Exceptional service in the national interest

Multiphysics Lagrangian/Eulerian Modeling and De Rham Complex Based Algorithms

Allen C. Robinson

Sandia National Laboratories

SIAM Conference on Computational Science and Engineering, Salt Lake City, Utah Minisymposia on Physics-Compatible Numerical Methods

March 14-18, 2015

Outline

- Presentation Purpose: Expand physical and mathematical intuition and the basis for cross field communication and understanding.
- Lagrangian/Eulerian Numerical Methods
- De Rham Complex, Lie Derivative and Cartan's Magic Formula
- Physics and Remapping Examples
 - Inverse Deformation Gradient
 - Magnetic Flux Density
 - Mass
 - Electric Displacement
- Conclusion

Arbitrary Lagrangian/Eulerian (ALE)

Lagrangian:

- Mesh moves with material points.
- Mesh-quality may deteriorate over time

REMESH

 Mesh-quality is adjusted to improve solution-quality or robustness or simply to move mesh back to original location (Eulerian).

REMAP

 Algorithm transfers dependent variables to the new mesh.

Geometric Structure and Numerical Methods

- The structure of physics equations is related to their geometric origins.
- The deRham structure shown below is used to discuss issues of "compatible discretizations." Stable discretizations depend on maintaining proper relationships of the discrete spaces.
- FEEC (Finite Element Exterior Calculus) See recently published "Periodic Table of Finite Elements", Doug Arnold, et. al., femtable.org. FEEC includes discrete spaces for 0-forms, 1-forms, 2-forms and 3-forms in 3 space for example.
- Frankel, Geometry of Physics, 3rd Ed, Cambridge University Press
- Flanders, <u>Differential Forms with Application to Physical Sciences</u>, Dover.

Stoke's Theorem and the Lie Derivative

Stoke's Theorem

$$\int_{\partial M^k} \alpha^{k-1} = \int_{M^k} d\alpha^{k-1}$$

Classical Transport Formulas in Vector Notation

$$\frac{d}{dt}f = \frac{\partial f}{\partial t} + r \cdot \nabla f$$

$$\frac{d}{dt} \int_{M_t} \alpha = \int_{M_t} \frac{\partial \alpha}{\partial t} + \mathcal{L}_v \alpha = \int_{M_t} \frac{\partial \alpha}{\partial t} + \mathcal{I}_v d\alpha + d\mathcal{I}_v \alpha \quad \iff$$

$$\frac{d}{dt} \int_{M_t^1} A \cdot dx = \int_{M_t^1} \left[\frac{\partial A}{\partial t} - v \times (\nabla \times A) + \nabla (v \cdot A) \right] \cdot dx$$

$$\frac{d}{dt} \int_{M_t^2} \boldsymbol{B} \cdot d\boldsymbol{a} = \int_{M_t^2} \left[\frac{\partial \boldsymbol{B}}{\partial t} + v(\boldsymbol{\nabla} \cdot \boldsymbol{B}) - \boldsymbol{\nabla} \times (\boldsymbol{v} \times \boldsymbol{B}) \right] \cdot d\boldsymbol{a}$$

$$\frac{d}{dt} \int_{M_t^3} \rho \ dV = \int_{M_t^3} \left[\frac{\partial \rho}{\partial t} + \nabla \cdot (v \rho) \right] dV$$

Lie Derivative and Cartan's Magic Formula

Solid Kinematics

(Reference) Material Coordinates

 $\mathbf{x}(\mathbf{a},t)$

Current) Spatial Coordinates

$$\mathbf{F} = \partial \mathbf{x} / \partial \mathbf{a}$$

Deformation gradient and inverse:

$$G = F^{-1} = \partial \mathbf{a} / \partial \mathbf{x}$$

Polar Decomposition: F = VR

Symmetric Positive Definite (Stretch) Tensor Proper Orthogonal (Rotation) Tensor

Remap

- Some material models require that the kinematic description (i.e. F) be available. The rotation tensor in particular is needed.
- Any method for tracking F on a discrete grid may fail eventually.
 - Det(F)>0
 - Positive definiteness of the stretch, V, can be lost.
 - R proper orthogonal: RR¹ = I, Det(R)>0.
 - Rows of the inverse deformation tensor G=F-1 should be gradients.
- These constraints may not hold due to truncation error in the remap step and finite accuracy discretizations.
- What is the best approach?
 - "fixes" will be required.
 - Storage, accuracy and speed should be considered.

