The Geometry of the Fast Multipole Methods

Lexing Ying

Department of Mathematics

Stanford University

SIAM CSE 2015, 3/14/2015

Outline

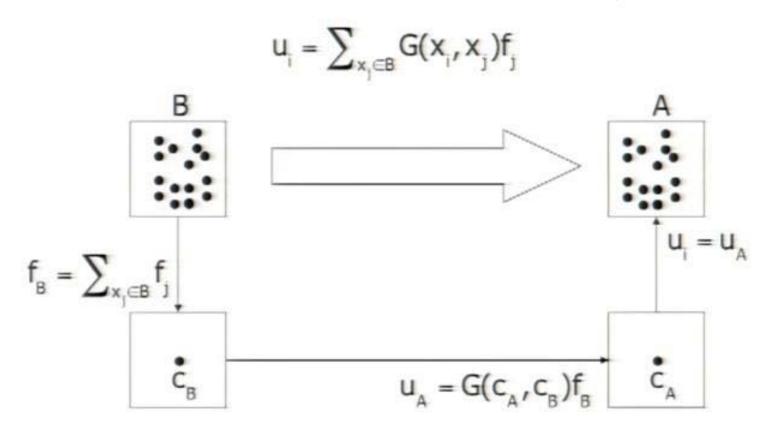
- The N-body problem and the fast multipole method
- Other related algorithms

Computation time

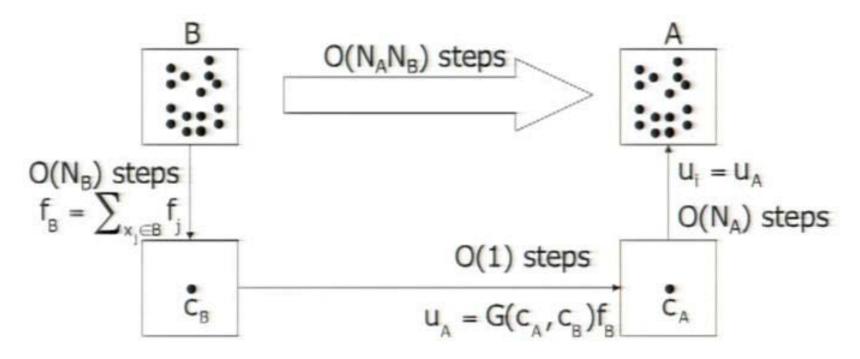
- Direct computation O(N²) steps. Too expensive
- Goal: Calculate them more efficiently.
- Fast multipole method
 - by Greengard and Rokhlin in 1987.
 - Ranked among the top 10 algorithms in the past century
 - Bring the complexity down to O_ε(N) for any prescribed accuracy ε

Idea 1: well-separated regions

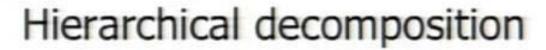
- Suppose B and A are well-separated.
- Consider the influence from B to A: at each x_i in A, evaluate



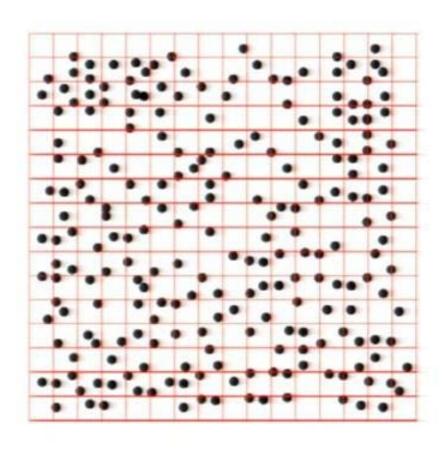
Three-step approximation



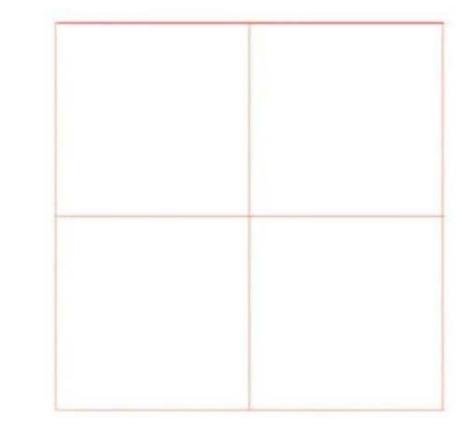
- Reduce O(N_AN_B) steps to O(N_A+N_B) steps
- Good accuracy when A and B are far away
- But we will use it whenever A and B are well-separated



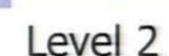
- Partition the domain hierarchically until each leaf box contains O(1) number of points
- N: the # of points
- # of levels=O(log₄N)
- # of boxes on level I=O(4^I)
- Total # of boxes=O(N)

