Distributed Algorithms for Wide-Area Monitoring of Power Systems

Theory, Experiments, and Open Problems

Aranya Chakrabortty North Carolina State University

SIAM Conference on Computational Science and Engineering

March 18, 2015, Salt Lake City, UT

Main trigger: 2003 Northeast Blackout

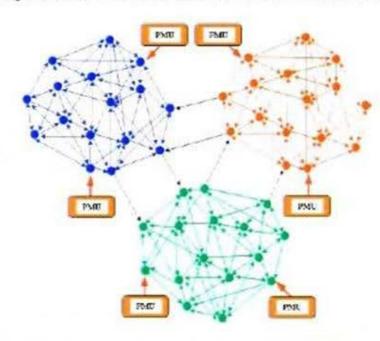
NYC before blackout

NYC after blackout

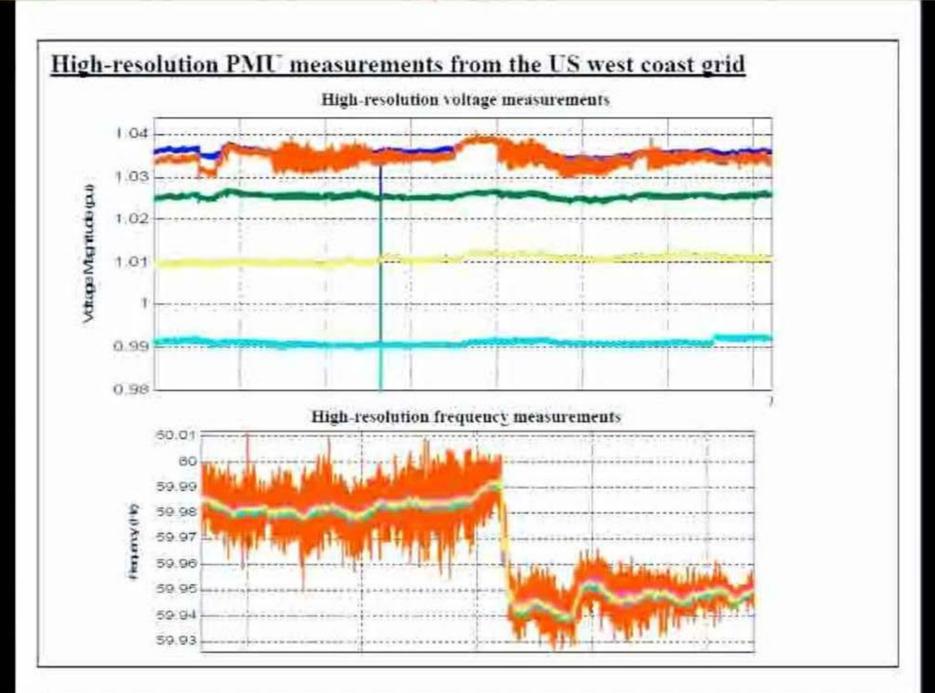
Hauer. Zhou & Trudnowsky, 2004 Kosterev & Martins, 2004

2 Main Lessons Learnt from the 2003 Blackout:

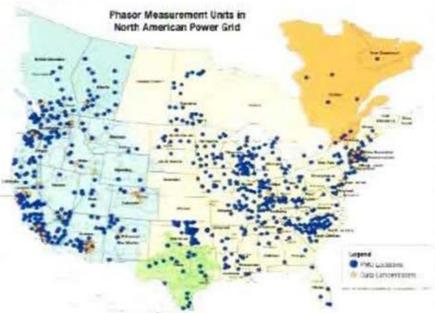
- Need significantly higher resolution measurements
- ➡ From traditional SCADA (System Control and Data Acquisition) to PMUs (Phasor Measurement Units)



- Local monitoring & control can lead to disastrous results
 - Coordinated control instead of selfish control



Increasing Volumes of PMU Data



2008: Only 40 PMUs in the entire east coast

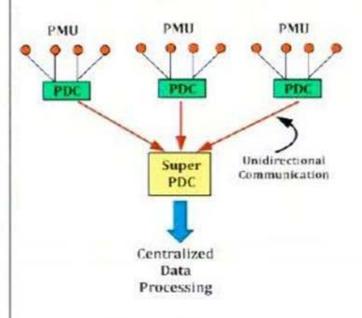
2015: More than 1000 PMUs across USA (Nearly 52 PMUs only in North Carolina)

