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An exponential Moore's Law for the number of recorded neurons
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Multielectrode recordings allow us to record from 10 to 10’ neurons.
Mammalian circuits controlling complex behaviors contain > 10° to 10" neurons.

Are we in an anti-Goldilocks moment? (122 years to get 5 orders more)

Too many neurons so that data analysis is not easy.
Not enough neurons to really understand circuit computation?



An example dataset: the single neuron view
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Churchland and Shenoy, ]. Neurophys. 2007

Trial averaged firing rates from 3 neurons while a monkey is reaching to targets
at 7 directions, two lengths and two speeds (red / green)

There are about 100 more neurons like these.

How are such datasets analyzed?



Dynamical portraits of circuit computation via dim reduction I
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I Fundamental conceptual questions ]

In a wide variety of neuronal recordings, measured neuronal
dimensionality is far less than the number of neurons.

What is the interpretation of this empirical observation?
What is the origin of this underlying simplicity?

While we now record from many neurons (O(100)); brain circuits
controlling behavior have many more unrecorded neurons (O( 1
billion ) in primate motor cortex).

How would the dimensionality change if we recorded more neurons?

How would the dynamical portraits change if we recorded more
neurons? Can we trust them with such small numbers of neurons?

What (if anything) can we learn about large dynamical
networks at such an overwhelming level of under sampling?



The need for a theory of dimensionality and dynamics

In primate motor cortex there are
O(1 billion) neurons controlling O(650) skeletal muscles.

In these experiments, O(100) neurons were recorded.

The PCA dimensionality (~ 70%% variance explained) across all
8 reaches is 7.

The PCA dimensionality (~ 70% variance explained) for one
reach is 3.3.

Where do these numbers come from — how large could they
possibly be?

New mathematical definition of neuronal task complexity:
1) Upper bound dimensionality.
2) Tell us how many neurons we need to record.



New definition of neural task complexity

Neural dimensionality

Theorem:
dimensionality < task complexity

Neural measurement

Motor cortical data is as high
dimensional as possible given
task complexity

Conditions for accurate recovery
of dynamic portraits

Random projection theory:
# of neurons required
~ log(neural task complexity)

Future experiments:
recording more neurons w/o

increase in task complexity #
richer datasets

Past results:
existing dynamic portraits are likely
to be accurate despite recording
few neurons




Neural Dimensionality and Task Complexity: Intuition
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Neural Dimensionality and Task Complexity: Theory

Task parameters: o, P2, ..., P+ {time, speed, angle, distance &fc.)
Over ranges: L1, Lz, ..., L,
With neural correlation lengths: 1-, A.,..., A»
Define task complexity:
N LB T
-
/\! .\2 J\K

Our theory provides:

1) A way to quantitatively extract neural correlation length
parameters Ay, A-,..., A

2) and the proportionality constant ¢, such that we can prove...
*participation ratio of

PCA eigen spectrum
A theorem: ~70% var explained
neural dimensionality™ (5. X )2
. L]
= =T
min(task complexity, # of recorded neurons) Rl




Neural Dimensionality in Motor Cortex

109 neurons Dpimensionality Task complexity

Single reach 3 4.2

- i

Multiple reaches 7 10

Yu et al, 2007

Implication: neural dimensionality not small; but almost as
large as possible given task constraints

Prediction #1: vary task complexity by varying T,
dimensionality should vary linearly with T

Prediction #2: vary # of neurons in the dataset, dimensionality
should be unchanged




Neural Dimensionality in Motor Cortex

Implication: task complexity, not # of neurons, is the main
limit on neural dimensionality

Prediction #1: vary task complexity by varying T, dimensionality
should vary linearly with T

Prediction #2: vary # of neurons in the dataset, dimensionality
should be unchanged
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Measuring the Dynamic Portrait under Sub-sampling

When are portraits from relatively few neurons = those from all neurons?

neuron 2

neuron 1

When patterns of neural activity
are distributed across neurons, we
can accurately recover dynamic
portraits despite subsampling
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The act of neuronal measurement as a random projection

If neural manifold is randomly oriented:

random subset
An experiment we can do: measure

a random subset of M neurons \¥ $ $ \$ ¥

is equivalent to

f random projection
An experiment we cannot yet do: measure

M random linear combinations = ¥

(i.e. random projections) of all neurons \ L5~ RUANE
G-05 or- *_ j
02— 04 o



A larger context: random projections

c
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x = As is a random projection from a N dim space down to an M dim space

Data / interesting signals live on a K-dim submanifold in N-dim space

When will the geometry of this manifold be preserved under a random proj. ?

Distortion: D, = (|| As*— As® |- || s*—s|? ) /|| s*—s®|]?



A consequence of neuronal measurement as a random projection

By adapting random projection theory:
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To keep the same level of desired distortion, # of neurons need only
scale logarithmically with task complexity (good news!)



To maintain accuracy of the recovered portraits,
# of neurons required ~ log(task complexity)
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A consequence of neuronal measurement as a random projection

By adapting random projection theory:

# neurons _
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needed  distortion
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To keep the same level of desired distortion, # of neurons need only
scale logarithmically with task complexity (good news!)



Data =

Static Decoding

Orthogonal
Subsampling Embedding
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Subsampling
With partial observation (i.e. M < N):

R=SUX+Z

£

low-rank signal

high-dim noise

- K(=2)-dimensional stimulus space
- Embedded in N(=3)-dimensional

neural space

- Subsampled to M(=2)-dimensional

subspace

- Distance between sampled activity

patterns are compressed

- Compressions are different

depending on orientations

- Compression determined by the K

singular values of SU



Static Decoding - Recovering Dimensionality
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Static Decoding - Recovering Dimensionality

Subsampling Compression * Signal Strength > Input-referred
(worst-case) (worst-case) Noise Floor

Simulations with N = 5000 and K = 20
Inferred dimensionality as # singular values > noise floor
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Static Decoding

Subsampling Compression * Signal Strength > Input-referred
(worst-case) (worst-case) Noise Floor

Simulations with N = 5000 and K = 20

Linear decoding using recovered signal in inferred subspace
Gavish & Donoho 2013
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To understand the spectrum of the covariance matrix,

Subsamgpiing
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Data can be thought of as a low-rank perturbation
of a random noise matrix

XSIDW -+ xfﬂS‘l Benaych-Georges & Nodakuditi, 2012

Eigenvalue spectrum of correlated noise deviates from the
Marchenko-Pastur law

Theoretical eigenvalue spectrum for N = 1000, T = 2000 noise matrix
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What does it take to get random neural manifolds?

A sufficient condition: every neuron has complex tuning for every task

parameter.

Old paradigm:
Single units

The bane of existence for those
thinking along the lines of single
unit neurophysiology.

We cannot easily understand
and classify single
neurons ®.

New paradigm:
Collective behavior

The saving grace of our
ability to understand the
brain!

With random trajectories, we
can record from a relatively
small number of neurons and
infer the correct state space
description of neural data!

Understanding what
individual neurons do
becomes the wrong question.
We should focus instead on
the collective.
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