2015 Salati Laudinomina on Laternatalianos Sanara and Engineering Salat Laud Cale, 127 March 18-18, 2015

Mirrorangements MS283 Englishmed Cuber Physical Systems

Modeling and Controlling the Power Site. Part II of II

Exploring state estimation techniques to accommodate non-Gaussian noises

Henry Huang, Pacific Northwest National Laboratory, USA, zhou.huang@pnnl.gov
Ning Zhou, Binghamton University, USA, ningzhou@binghamton.edu
Mihai Anitescu, Argonne National Laboratory, USA, anitescu@mcs.anl.gov
Shaobu Wang, Pacific Northwest National Laboratory, USA, shaobu.wang@pnnl.gov

Acknowledgement: the work is supported by the US Department of Energy Office of Advanced Scientific Computing Research and Office of Electricity Delivery and Energy Reliability.

Gaussian noise assumption in power grid dynamic state estimation

- Power grids trend to be more dynamic... Estimating dynamic states is necessary vs. static states in the traditional function.
- The problem is formulated using phasor measurement and Kalman Filter.
 - Noise are assumed Gaussian for both the process and the measurement.
 - Our prior work has examined the non-Gaussian nature in measurement noise.
 - Today's focus: exploring methods to accommodate non-Gaussian noises.

Excellent state tracking with realistic evaluation conditions

- 3% Gaussian measurement noise; 40 ms measurement cycle (phasor measurement)
- 5 ms interpolation cycle; modeling errors considered; unknown inputs; unknown initial states

Non-Gaussian noise observed from real phasor measurements

Proudle Operated by Belletic Since 1965

Difference between two measurements

Results of normal distribution test

Impact of non-Gaussian noises on dynamic state estimation

- Non-Gaussian noise results in larger estimation errors.
- The errors could mean 10% power flow difference (100s MW).
- Typical signal noise ratio (SNR) falls in the sensitive range.

Gaussian noise propagation in non-linear systems

Central Limit Theorem

$$\lim_{N\to\infty}\frac{1}{N}\sum_{i=1}^N X_i \Rightarrow Gaussian$$

Mathematical convenience for a <u>linear</u> system

$$\vec{y} \sim Gaussian \implies A\vec{y} + b \sim Gaussian$$

Non-Gaussian if propagation through non-linear system

Non-linearity of the power grid

Nonlinear State Transition Functions

$$\begin{split} \delta &= \omega_0 \Delta \omega \\ \Delta \dot{\omega} &= \frac{1}{2H} (T_m - T_a - K_D \Delta \omega) \\ \dot{e}'_q &= \frac{1}{T'_d} (E_{td} - e'_q - (x_d - x'_d) i_d) \\ \dot{e}'_q &= \frac{1}{T'_d} (-e'_d + (x_q - x'_q) i_q) \end{split}$$

$$i_q = i_I \sin \delta + i_R \cos \delta$$

$$i_q = i_I \sin \delta + i_R \cos \delta$$

$$i_q = i_I \sin \delta + i_R \cos \delta$$

Nonlinear Measurement Functions

$$\begin{aligned} e_R &= (e_d' + i_q x_q') \sin \delta + (e_q' - i_d x_d') \cos \delta \\ e_I &= (e_q' - i_d x_d') \sin \delta - (e_d' + i_q x_q') \cos \delta \end{aligned}$$

Non-linearity index to quantify the linearization errors

1st order Taylor approximation

$$\begin{cases} x_k = \Phi(x_{k-1}, u_{k-1}) + w_{k-1} \\ z_k = h(x_k, u_k) + v_k \end{cases}$$

$$\Phi(x_{v} + \delta v) \approx \Phi(x_{v}) + \frac{\partial \Phi(x)}{\partial x} = \delta v$$

$$h(x_x + \delta x) \approx h(x_x) + \frac{\partial h(x)}{\partial x} \Big|_{x_x} \delta x$$

Non-linearity indices

$$\varepsilon_{\Phi} = \Phi(x_x + \delta x) - \left[\Phi(x_x) + \frac{\partial \Phi(x)}{\partial x} \middle| \delta x \right]$$

$$\varepsilon_{\pi} = h(x_x + \delta x) - \left[h(x_x) + \frac{\partial h(x)}{\partial x} \middle| \delta x \right]$$

$$n(\Phi) = \varepsilon_{\Phi}^{\top} Q_{\lambda}^{-1} \varepsilon_{\Phi}$$

$$n(h) = \varepsilon_h^r R_k^{-1} \varepsilon_h$$

$$Q_i = E(u_i u_i)$$
 $R_s = E(v_i v_i)$

Smaller prediction steps improves quality of linearization, requiring interpolation

Smaller prediction steps reduces the linearization error of the nonlinear process.

$$n(\Phi) = \varepsilon_{\Phi}^T Q_k^{-1} \varepsilon_{\Phi}$$

$$n(h) = \varepsilon_h^T R_k^{-1} \varepsilon_h$$

- Interpolation is required to match the measurement rate with the prediction steps
 - Interpolation factor r = number of added pseudo measurements between two consecutive measurements
 - New sampling rate $F_s = F_{s0} (r + 1)$

Interpolation reduces the non-linearity and thus the impact of non-Gaussian noises

Time Hec

Estimation errors decreases with the interpolation factors

Time (sec)

15

20

0.8

5

Trade-off between estimation accuracy and computation time

Computation time increases with the interpolation factors (r)

MSEs of the EKF estimates decreases with interpolation factors (r)

Adaptive interpolation based on the nonlinearity index

Presally Operated by Beticke Street 7963

Additional ideas to accommodate non-Gaussian noises

- Particle filtering (PF): Sequential Monte Carlo technique which does not require Gauss assumption
- Gaussian mixture approach
- Adjustment of the parameters of Kalman filter to minimize the impact of non-Gaussian noise

Summary

- Noises in power grid dynamic state estimation exhibit non-Gaussian nature.
- The impact of non-Gaussian noises can be significant enough that new mathematical methods need to be developed.
- Interpolation methods are showing improvement for non-Gaussian noises.
- Other methods (Gaussian mixture, adaptive parameters) are being explored.

Presile Operated by Balletic Stree 2965

Questions?