- Massive volumes of PMU data need to be transported from one part of the grid to another for monitoring and control
- · Needs a highly reliable and resilient communication infrastructure
- Centralized processing will not be tenable
- Need combination of <u>distributed monitoring</u> spread over the entire system

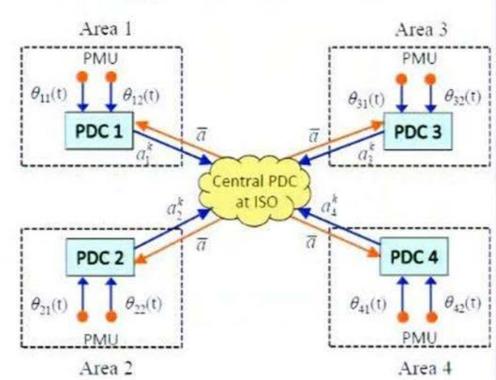
Centralized vs Distributed Algorithms

Centralized RLS

Semi-Distributed Prony



Control Room

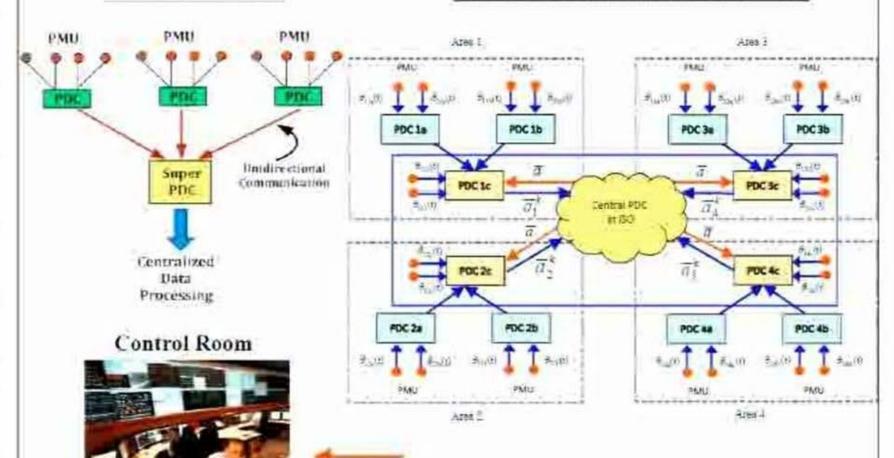


Centralized vs Distributed Algorithms Centralized RLS Distributed Prony Area 3 Area 1 PMU PMU PMU PMU PMU PDO $\theta_{12}(t)$ PDC 3 PDC 1 W_{13} Unidirectional Super Communication PDC a_{\perp}^{k} a_3^k 11,12 11'34 Centralized PDC 4 PDC 2 Data Communication Processing Graph G Control Room PMU PMU Area 2 Area 4

Centralized vs Distributed Algorithms

Centralized RLS

Heirarchically Distributed Prony

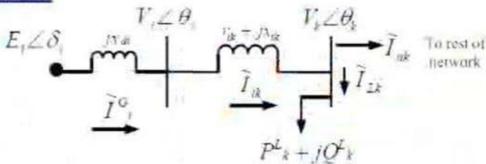


Motivating the Wide-Area Oscillation Monitoring Problem:

Synchronous Generator Models

$$\begin{split} \dot{\delta}_{i} &= \omega_{i} - \omega_{s} \\ M_{i}\dot{\omega}_{i} &= P_{mi} - D_{i}(\omega_{i} - \omega_{s}) - P_{i}^{G} \\ \tau_{i}\dot{E}_{i} &= -\frac{x_{di}}{x'_{di}}E_{i} + \frac{x_{di} - x'_{di}}{x'_{di}}V_{i}\cos(\delta_{i} - \theta_{i}) + E_{Fi} \Longrightarrow \underbrace{E_{Fi} = E_{Fi} + E_{i}}_{\text{Control input}} \\ &= \sum_{\text{Excitation voltage}} E_{\text{Excitation voltage}} \end{split}$$