Curl Free Remap

- Representation of G on edges allows for a discrete curlfree inverse deformation gradient.
- Remap algorithm should preserve this global property.
- Constrained transport (CT) approach pioneered by Evans and Hawley for divergence free MHD algorithm on Cartesian grid is the prototype algorithm.
- More generally we might say "Cartan" transport. d\(\mathcal{I}_v\alpha\)

Solid Kinematics

Curl Free Remap Algorithm

Edge element representation

$$g(\xi_1, \xi_2, \xi_3) = \sum_{ij} \Gamma_{ij}^{ad}(\xi_k) \tilde{W}_{ij}^{ad}$$

 Use reconstructed nodal values of G to compute trial edge element gradient coefficients along each edge.

$$\Gamma^{\alpha\beta}_{ij}(\xi_k) = \bar{\Gamma}^{\alpha\beta}_{ij} + s^{\alpha\beta}_{ij}\xi_k$$
 $Nc_1^e \Rightarrow AA_1^e \text{ (PTFE)}$

- Limit slopes along each edge (minmod, harmonic)
- Compute the node circulation contributions in the upwind element by a midpoint integration rule at the center of the node motion vector.

$$\int_{\Gamma} \mathbf{g} \cdot d\mathbf{s} \approx \sum_{i \neq j \neq k, \alpha, \beta} \Gamma_{ij}^{\alpha\beta}(\hat{\xi}_k) (1 + \alpha \hat{\xi}_i) (1 + \beta \hat{\xi}_j) \delta \xi_k / 8$$

- Take gradient and add to edge element circulations.
- Robinson, Ketcheson, Ames, Farnsworth, "A comparison of Lagrangian/Eulerian approaches for tracking the kinematics of high deformation solid motion", SAND2009-5154.

Rows guaranteed to be curl free.

No control on det(G). (3)

Speed ®

Sandia National Laboratories

One approach to det(G)>0 question

- Kamm, Love, Robinson, Young, Ridzal, "Edge Remap for Solids," SAND2013-10281.
- Solve global optimization problem for nodal increments using the standard CT algorithm increments as the target.

$$\min_u \ f(u) \quad \text{subject to} \quad g(u) = 0 \quad \text{and} \quad h(u) > 0 \,.$$

$$f(u) := \frac{1}{2} \sum_i (u_i - \bar{u_i})^2 \qquad \qquad h_J(u) := \det_J(u) - \varepsilon > 0 \quad \text{with} \quad \varepsilon := \min_{k \in \mathcal{K}} \{\det_k(u^L)\}$$

Solve using slack variable formulation

$$\min_{u} f(u)$$
 subject to $g(u) = 0$, $h(u) - s = 0$ and $s - \varepsilon > 0$

Not yet competitive.

Magnetohydrodynamics

Faraday's Law (Natural operator splitting)

A straightforward B-field update is possible using Faraday's law.

$$\nabla \times \mathbf{E} + \frac{\partial \mathbf{B}}{\partial t} = 0$$

$$\mathcal{E} = \mathbf{E} + \mathbf{v} \times \mathbf{B}$$

Integrate over time-dependent surface S(t), apply Stokes theorem, and discretize in time:

$$\frac{d}{dt} \int_{S(t)} \mathbf{B} \cdot d\mathbf{a} + \oint_{\partial S(t)} \mathcal{E} \cdot d\mathbf{x} = \mathbf{0}$$

$$\frac{1}{\Delta t} \int_{S(t+\Delta t)} (\mathbf{B}^{n+1} - \tilde{\mathbf{B}}^{n+1}) \cdot d\mathbf{a}^{n+1} + \oint_{\partial S(t+\Delta t)} \mathcal{E}^{n+1} \cdot d\mathbf{x}^{n+1} \qquad \text{Zero for ideal MHD by frozen-in flux theorem:}$$

$$+ \frac{1}{\Delta t} \left[\int_{S(t+\Delta t)} \tilde{\mathbf{B}}^{n+1} \cdot d\mathbf{a}^{n+1} \int_{S(t)} \mathbf{B}^{n} \cdot d\mathbf{a}^{n} \right] = 0$$

$$\frac{d}{dt} \int_{S_t} \mathbf{B} \cdot d\mathbf{a} = \int_{S_t} \mathbf{\hat{B}} \cdot d\mathbf{a} = 0$$

$$= 0$$

Lerms in red are zero for ideal MHD so nothing needs to be done if fluxes are degrees of freedom.