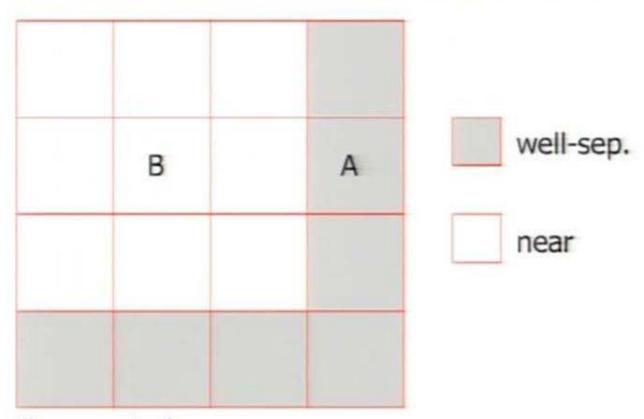


Levels 0 and 1

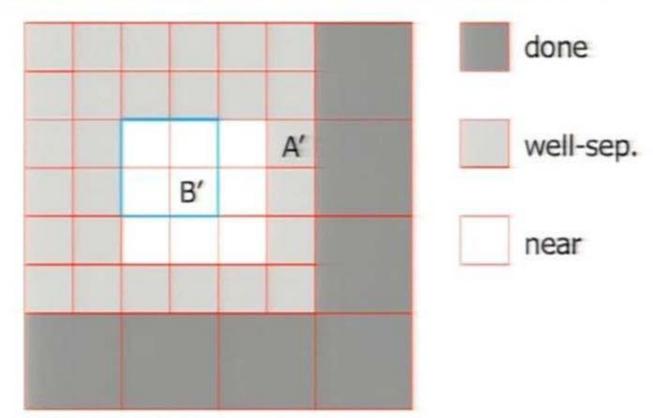


 The boxes are adjacent to each other. So cannot use the 3step approximation





- B and A are well-separated
 - □ Use the 3-step approx. for the influence from B to A
- Q: Influence between B and its near field (neighbors)?
 - □ Go to the next level



- B' and A' are well-separated
 - □ Use the 3-step approx. for the influence from B' to A'
 - \Box influence list of B = all such A's, at most 6^2 - 3^2 =27 boxes

Algorithm 1

1. For each box B in the tree

$$\Box f_B \leftarrow \sum_{x_i \in B} f_i$$

- 2. For L=2 to last level
 - ☐ For each B on level L
 - For each A in B's influence list

$$u_A \leftarrow u_A + G(c_A, c_B)f_B$$

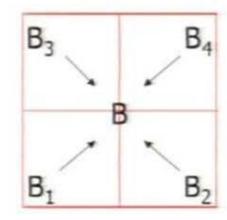
3. For each box A in the tree

$$\square u \leftarrow u + u_{A}$$
, for $x \in A$

4. For each box B on the last level

$$\square u_i \Leftarrow u_i + \sum_{x_j \in Nbhd(B)} G(x_i, x_j) f_j$$
, for $x_i \in B$

Idea 3: reuse the computation

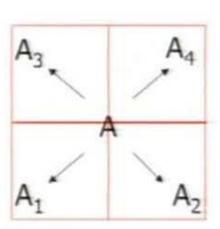


$$f_{B} = \sum\nolimits_{x_{j} \in B} f_{j} = \sum\nolimits_{x_{j} \in B_{1}} f_{j} + \sum\nolimits_{x_{j} \in B_{2}} f_{j} + \sum\nolimits_{x_{j} \in B_{3}} f_{j} + \sum\nolimits_{x_{j} \in B_{4}} f_{j} = f_{B_{1}} + f_{B_{2}} + f_{B_{3}} + f_{B_{4}}$$

- Compute f_B from its children
 - □ O(1) cost
 - Traverse the quadtree bottom-up

$$u_i \leftarrow u_i + u_A$$
, for $x_i \in A$

- Similarly, can add u_A only to its children
 - □ O(1) cost
 - □ Traverse the quadtree top-down



Algorithm 2 (FMM): cost analysis

- 1. Go up the tree, for each box B
 - If B is a leaf box,

else
$$f_B \leftarrow \sum_{x_j \in B} f_j$$
 $Cost = O(N)$
 $f_B \leftarrow f_{B_1} + f_{B_2} + f_{B_3} + f_{B_4}$ $Cost = O(N)$

2. Same as Step 2 of Algorithm 1

Cost = O(N)

- 3. Go down the tree, for each box A
 - ☐ If A is a leaf box

else
$$u_i \leftarrow u_i + u_A$$
, for $x_i \in A$ Cost = O(N)

$$u_{A_1} \leftarrow u_{A_2} + u_{A_3}$$
, same for A_2, A_3, A_4 Cost = O(N)

4. Same as Step 4 of Algorithm 1

Total cost = O(N)

Idea 4: better source/target reps

- Currently
 - \Box f_B is the sum of charges in B, and
 - □ u_A is the potential at c_A
 - □ Low accu. if A & B are well-sep. but close to each other
- More generally
 - f_B is a compact rep of the sources in B (for the pts well-separated from B)
 - u_A is a compact rep of the potential in A (induced by pts well-separated from A)
- Better accuracy (2D): treat x, y as points in complex plane C
 - \square G(x,y) = Re(ln(x-y))
 - ☐ Multipole and local expansions: O(1) numbers
 - □ Equivalent sources: O(1) numbers

Summary of FMM

- Low rank influence between well-separated regions
- Hierarchical decomposition: quadtree in 2D, octree in 3D
- Reuse of computation
- More accurate compact reps for f_B and u_A

Adaptive algorithm for non-uniform dist. is also available.