· Power Flow Equations



$$P_{i}^{G} = \frac{E_{i}V_{i}}{x'_{d}i}\sin(\delta_{i} - \theta_{i}) + \left(\frac{x'_{di} - x_{qi}}{2x_{qi}x'_{di}}\right)V_{i}^{2}\sin(2(\delta_{i} - \theta_{i})) \Longrightarrow \begin{array}{c} \text{Bus voltage and phase angle} \\ \text{Algebraic variables} \\ Q_{i}^{G} = \frac{E_{i}V_{i}}{x'_{d}i}\cos(\delta_{i} - \theta_{i}) - \left(\frac{x'_{di} - x_{qi}}{2x_{qi}x'_{di}} - \frac{x'_{di} - x_{qi}}{2x_{qi}x'_{di}}\cos(2(\delta_{i} - \theta_{i}))\right)V_{i}^{2} \end{array}$$

$$Measured by PMU$$

Grid Dynamic Models

· Load Models

$$P_{j}^{L} = a_{j}V_{j}^{2} + b_{j}V_{j} + c_{j}$$

$$Q_{j}^{L} = e_{j}V_{j}^{2} + f_{j}V_{j} + g_{j}$$

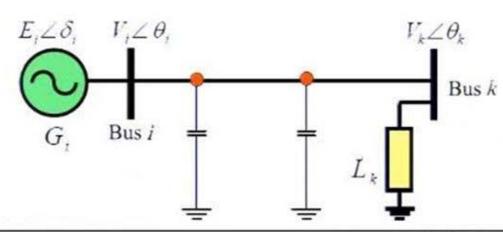
$$a_j, e_j = \text{constant impedance}$$

 $b_j, f_j = \text{constant current}$
 $c_j, g_j = \text{constant power}$

Transmission Line Model

$$P_{ij} = G_{ij}V_i^2 + B_{ij}V_iV_j\sin(\theta_i - \theta_j) - G_{ij}V_iV_j\cos(\theta_i - \theta_j)$$

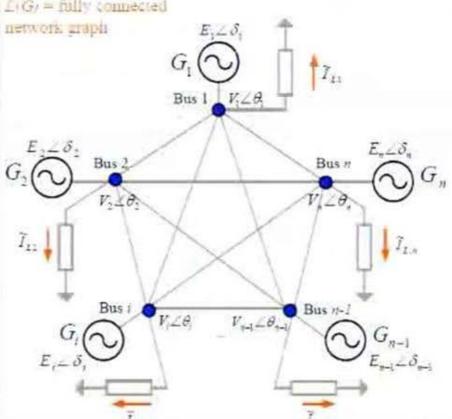
$$Q_{ij} = (B_{ij} - B_{ij}^c)V_i^2 - B_{ij}V_iV_j\cos(\theta_i - \theta_j) - G_{ij}V_iV_j\sin(\theta_i - \theta_j).$$
Pi-model



Total Network Model

$$\begin{bmatrix} \Delta \dot{\delta} \\ M \Delta \dot{\omega} \\ \Delta \dot{E} \end{bmatrix} = \begin{bmatrix} 0 & I & 0 \\ -L(G) & -D & -P \\ 0 & J \end{bmatrix} \begin{bmatrix} \Delta \delta \\ \Delta \omega \\ \Delta E \end{bmatrix} + \underbrace{\begin{bmatrix} 0 \\ \operatorname{col}_{i=1(1)n}(\gamma_i) \\ \operatorname{col}_{i=1(1)n}(\rho_i) \end{bmatrix}}_{\text{due to load}} + \begin{bmatrix} 0 & 0 \\ 0 & I \\ I & 0 \end{bmatrix} \begin{bmatrix} \Delta P_m \\ \Delta E_F \end{bmatrix} \dots (1)$$

L(G) = fully connected



Controllable inputs

Output Equation

$$y = \operatorname{col}_{i \in \mathcal{S}}(\Delta V_i, \Delta \theta_i).$$
 ...(2)

