

Cluster-based reduced-order modelling

From shear flows to engine tumble motion

E. Kaiser^{1,7} B. R. Noack¹ L. Cordier¹ A. Spohn¹ M. Segond² M. Abel² G. Daviller³ J. Östh⁴ S. Krajnović⁴ Y. Cao¹ J. Borée¹ Lionel Thomas¹ Stéphane Guilain⁵ R. K. Niven⁶ L. N. Cattafesta⁷

¹Institut P¹, CNRS – Université de Poitiers – ENSMA, France, ²Ambrosys GmbH, Germany, ³CERFACS, France
⁴Chalmers University, Sweden, ⁵Renault s.a.s., France, ⁶UNSW/ADFA, Australia, ⁷Florida State University / FCAAP, USA

- supported by TUCOROM, SepaCoDe, Poitou-Charentes/France, PIRE, ADFA@UNSW -

SIAM conference CSE, 14-18 March 2015

Motivation

How can we identify physical mechanisms in an unsupervised manner directly from data?

- Analysis of physical mechanisms.
- Quick exploratory studies for optimization and parameter analysis.
- Robust models for real-time feedback control applications.

Cluster analysis for structure identification

- Part of pattern recognition/machine learning How to find a hidden structure or groups in data?
- Applications: Data compression, Tracking, 3D reconstruction, territorial behavior, etc.
- ▶ Goal: Organize data $\{\mathbf{x}^m\}_{m=1}^M$ into clusters such that there is a
 - · high intra-cluster similarity and
 - low inter-cluster similarity
- What does "similar" mean? E.g.: $d(\mathbf{x}, \mathbf{y}) = ||\mathbf{x} \mathbf{y}||_2$
- What are the points c_k that generate these subsets?

K-means algorithm

Given a data points/observations $\{\mathbf{x}^m\}_{m=1}^M$ where $\mathbf{x} = [x_1, \dots, x_N]^T$

- **Initialization**: K cluster centers c_1,\ldots,c_K
- Assign each x^m to its closest cluster center Ck
- Update each cluster center ck

$$\mathbf{c}_k = \frac{1}{n_k} \sum_{\mathbf{x}^m \in \mathcal{C}_k} \mathbf{x}^m$$

- Iterate until converged
- Minimization of total cluster variance

Dynamical model

Cluster transition probability matrix

$$P_{jk} = \frac{n_{jk}}{n_k}$$

 $n_{jk} := \#$ of transitions from C_k to C_j $n_k := \#$ of data points in cluster C_k

▶ P defines a one-step time-homogeneous Markov chain where

$$P_{jk} = \operatorname{Prob}(\mathbf{c}_j \mid \mathbf{c}_k)$$

Evolution of probability distribution

$$\mathbf{p}_{m+1} = \mathbf{P} \, \mathbf{p}_m \quad \rightarrow \quad \mathbf{p}_m = \mathbf{P}^m \, \mathbf{p}_0$$

Convergence to unique, stationary distribution

$$\mathbf{p}_{\infty} = \lim_{m \to \infty} \mathbf{P}^m \, \mathbf{p}_0$$

CROM applied to Lorenz attractor data

Kaiser, Noack, Cordier, Spohn, Segond, Abel, Daviller, Östh, Krajnović, Niven, 2014, JFM

Lorenz system (Lorenz, 1963) with $\sigma = 10$, $\beta = 8/3$ and $\rho = 28$.

Data set: $\mathbf{x}^m := \mathbf{x}(t_m) = [\mathbf{x}(t_m), \mathbf{y}(t_m), \mathbf{z}(t_m)]^T$

Kinematics

Dynamics

Graphical representation

- Coarse-grained state space
- Homogeneous partitioning around fixed points → phase averaging
- Identification of osd

nsition clusters

Interpretation as generalization of Ulam's method

Dynamical system:

$$\frac{\mathrm{d}\mathbf{x}}{\mathrm{d}t} = \mathbf{f}(\mathbf{x})$$

Liouville equation:

$$\frac{\partial p(\mathbf{x},t)}{\partial t} = -\nabla \cdot (\mathbf{f} p(\mathbf{x},t)) = \mathcal{L}(p(\mathbf{x},t))$$

Perron-Frobenius operator:

$$\mathcal{P} = \exp(\mathcal{L}t)$$

Ulam-Galerkin method (Li, 1976, J. Approx. Theory):

$$P_{jk} = \frac{\operatorname{card}(\{\mathbf{x}^m | \mathbf{x}^m \in B_k \text{ and } \mathbf{f}(\mathbf{x}^m) \in B_j\})}{\operatorname{card}(\{\mathbf{x}^m \in B_k\})}$$

CROM:

- Low dimension
- Other distance metrics

Spatially developing mixing layer

- 2D mixing layer simulation with Kelvin-Helmholtz vortices undergoing vortex pairing
- ► $Re = \Delta U \delta_{\omega} / \nu = 500$; Ma = 0.3; $r = U_1 / U_2 = 3$
- Finite-difference Navier-Stokes solver (Daviller, PhD thesis (2010), Cavalieri et al. (2011))
- Data compression using proper orthogonal decomposition (used for all following examples)

CROM of the mixing layer

=

Kaiser, Noack, Cordier, Spohn, Segond, Abel, Daviller, Östh, Krajnović, Niven, 2014, JFM

Kinematics: Cluster centroids

Most clusters are "phase bins"

CROM of the mixing layer

Kaiser, Noack, Cordier, Spohn, Segond, Abel, Daviller, Östh, Krajnović, Niven, 2014, JFM

Dynamics: Graph of the transition probability matrix

- Identification of two shedding regimes.
- Flipper cluster acts as a switch between both shedding regimes.

Attractor properties of the mixing layer

書

Kaiser, Noack, Cordier, Spohn, Segond, Abel, Daviller, Morzyński, Östh, Krajnović, Niven, 2014, AIP Conf. Proc. (MaxEnt2013)

Analysis of model convergence to its asymptotic state via relative entropy (negative of Kullback-Leibler function D):

$$H(\mathbf{P}^m, \mathbf{Q}) = -D(\mathbf{P}, \mathbf{Q}) := -\sum_{j=1}^K \sum_{k=1}^K P_{jk}^m \ln \frac{P_{jk}^m}{Q_{jk}}$$

Turbulent wake of a bluff body

Sth, Noack, Krajnović, Barros & Boreé, 2014, JFM

 3D incompressible turbulent flow around a bluff body (finite-volume LES)

$$Re = U_{\infty}H/\nu = 3x10^5$$

Data compression using POD

Bi-modal behaviour of the wake (Grandmange et al. 2013): Flow changes between two asymmetric states over time scales of order $T_s \approx 100 \, J/U_\infty \Longrightarrow$ Challenge for ROM.

Side force of the bluff body

Sth, Noack, Krajnović, Barros & Boreé, 2014, JFM

Mean cluster forces of the bluff body wake

E Kaiser, Noack, Cordier, Spohn, Segond, Abel. Daviller, Östh, Krajnović, Niven, 2014, JFM

- ► Clusters are associated with different mean forces
- Desirable state space regions

Mean cluster forces of the bluff body wake

Kaiser, Noack, Cordier, Spohn, Segond, Abel, Daviller, Östh, Krajnović, Niven, 2014, JFM

- Clusters are associated with different mean forces
- Desirable state spad

CROM of the bluff body wake

Kaiser, Noack, Cordier, Spohn, Segond, Abel, Daviller, Östh, Krajnović, Niven, 2014, JFM

Cluster dynamics

- Bi-modal behavior and transition processes are distilled
- ▶ Identification of branching clusters (C_5 and C_8)

Engine tumble motion of an IC engine

Voisine et al. 2011, Exp. Fluids

Four-stroke internal combustion engine

- ► Tumble breakdown from large-scale to small-scale structures
- Large-scale cycle-to-cycle variability effects engine efficiency and emissions

Data set of IC engine

Voisine et al. 2011, Exp. Fluids

Intake Compression Ignition Exhaust

- HSPIV in symmetry plane of cylinder head/ pent-roof chamber
- From mid-compression to end of compression phase (θ = 270...354 CAD, Δθ = 4 CAD)
- N = 161 consecutive engine cycles are measured with M = 22 snapshots/cycle

Evolution of cluster probability distribution

Cao, Kaiser, Boree, Noack, Thomas, Guilain, 2014, Exp. Fluids

Mid-Compression

Ignition

- ▶ Cluster probability $q_k(\theta) = \frac{n_k(\theta)}{N}$
 - N = 161 : total # cycles
 - n_k(θ): # snapshots at θ ∈ C_k
- Spreading of flow fields during tumble breakdown
- Almost uniform PDF at ignition

Large variation of flow patterns at ignition

Cao, Kaiser, Boreé, Noack, Thomas, Guilain, 2014 Exp. Fluids

A stable and potentially cleaner engine

Cao, Kaiser, Boreé, Noack, Thomas, Guilain, 2014, Exp. Fluids

▶ Identification of important clusters: C₄ and C₅ are the most desirable states for the end of compression phase.

- Evolution of probability distribution estimated from trajectories ending in C₄/C₅: Gradual destabilisation of the large-scale flow structures
- Goal: Completion of tumble breakdown in each cycle

Conclusions and outlook

- Data-driven approach to extract physical mechanisms in an unsupervised manner
- Tuning parameters:
 - total number of clusters
 - time step of data
 - distance metric
- Cluster sociology
- Linear model taking into account nonlinear actuation dynamics

