)p 0}

» Coarse-grained state space
» Homogeneous partitioning around fixed points — phase averaging

» ldentification of nsm nsition clusters




Interpretation as generalization of Ulam's method

Dynamical system:

Liouville equation:

dp(x, t)
ot

Perron-Frobenius operator:

— _V . (fp(x,t)) = L(p(x, t))

P = exp(Lt)

Ulam-Galerkin method (L/, 1976, J. Approx. Theory):

card({x"|x™ € Bk and f(x™) € B;})
card({x™ € B«})

Py =

CROM:
» Low dimension

» Other distance metrics




Spatially developing mixing layer

2D mixing layer simulation with Kelvin-Helmholtz vortices
undergoing vortex pairing

Re=AUd,/v =500 Ma=03,r=U;/U; =73

Finite-difference Navier-Stokes solver (Daviller, PhD thesis (2010),
Cavalieri et al. (2011))

Data compression using proper orthogonal decomposition
(used for all following examples)




CROM of the mixing layer

=| Kaiser, Noack, Cordier. Spchn, Segond, Abel, Daviller, Osth. Krajnovié, Niven, 2014. JFM

Kinematics: Cluster centroids
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CROM of the mixing layer

=| Kaiser, Noack, Cordier, Spohn, Segond, Abel, Daviller, Osth, Krajnovié¢, Niven, 2014, JFM

Dynamics: Graph of the transition probability matrix

» Identification of two shedding regimes.

» Flipper cluster acts as a switch between both shedding regimes.




Attractor properties of the mixing layer

= | Kaiser, Noack, Cordier. Spohn, Segond, Abel, Daviller, Morzyviski, Osth, Krajnowic, Niven, 2014, AIP Conf. Proc. (MaxEnt2013)

Analysis of model convergence to its asymptotic state via relative entropy
(negative of Kullback-Leibler function D):

K pm
K

K .
H(P™,Q)=—-D(P,Q):=— > PFIn*
=1 k=1 Qi

Transients: \ All information

| on initial
conditions is lost

HP'.Q) ~15}

Backwards integration
possible

Probability distributions:

e 010 Thinenhhk Model p~, compared to
Attractor: . 0| - data q




Turbulent wake of a bluff body

‘= Osth, Noack, Krajnovié, Barros & Boreé. 2014, JFM

» 3D incompressible turbulent
flow around a bluff body
(finite-volume LES)

» Re = U .H/v = 3x10°

» Data compression using POD

Bi-modal behaviour of the wake (Grandmange et al. 2013):

Flow changes between two asymmetric states over time scales of order
Ts =~ 100 J/ U, = Challenge for ROM.




Side force of the bluff body

= Osth, Noack, Krajnovi¢, Barros & Boreé, 2014, JFM




Mean cluster forces of the bluff body wake
Kaiser, Noack, Cordier, Spohn, Segond, Abel. Daviller, Osth, Krajnovic, Niven, 2014, JFM
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» Clusters are associated with different mean forces

» Desirable state space regions




Mean cluster forces of the bluff body wake
= | Kaiser, Noack, Cordier, Spohn, Segond, Abel, Daviller, Osth, Krajnovié, Niven, 2014, JFM
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» Clusters are associated with different mean forces




CROM of the bluff body wake

=| Kaiser, Noack, Cordier, Spohn, Segond, Abel, Daviller, Osth, Krajnovié¢, Niven, 2014, JFM

Cluster dynamics

» Bi-modal behavior and transition processes are distilled

» ldentification of branching clusters (Cs and Cg)




Engine tumble motion of an IC engine
= Voisine et al. 2011, Exp. Fluids

Four-stroke internal combustion engine
Intake Compression Ignition Exhaust

Mid-compression

(270 CAD)

» Tumble breakdown from large-scale to small-scale structures

» Large-scale cycle-to-cycle variability effects engine efficiency and

Fmssions m




Data set of IC engine
= Voisine et al. 2011, Exp. Fluids

Intake Compression Ignition Exhaust

HSPIV in symmetry plane of
cylinder head/ pent-roof chamber

Exhaust
From mid-compression to end of GV
compression phase

(6 =270...354 CAD,

Af = 4 CAD)

N = 161 consecutive engine cycles bW

s TR s VY pRea

are measured with M = 22
snapshots/cycle




Evolution of cluster probability distribution
= | Cao, Kaiser, Boree, Noack, Thomas, Guilain, 2014, Exp. Fluids

Mid-Compression lgnition

L=

:

310 330
i [CAD)

» Cluster probability qx(0) = %
e N =161 : total # cycles
e n(0) : # snapshots at 6 € C,

» Spreading of flow fields during tumble breakdown

» Almost uniform PDF at iinition




Large variation of flow patterns at ignition
= Cao, Kaiser, Boreé, Noack, Thomas, Guilain, 2014 Exp. Fluids

cycle n = 53
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6 = 300 CAD ¥ 6 = 354 CAD

cycle n = 52




A stable and potentially cleaner engine
=| Cao, Kaiser, Boreé, Noack, Thomas, Guilain, 2014, Exp. Fluids

» l|dentification of important clusters: Cs and Cs are the most desirable
states for the end of compression phase.
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Evolution of probability distribution estimated from trajectories

ending in Cs/Cs: Gradual destabilisation of the large-scale flow
structures

Goal: Completion of tumble breakdown in each cycle




Conclusions and outlook

Data-driven approach to
extract physical mechanisms
in an unsupervised manner

Tuning parameters:

e total number of clusters
e time step of data
e distance metric

Cluster sociology

Linear model taking into
account nonlinear actuation
dynamics




	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22