Wide-Area Oscillation Estimation

PMU data
$$\Rightarrow$$
 $y_j(t) = \Delta \theta_j(t) = \sum_{t=1}^n r_{j,t} e^{(-\sigma_j + j\Omega_t)t} + r_{j,t}^* e^{(-\sigma_j - j\Omega_t)t}$

$$\mathbf{y}_{j}(t) = \begin{bmatrix} \Delta \theta_{1}(t) \\ \vdots \\ \Delta \theta_{p}(t) \end{bmatrix} = \sum_{t=1}^{n} \begin{bmatrix} r_{1,t} \\ \vdots \\ r_{p,t} \end{bmatrix} e^{(-\sigma_{t} + j\Omega_{t})t} + \begin{bmatrix} r_{1,t}^{*} \\ \vdots \\ r_{p,t}^{*} \end{bmatrix} e^{(-\sigma_{t} - j\Omega_{t})t}$$

- Our objective is to use PMU measurements y_j(t) to estimate σ_i, Ω_i, and r_{i,j} for i = 1, ..., n.
- · Least-Squares based Prony algorithm
- Let us consider the discrete-time transfer function from d(t) to Δθ_i(t) assuming d(t) to be an impulse

$$\Delta \theta_i(t) = \frac{b_0 + b_1 z^{-1} + b_2 z^{-2} + \dots + b_{2n} z^{-2n}}{1 + a_1 z^{-1} + a_2 z^{-2} + \dots + a_{2n} z^{-2n}}$$

Wide-Area Oscillation Estimation

Step 1. Find a_1 through a_{2n}

$$\begin{bmatrix} \Delta \theta_{i}(2n) \\ \Delta \theta_{i}(2n+1) \\ \vdots \\ \Delta \theta_{i}(2n+l) \end{bmatrix} = \begin{bmatrix} \Delta \theta_{i}(2n-1) & \cdots & \Delta \theta_{i}(0) \\ \Delta \theta_{i}(2n) & \cdots & \Delta \theta_{i}(1) \\ \vdots & & \vdots \\ \Delta \theta_{i}(2n+l-1) & \cdots & \Delta \theta_{i}(l) \end{bmatrix} \begin{bmatrix} -a_{1} \\ -a_{2} \\ \vdots \\ -a_{2n} \end{bmatrix}$$

Finding the global a using all available measurements using simple linear LS:

$$\theta_{i} \rightarrow (H_{i}, \mathbf{c}_{i}), i = 1, \dots, p$$

$$\Rightarrow \begin{bmatrix} \mathbf{c}_{1} \\ \vdots \\ \mathbf{c}_{p} \end{bmatrix} = \begin{bmatrix} H_{1} \\ \vdots \\ H_{p} \end{bmatrix} \mathbf{a}$$

$$\Rightarrow \mathbf{a} = \arg\min_{\mathbf{a}} \frac{1}{2} \begin{bmatrix} H_1 \\ \vdots \\ H_p \end{bmatrix} \mathbf{a} - \begin{bmatrix} \mathbf{c}_1 \\ \vdots \\ \mathbf{c}_p \end{bmatrix}_2 \implies \text{Solve characteristic polynomial from } \mathbf{a}$$

Distributing the Prony Algorithm via Consensus

Supervisory ISO PDC 2 PDC 3 PDC 4

Multiple Computational Areas

Area 1:
$$\hat{\theta}_1 = \{\theta_{30}, \theta_{66}\} \rightarrow (\hat{H}_1 = \begin{bmatrix} H_{30} \\ H_{66} \end{bmatrix}, \hat{\mathbf{c}}_1 = \begin{bmatrix} \mathbf{c}_{30} \\ \mathbf{c}_{66} \end{bmatrix})$$

Area 2:
$$\hat{\theta}_2 = \{\theta_{16}, \theta_{53}\} \rightarrow (\hat{H}_1 = \begin{bmatrix} H_{16} \\ H_{53} \end{bmatrix}, \hat{\mathbf{c}}_1 = \begin{bmatrix} \mathbf{c}_{16} \\ \mathbf{c}_{53} \end{bmatrix})$$

