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Outline N

* Presentation Purpose: Expand physical and
mathematical intuition and the basis for cross field
communication and understanding.

= | agrangian/Eulerian Numerical Methods

* De Rham Complex, Lie Derivative and Cartan’s Magic
Formula

* Physics and Remapping Examples
* |nverse Deformation Gradient
= Magnetic Flux Density
= Mass
* Electric Displacement

= Conclusion
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Arbitrary Lagrangian/Eulerian (ALE)

* Lagrangian:
* Mesh moves with material points.
e Vlesh-quality may deteriorate over time

* REMESH
e \esh-quality is adjusted to improve solution-quality
or robustness or simply to move mesh back to original
location (Eulerian).

e REMAP
eAlgorithm transfers dependent variables to the new
mesh.




Geometric Structure and Numerical Methods O

* Thestructure of physics equations is related to their geometric origins.

* ThedeRham structure shown below is used to discussissues of “compatible
discretizations.” Stable discretizations depend on maintaining properrelationships
of the discrete spaces.

* FEEC(Finite Element Exterior Calculus)—See recently published “Periodic Table of
Finite Elements”, Doug Arnold, et. al., femtable.org. FEECincludes discrete spaces
for 0-forms, 1-forms, 2-forms and 3-formsin 3 space for example.

* Frankel, Geometry of Physics, 3™ Ed, Cambridge University Press

* Flanders, Differential Forms with Application to Physical Sciences, Dover.
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Stoke’s Theorem and the Lie Derivative

Classical Transport Formulas

Stoke’s Theorem : :
in Vector Notation
k=1 k—1
/ Q = da o
s =N = = %)

d - [OA .

E_L,.. A-de = lu.' [";;;-r X (V x A;}-e-vn;u_.@“i o
i[ n= $—£¢II= f_i—l',f.fu—rfr*” @

dt J e (N . N e e v :

i haBda= [ |5 +o(V-B) =¥ x(vxB) - da

v i i el I .
[ pdV = }”l _,; v J-m_.n

Lie Derivative and Cartan’s Magic Formula
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Solid Kinematics

(Refarence) Material Coordinates

“x(a,h)

L x(a

-
-

Current) Spatial Coordinates

F=cx'‘a
Deformation gradient and inverse:

G=F'=7/fa/ fx

Polar Decomposition: F = VR

Symmetric Positive Definite Proper Orthogonal
(Stretch) Tensor (Rotation) Tensor
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Remap 0]

* Some material models require that the kinematic
description (i.e. F) be available. The rotation tensor in
particular is needed.

* Any method for tracking F on a discrete grid may fail
eventually.
= Det(F)>0
= Positive definiteness of the stretch, V, can be lost.
= R proper orthogonal: RR' =1, Det(R)>0.

= Rows of the inverse deformation tensor G=F! should be
gradients.

* These constraints may not hold due to truncation error in the remap
step and finite accuracy discretizations.

= What is the best approach?
= “fixes” will be required.

= Storage, accuracy and speed should be considered.
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Curl Free Remap

= Representation of G on edges allows for a discrete curl-
free inverse deformation gradient.

* Remap algorithm should preserve this global property.

* Constrained transport (CT) approach pioneered by Evans
and Hawley for divergence free MHD algorithm on
Cartesian grid is the prototype algorithm.

* More generally we might say “Cartan” transport. /7.0

Solid Kinematics




Curl Free Remap Algorithm = @&

)

»

Rows guaranteed to be curl free.
@

No control on det(G). ®

Speed ®

Edge element representation

2 &a.8) = Y Wy’
Use reconstructed nodal values of G to compute trial
edge element gradient coefficients along each edge.

U97(6) = 19 + 876 Nef = AAS (PTFE)

Limit slopes along each edge (minmod,harmonic)

Compute the node circulation contributions in the
upwind element by a midpoint integration rule at
the center of the node motion vector.

/g-rh& = E |",'I1i~'.:-ﬂ'[| Fab ) (1 + .38,)06./8
Jr

=iyl

Take gradient and add to edge element circulations.

Robinson, Ketcheson, Ames, Farnsworth, “A
comparison of Lagrangian/Eulerian approaches for
tracking the kinematics of high deformation solid
motion”, SAND2009-5154.
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One approach to det(G)>0 question

= Kamm, Love, Robinson, Young, Ridzal, “Edge Remap for
Solids,” SAND2013-10281.

* Solve global optimization problem for nodal increments
using the standard CT algorithm increments as the target.

min flu) subjectto gl =0 and Au) >0
]

| ,
fim) \X“" A byl detydu) £50 with g: rttl:linh‘tt'uf'j

= Solve using slack variable formulation

mm fin) subjectto glul =0 hu)-s=0 and s—¢ >0

= Not yet competitive.
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Magnetohydrodynamics




E )
Faraday’s Law (Natural operator splitting) U
A straightforward B-field update is possible using Faraday’s law.
VxE-i-a—B:O E=E+vxB S(#)
Integrate over time-dependent surface S(%), apply
Stokes theorem, and discretize in time:
— / B-da + E-dx— () il
dt Jsp) AS(t)
l SE e sneiie n+1 g n+1  Zerofor ideal MHD by
Al _M,(B -B"!")-da"" '+ " \E dax frozen-in flux theorem:
S i w!® [ B.da—[ Bda—0
P . dtls - ./: B dn=0
{ i | Ty | __--"I.------ r H
+ 2 / B '*a [ B"-da"| — 0

A\
-

| &rms in red are zero for idaal MU 3o nothing needs to be done if fluxes are degrees of frecdom
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Solve magnetic diffusion using edge/face elements
which preserve discrete divergence free property

L

Q) = a single conducting region in M.