Solve magnetic diffusion using edge/face elements which preserve discrete divergence free property

 Ω = a single conducting region in \Re^3 .

$$\int \sigma \mathbf{E}^{n+1} \bullet \hat{\mathbf{E}} dV + \Delta t \int \frac{\operatorname{curl} \mathbf{E}^{n+1} \bullet \operatorname{curl} \hat{\mathbf{E}}}{\mu} dV = \int \frac{\mathbf{B}^n \bullet \operatorname{curl} \hat{\mathbf{E}}}{\mu} dV \int \mathbf{H}_b \times \mathbf{n} \bullet \hat{\mathbf{E}} dA$$

B = magnetic flux density E = electric field H = magnetic field μ = permeability σ = conductivity J = current density μ and σ positive and finite everywhere in W

Magnetic Flux Density Remap

- The Lagrangian step maintains the discrete divergence free property via flux density updates given only in term of discrete curls of edge circulation variables.
- The remap should not destroy this property.
- As in the curl free case, the $d\mathcal{I}_v\alpha$ part of the remap algorithm is fundamentally unsplit because it ensures that the global divergence free property is maintained.

Flux remap step

$$\int_{S} \mathbf{B} \cdot d\mathbf{a} = 0 \qquad \int_{S_{add}} \mathbf{B} \cdot d\mathbf{a} + \int_{S_{add}} \mathbf{B} \cdot d\mathbf{a} + \sum_{l=1}^{1} \int_{S} \mathbf{B} \cdot (\mathbf{v}_{g} \Delta t \times d\mathbf{I}) = 0$$

$$\int_{S_{old}} \mathbf{B} \bullet d\mathbf{a} + \int_{S_{new}} \mathbf{B} \bullet d\mathbf{a} + \sum_{t=1}^{4} \int_{S_t} d\mathbf{l} \bullet (\mathbf{B} \times \mathbf{v}_g \Delta t) = 0$$

Flux remap step

$$\int_{S} \mathbf{B} \bullet d\mathbf{a} = 0 \qquad \int_{S_{old}} \mathbf{B} \bullet d\mathbf{a} + \int_{S_{nw}} \mathbf{B} \bullet d\mathbf{a} + \sum_{i=1}^{4} \int_{S_{i}} \mathbf{B} \bullet (\mathbf{v}_{g} \Delta t \times \mathbf{dI}) = 0$$

$$\int_{S_{old}} \mathbf{B} \bullet d\mathbf{a} + \int_{S_{now}} \mathbf{B} \bullet d\mathbf{a} + \sum_{t=1}^{4} \int_{S_t} \mathbf{dl} \bullet (\mathbf{B} \times \mathbf{v}_g \Delta t) = 0$$

Constrained Transport Type Algorithm

- Compute B at nodes from the face element representation at element centers. This must be second order accurate.
- Compute trial cross face element flux coefficients on each face using these nodal B.

$$Nc_1^f \Rightarrow AA_1^f$$
 (Periodic Table FE)

- Limit on each face to obtain cross face flux coefficients which contribute zero total flux.
- Compute the edge flux contributions in the upwind element by a midpoint integration rule at the center of the edge centered motion vector.
- "Arbitrary Lagrangian-Eulerian 3D Ideal MHD Algorithms," Int. Journal Numerical Methods in Fluids, 2011;65:1438-1450. (remap and deBar energy conservation discussed)

Mass

Mass

- Lagrangian Step
 - Mass is conserved in the Lagrangian frame.
 - Discrete Lagrangian continuity equation is trivial.