Area 3:
$$\hat{\theta}_3 = \{\theta_{68}\} \rightarrow (\hat{H}_3 = H_{68}, \hat{c}_3 = c_{68})$$

Area 4:
$$\hat{\theta}_4 = \{\theta_{56}\} \rightarrow (\hat{H}_4 = H_{56}, \hat{c}_4 = c_{56})$$

Global Consensus Problem:

minimize
$$\sum_{i=1}^{N} \frac{1}{2} \| \hat{H}_i \mathbf{a}_i - \hat{\mathbf{c}}_i \|_2^2$$

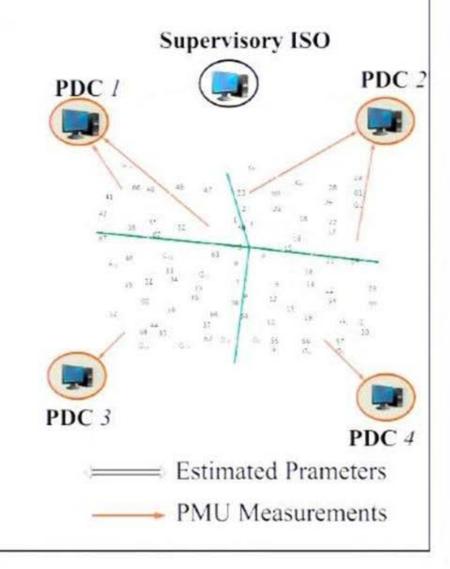
subject to $\mathbf{a}_i - \mathbf{z} = 0$, for $i = 1, \dots, N$

Solve in a distributed way using:
Alternating Direction Method of Multipliers
(ADMM)

Distributed Prony Using ADMM

Iteration 0

Initialize the primal variable $\mathbf{a}_i^{\ 0}$ and the dual variable $\mathbf{w}_i^{\ 0}$ at each local PDC i



Distributed Prony Using ADMM

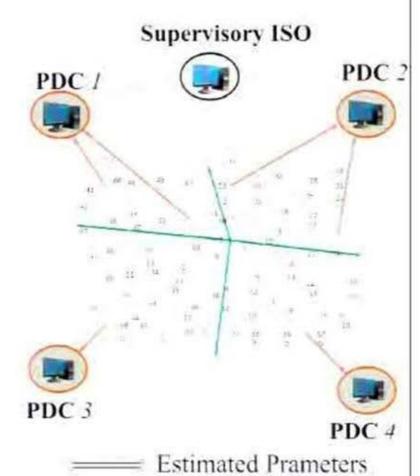
Iteration k+1

Step 1 Update a_i and w_i locally at PDC i

$$\mathbf{a}_{t}^{k-1} = ((H_{t}^{k})^{T} H_{t}^{k} + \rho I)^{-1} ((H_{t}^{k})^{T} \mathbf{c}_{t}^{k} - \mathbf{w}_{t}^{k} + \rho \overline{\mathbf{a}}^{k})$$

$$\mathbf{w}_{t}^{k-1} = \mathbf{w}_{t}^{k} + \rho (\mathbf{a}_{t}^{k-1} - \overline{\mathbf{a}}^{k-1})$$

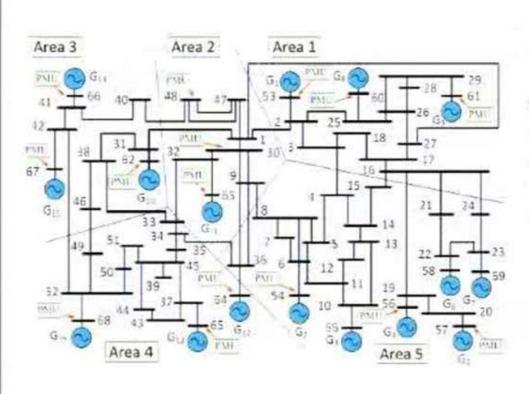
- Step 2 Gather the values of a_i^{k+1} at the central PDC
- Step 3 Take the average of a_i^{k+1}
- Step 4 Broadcast the average value (a_i^{k+1}) to local PDCs
- Step 5 Check the convergence