VxH - J Q-a—?:«: E (0 Exact relationship
Veakiy entarcea !
Veld 0 VeB 0
T'—' r
B=uvH J=0E ﬂ’ﬁl
Exn=E, xn onI,(Dirichler). L2t
boundary conditions o = ( X R ; J.t---‘-r
Hxn=MH xn onT,(Neumann) i —

. el 'y " ol
lvjlru.n'lL -t.urllz.dr_, -IB scurl

[oF"" oFdV v [H,xneFdl

u u

B = magnetic flux density E = electric field H =magnetic field
u = permeability = conductivity ] = current density
u and opositive and finite everywhere in W
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Magnetic Flux Density Remap W

= The Lagrangian step maintains the discrete divergence free
property via flux density updates given only in term of
discrete curls of edge circulation variables.

= The remap should not destroy this property.

= Asinthe curl free case, the dZ,« part of the remap algorithm
is fundamentally unsplit because it ensures that the global
divergence free property is maintained.




Flux remap step e

IB-da =1 I Beda~+ I B'c/a—ZIJ.B'(VH--'\!>-<d|)=()
5 S % = 5

!
j Bu/a-'-i B.da_;;':dhm“'?\”:“




Flux remap step e

IBOCJEI:() I Beda+ I B-c!a+ZIB-(w Al xdl) =0

_IS

|
;[ B-c./a-:-h:[ﬂ B.da-i-;..jdl.(vag”\’) — 0




Constrained Transport Type i
Algorithm

Sandia
Nt
Laboratones
Compute B at nodes from the face element
representation at element centers. This must
be second order accurate.

Compute trial cross face element flux
coefficients on each face using these nodal

B.
Nr:{:: AA{ (Periodic Table FE)

Limit on each face to obtain cross face flux
coefficients which contribute zero total flux.

» Compute the edge flux contributions in the
upwind element by a midpoint integration
rule at the center of the edge centered
motion vector.

* "Arbitrary Lagrangian-Eulerian 3D Ideal MHD Algorithms,” Int. Journal Numerical
Methods in Fluids, 2011;65:1438-1450. (remap and deBar energy conservation discussed)
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Mass

* Lagrangian Step
= Mass is conserved in the Lagrangian frame.
= Discrete Lagrangian continuity equation is trivial.

= Remap Step

= |ntegration of reconstructed densities over swept surfaces or
intersecting grids yield conservative mass changes.

* These concepts are likely to be very familiar to many.
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Cartan Magic Formula has Two Parts:
When might one need both parts?




Maxwell Equations and Continuum Mechanics U

= Kovetz VxH =

O
|

Vi
V X
v

—
—

= il == Ml o s Y
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J + D
(l.

*

- B.

0.

r—'”E + P.

20 'B—-vxeE—-M

= Constitutive theory providesM. P and 7 With € —E+v « B

= Flux derivatives

JB

JB

B = et ilBavievlT Bl ot % (B9
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B = T-\_x MDxv)+viV-D)=—+TV x (D xv)+qgv
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Physically, D and B are two-forms

= Take a page from 3D ALE MHD and place D and B as fundamental
variables (fluxes) on faces using face elements.

* QOperator split the Lagrangian step.

* Mesh motion occurs with constant D and B fluxes. This conserves both
the zero magnetic flux divergence property and charge.

* Update the fluxes and electric displacements using a mimetic method
perhaps following along ideas similar to Bochev and Gerritsma, “A
spectral mimetic least-squares method,” 2014.

* Magnetic flux remap is unchanged.

= Electric displacement remap needs both parts of Cartan’s formula.




@
It

All terms will contribute
JD a
Ot

VX (Dxwv)|HvV-D)

New electric displacementflux is the oriented sum of swept edge contributions
which do not change the charge plus swept volume contributions which do.
This is really nothing more than Stokes theorem.




All terms will contribute

D [~
w-l—VX(DXV)

+ |

New electric displacement flux is the oriented sum of swept edge contributions
which do not change the charge plus swept volume contributions which do.

This is really nothing more than Stokes theorem.




All terms will contribute

oD
W-’-VX(DXV)

_|_.

New electric displacement flux is the oriented sum of swept edge contributions
which do not change the charge plus swept volume contributions which do.

This is really nothing more than Stokes theorem.




All terms will contribute
oD "
Ot

Vix (D x¥)

_|_.

New electric displacement flux is the oriented sum of swept edge contributions
which do not change the charge plus swept volume contributions which do.

This is really nothing more than Stokes theorem.
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Conclusion G

*» Understanding at an intuitive level the de Rham complex, Stoke’s
theorem, the Lie Derivative, Cartan’s magic formula, and classical
transport theorems is fundamental to developing structure preserving

Lagrangian/Eulerian algorithms for multiphysics.

* This presentation gives a small taste of why the general field of
structure preserving discretizations (which uses differential forms as the
fundamental descriptive language) may be important.

= Several researchers have developed advection algorithms for
differential forms. (e.g. McKenzie, Heumann, Hiptmair, Xu)

= |deas for high quality remap (e.g. optimization, WENO,...) can and
should be applied in this general framework.

= Software remap libraries are not commonly built for general differential
forms/FEEC at this time. Having such fundamental tools readily
available would open up new avenues for utilization and testing of

next-generation multi-physics modeling approaches.

* Many opportunities are available for additional advances at the
geometrical intersection between physics and mathematics.
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