13!

)
D

]

Janine Bennett, Hemanth Kolla, Jeremiah Wilke, Ken
Franko, Paul Lin, Greg Sjaardema, Nicole
Slattengren, Keita Teranishi, Samuel Knight

SIAM CSE 2015
3/16/2015
MS 129 DAG-Based Efficient Scalable & Portable PDE Software

ENERGY NJSA

1

Performance and programmability are achieved by +
targeting an underlying abstract machine model

: Machine model:
Machine model: PRAM/SMP Bulk Synchronous Model

Programming model: threads Programming model: MPI

Machine model: Hybrid Candidate Type Architecture (CTA)

Programming model: Hybrid Bulk Synchronous MPI + X

Consider the abstract machine model of an
exascale node

<
"

Overarching abstract machine
model of an exascale node

- e

— — M.
+ .

**z—""‘-—""
COlcolcO 1'

- - - —— S, 1
L ¥
c

Image courtesy of www.cal-design. org .

This new abstract machine model introduces +
significant complexities

Challenges

* |ncreases in concurrency

I

Overarching abstract machine
model of an exascale node

: * Deep memory hierarchies

* Increased fail-stop errors

1_ — —_—

= Performance heterogeneity
= Accelerators
* Thermal throttling
* General system noise
* Responses to transient
tailures

Image courtesy of www.cal-design.org .

Asynchronous many-task (AMT) programming O
models show promise against exascale challenges

} £
* Runtime systems show promise at = "g:
sustaining performance despite node- "3
degradation and failure g
= Data flow programming model g
* Tasks are nodes in graph i
» Data dependencies are edges in graph . §

= Facilitate expression of task- and data- :
parallelism z
= Has an active research community g
= Charm++, DHARMA, HPX, Legion, OCR, E 5

STAPL, Uintah, ...

images courtesy of Jack Dongarra

With so many variants, how do you know which
is right for your application?

= Charm++ (UIUC) SR PA RALLEL
« DHARMA (SNL) R NOANMhG
= HPX (IU/LSU)

= Legion (Stanford)
* OCR (Intel/Rice/...)
= STAPL (Texas A&M)
= Uintah (U. Utah)

Saa ()

vt e v Laboratones

Sandia ASC-funded comparative analysis study m=

= Qverarching goal: Provide guidance to the code development

road map for Sandia ASC (Advanced Simulation and Computing)

= Given time/resources: MiniPIC, MiniFE, MiniContact

codes, based on in-depth exploration using realistic proxies
= Starting with MiniAero

Fully 3D unstructured finite volume
Runge-Kutta 4™ order time marching

1% or 2™ arder in space

Inviscid Roe Flux and Newtonian Viscous fluxes
Boundary Conditions: Supersonic inflow,

supersonic outflow, and tangent flow
~3800 lines of C++ code (> 850 in mesh generation)
Minimal dependencies (Kokkos)

Data-parallel not task-parallel

L

Comparative study (work in progress) L

= |nitial MiniAero implementations in Charm++, Legion, Uintah
nearly complete

* OCR implementation to begin in April _

* MiniAero implementations will be made available at Mantevo.org

= Tight coupling of Sandia runtime developers, application
developers, and University/Industry contacts

= Assessing the programmability, mutability, and performance of
various runtimes in the context of ASC workloads

j

Assessing programmability @)

= Does this programming model and runtime system support the
natural expression and execution of the ASC applications of
interest?

= Planned activities:

* Gather qualitative feedback from application developers
* Rate abstractions, APls, ease of use, etc.

= Collect quantitative data
* Size of code, length of time to code/optimize, etc.

o

Assessing performance

* What are the scaling properties and performance of the mini app in this
runtime system before and after performance optimization?

* How do they compare with the bulk-synchronous implementation?

* How does the scaling of the mini app in this runtime system change with
task granularity and different levels of over-decomposition?

* How does this runtime system provide support for dynamic load balancing?

* (an the application scientist directly control load balancing and/or provide
load-balancing hints (e.g., physics/domain specific knowledge)?

* How well does the runtime system support fault containment and recovery?

= How does this runtime system facilitate code coupling (e.g. in situ analysis
and visualization, multi-physics)?

* How do the implementations compare from a power/energy perspective?

i1

3
I’

Assessing performance

* Planned activities:
= Weak and strong scaling studies
* Work-granularity studies

* Data: over-decomposition levels
» Task: granularity (how much code is in the task)

* Load balancing studies
* System-induced imbalance
* Application-induced imbalance

* Given sufficient time/resources
* Fault tolerance experiments
* Gather power/energy usage

iz

i L
LTS
=<

Overarching design decisions ()

* Interacting collections of over-decomposed cbjects (Chares)
* Asynchronous methods invoked on remote objects
* Adaptive runtime system optimizes performance

* Logical regions: expressive relational data model
* Understanding of data automates task-graph and movement
j © Decouple code specification from mapping to system

. Finegrained,.evem-dmen. moveable tasks
* Elastic runtime with flexible distribution
* Qpen source community involvement

* Runtime development driven by application needs at scale
* Applicaton code runs “unchanged” from 600 to 600K cores
* Asynchronous out-of-arder execution, work stealing

! Additonal detail can be found in summary slides from Supercompunting 2014 BOF:
| “Asynchronous Many-Task Programming Models for Next Generation Plattorms™ 'y

Many issues and open research questions remain m=

= Need to characterize runtime system performance for broad
classes of algorithms and architectures
* What is the right granularity of work?
* What is the right level of over-decomposition?
* How much work should a task comprise?
* How do these numbers differ for load-balancing intra- & inter-node?
* Need to be careful regarding use of Mini Apps — they don’t
tell the entire story

* Need continued increased engagement/feedback from
application developer community in comparative studies

= ExMatEx summer schools, this study are a start but not sufficient

15

Many issues and open research questions remain mE

* Need for increased investment in debuggers, performance
optimization, compiler support

* Need for algorithmic (applied mathematics) research

* Develop new techniques that leverage increased runtime system
asynchrony

» Standardization - at a mimmum we need community
agreement regarding definitions of terms

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14