PMU Measurements

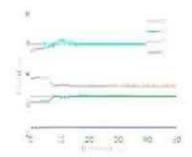
Simulation Results

IEEE-68 Bus Model (simplified model of the New-England power system)

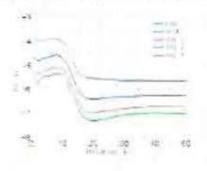


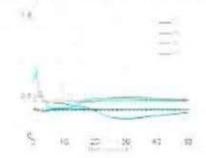
- 68 Bus. 16 Generators
- 5 Computational Areas
- Simulations are performed in Power System Toolbox (PST)
- A three-phase fault occurred at line connecting buses 1 and 2. started at t=0.1 (sec), cleared at bus 1 at t=0.15 (sec), and cleared at bus 2 at t=0.2 (sec).

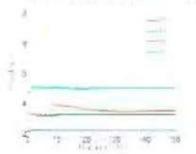
Distributed Prony:



In Case of Communication Failure (1 healthy communication link in 10 iterations)







Actual value	Centralized Prony	Diistributed Prony	Distributed Prony with Comm Failure
-0.3256 j2.2262	-0.3250 j2.2230	-0.3247 j2.2230	-0.3243 [2.2225
-0.3143 [3.2505	-0.3146□j3.2531	-0.3153□j3.2525	-0.2808□ 3.2560
-0.4312 [j3.5809	-0.4318_j3.5849	-0.4328 j3.5855	-0.4443:]3.5106
-0.4301_j4.9836	-0.4308 j4.9865	-0.4294 j4.9798	-0.4361 j4.9853

Distributed Prony Using ADMM

Iteration k+1

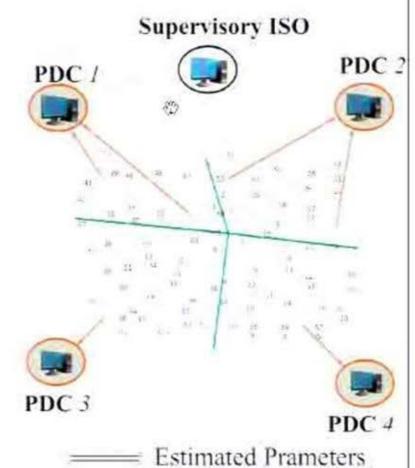
Step 1 Update a_i and w_i locally at PDC i

$$\mathbf{a}_{i}^{k-1} = ((H_{i}^{k})^{T} H_{i}^{k} + \rho I)^{-1} ((H_{i}^{k})^{T} \mathbf{c}_{i}^{k} - \mathbf{w}_{i}^{k} + \rho \overline{\mathbf{a}}^{k})$$

$$\mathbf{w}_{i}^{k+1} = \mathbf{w}_{i}^{k} + \rho (\mathbf{a}_{i}^{k+1} - \overline{\mathbf{a}}^{k+1})$$

- Step 2 Gather the values of a_i^{k+1} at the central PDC
- Step 3 Take the average of a_i^{k+1}
- Step 4 Broadcast the average value

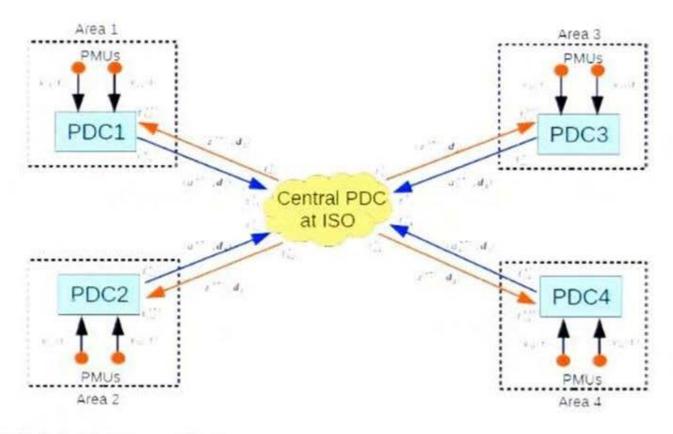
 (a_i^{k+1}) to local PDCs
- · Step 5 Check the convergence
- Final Step Find the frequency Ω_i, and damping σ_i at each local PDC using ā_i^{k+1}