Hierarchical matrix algebra

- This matrix decomposition is general. It can represent elliptic operators, their inverses (Green's function), square roots, etc.
- Hierarchical matrix algebra by Hackbusch et al
 - A framework to represent, manipulate, and apply operators in this hierarchical form.
- Highly efficient. For N×N matrices,

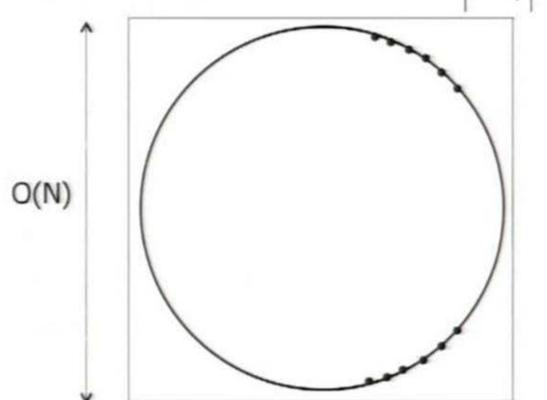
	Std. Mat. Alg.	Hier. Mat. Alg.
Mat representation	O(N ²)	O(N logN)
Mat addition	O(N ²)	O(N logN)
Mat multiplication	O(N ³)	O(N log ² N)
Mat inversion	O(N ³)	O(N log ³ N)

2: Directional FMM

N-body problem with Helmholtz kernel

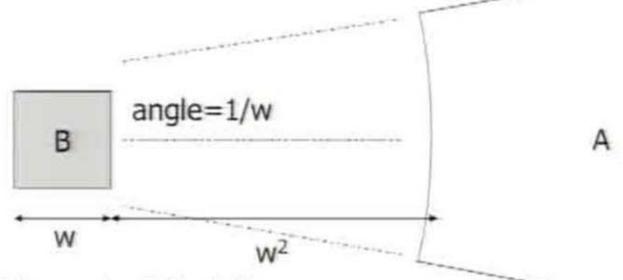
$$u_{i} = \sum_{j=1}^{N} G(x_{i}, x_{j}) f_{j}$$

$$G(x, y) = H_{0}^{1} (|x - y|) \text{ (in 2D), } G(x, y) = \frac{\exp(i|x - y|)}{|x - y|} \text{ (in 3D)}$$



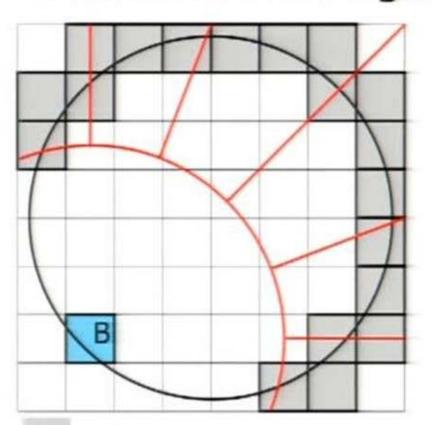
A new geometric configuration

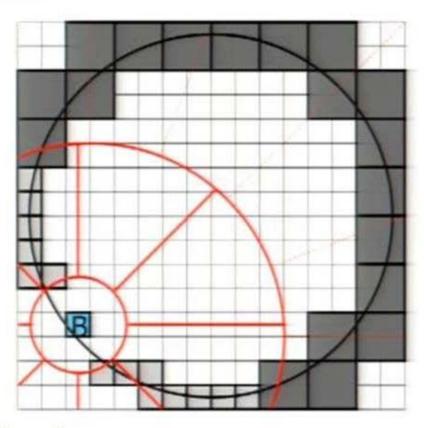
Configuration with directional parabolic scaling



- The rank of the influence between B and A is a constant indep. of diam(B)
- This is the key of the O(N logN) directional FMM algorithm for surface pt distribution.

Directional FMM algorithm





- influence processed at current level
- influence already processed at previous levels
- The total complexity is O(N logN).

Thank you

- Work supported by Sloan Foundation, NSF, DOE
- Collaborators:
 - ☐ George Biros
 - □ Bjorn Engquist
 - □ Jack Poulson
 - Denis Zorin