- Remap Step
 - Integration of reconstructed densities over swept surfaces or intersecting grids yield conservative mass changes.
 - These concepts are likely to be very familiar to many.

Cartan Magic Formula has Two Parts: When might one need both parts?

Maxwell Equations and Continuum Mechanics

Kovetz

$$\nabla \times \mathcal{H} = \mathcal{J} + \mathbf{D},$$

$$\nabla \cdot \mathbf{D} = q.$$

$$\nabla \times \mathcal{E} = -\mathbf{B},$$

$$\nabla \cdot \mathbf{B} = 0,$$

$$\mathbf{D} = \epsilon_0 \mathbf{E} + \mathbf{P},$$

$$\mathcal{H} = \mu_0^{-1} \mathbf{B} - \mathbf{v} \times \epsilon_0 \mathbf{E} - \mathcal{M}$$

- Constitutive theory provides M, P and \mathcal{J} with $\mathcal{E} = E + v \times B$
- Flux derivatives

$$\ddot{\mathbf{B}} = \frac{\partial \mathbf{B}}{\partial t} + \nabla \times (\mathbf{B} \times \mathbf{v}) + \mathbf{v}(\nabla \cdot \mathbf{B}) = \frac{\partial \mathbf{B}}{\partial t} + \nabla \times (\mathbf{B} \times \mathbf{v})$$

$$\ddot{\mathbf{D}} = \frac{\partial \mathbf{D}}{\partial t} + \nabla \times (\mathbf{D} \times \mathbf{v}) + \mathbf{v}(\nabla \cdot \mathbf{D}) = \frac{\partial \mathbf{D}}{\partial t} + \nabla \times (\mathbf{D} \times \mathbf{v}) + q\mathbf{v}$$

Physically, D and B are two-forms

- Take a page from 3D ALE MHD and place D and B as fundamental variables (fluxes) on faces using face elements.
- Operator split the Lagrangian step.
- Mesh motion occurs with constant D and B fluxes. This conserves both the zero magnetic flux divergence property and charge.
- Update the fluxes and electric displacements using a mimetic method perhaps following along ideas similar to Bochev and Gerritsma, "A spectral mimetic least-squares method," 2014.
- Magnetic flux remap is unchanged.
- Electric displacement remap needs both parts of Cartan's formula.

Sandia National Laboratories

All terms will contribute

$$\frac{\partial \mathbf{D}}{\partial t} + \nabla \times (\mathbf{D} \times \mathbf{v}) + \mathbf{v}(\nabla \cdot \mathbf{D})$$

Sanda National Laboratories

All terms will contribute

$$\frac{\partial \mathbf{D}}{\partial t} + \nabla \times (\mathbf{D} \times \mathbf{v}) + \mathbf{v}(\nabla \cdot \mathbf{D})$$

Sandia National Laboratories

All terms will contribute

$$\frac{\partial \mathbf{D}}{\partial t} + \nabla \times (\mathbf{D} \times \mathbf{v}) + \mathbf{v}(\nabla \cdot \mathbf{D})$$

Sandia National Laboratories

All terms will contribute

$$\frac{\partial \mathbf{D}}{\partial t} + \nabla \times (\mathbf{D} \times \mathbf{v}) + \mathbf{v}(\nabla \cdot \mathbf{D})$$

Conclusion

- Understanding at an intuitive level the de Rham complex, Stoke's theorem, the Lie Derivative, Cartan's magic formula, and classical transport theorems is fundamental to developing structure preserving Lagrangian/Eulerian algorithms for multiphysics.
- This presentation gives a small taste of why the general field of structure preserving discretizations (which uses differential forms as the fundamental descriptive language) may be important.
- Several researchers have developed advection algorithms for differential forms. (e.g. McKenzie, Heumann, Hiptmair, Xu)
- Ideas for high quality remap (e.g. optimization, WENO,...) can and should be applied in this general framework.
- Software remap libraries are not commonly built for general differential forms/FEEC at this time. Having such fundamental tools readily available would open up new avenues for utilization and testing of next-generation multi-physics modeling approaches.
- Many opportunities are available for additional advances at the geometrical intersection between physics and mathematics.