PMU Measurements

Incorporating Asynchronous Communication Area 1 Area 3 **PMUS PMUs** Voit Yu. L PDC1 PDC3 $(z^{(i)}), d_z$ Central PDC at ISO 12 -1 , d PDC2 PDC4 You ki **PMUs PMUs** Area 2 Area 4

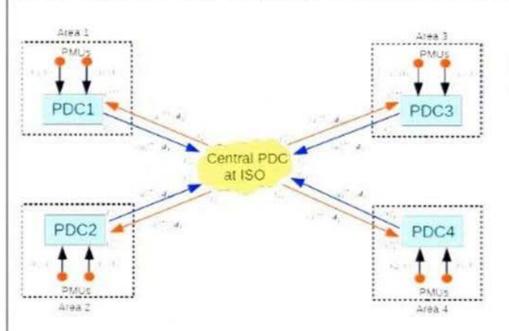
Incorporating Asynchronous Communication



Traffic Models for Internet Delays:

$$P(t) = \frac{1}{2} \left[erf(\frac{\mu}{\sqrt{2}\sigma}) + erf(\frac{t-\mu}{\sqrt{2}\sigma}) \right] + \frac{(1-p)}{N} e^{(\frac{1}{2}\lambda^2\sigma^2 + \mu\lambda)} \left[erf(\frac{\lambda\sigma^2 + \mu}{\sqrt{2}\sigma}) + erf(\frac{t-\lambda\sigma^2 - \mu}{\sqrt{2}\sigma}) \right]$$

Incorporating Asynchronous Communication



IEEE PES General Meeting, 2015:

If message doesn't arrive at ISO by a delay threshold d_1^*

· Strategy 1:

$$z^{(k+1)} = \frac{1}{|S_1^{(k)}|} \sum_{i \in S_i^{(k)}}^{N} (a_i^{(k+1)} + \frac{1}{\rho} w_i^{(k)})$$

- Can easily lead to divergence

$$z^{(k+1)} = \frac{1}{N} \left(\sum_{i \in S_1^{(k)}}^{N} \left(a_i^{(k+1)} + \frac{1}{\rho} w_i^{(k)} \right) + \sum_{i \in S_1^{(k)}}^{N} \left(a_i^{(k)} + \frac{1}{\rho} w_i^{(k-1)} \right) \right)$$
 but slow

Substitute values from previous iteration

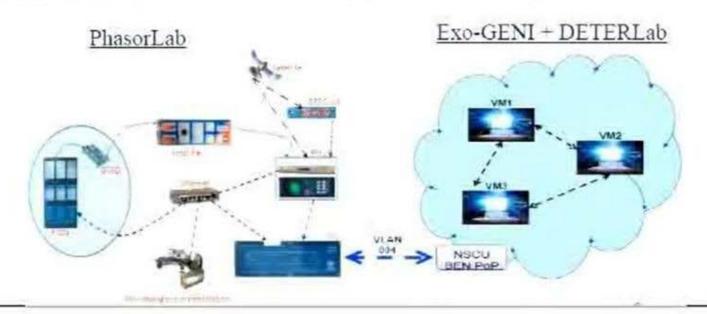
Modify dual update by a gradient term:

$$w_i^{(k)} = w_i^{(k-1)} + \rho(a_i^{(k)} - (z^{(k-1)} + \gamma(z^{(k-1)} - z^{(k-2)}))), \quad i \in S_2^{(k)}$$

Testbed Integration

Iowa State, NC State, USC, UNC NI, Mitre, NREL, Scitor Corp.

PMU+ Real-Time Digital Simulators



Conclusions

- WAMS is a tremendously promising technology for control researchers
- 2. Control + Communications + Computing (CPS) must merge
- 3. Plenty of new research problems EE, Applied Math. Computer Science
- 4. Plenty of new distributed optimization and control problems
- 5. Both theory and testbed experiments must progress
- 6. Right time to think mathematically Network theory is imperative electric grid
- 7. Needs participation of young researchers!
- 8. Promises to create jobs and provide impetus to power engineering

