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Gaussian noise assumption in power grid dynamic fic Northwest
state estimation it Sttt

» Power grids trend to be more dynamic... Estimating dynamic states is
necessary vs. static states in the traditional function.
» The problem is formulated using phasor measurement and Kalman Filter.
& Noise are assumed Gaussian for both the process and the measurement.
# Our prior work has examined the non-Gaussian nature in measurement noise
® Today's focus: exploring methods to accommodate non-Gaussian noises.
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Excellent state tracking with realistic evaluation
conditions

» 3% Gaussian measurement noise; 40 ms measurement cycle (phasor
measurement)

» 5 ms interpolation cycle; modeling errors considered; unknown inputs;
unknown initial states
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Non-Gaussian noise observed from real e

ATIDNAL LABDRATONY

phasor measurements SN

Measurement 1 Measurement 2

pValue=0.00%

Difference Detween two measurements Results of normal distribution test




Impact of non-Gaussian noises on dynamic

state estimation

» Non-Gaussian noise results in larger estimation errors.

» The errors could mean 10% power flow difference (100s MW).
» Typical signal noise ratio (SNR) falls in the sensitive range.
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Gaussian noise propagation in non-linear

systems

» Central Limit Theorem

R :
lim = Z X, = Guaussian

» Mathematical convenience for a linear system

v~ Gaussian = Av+b~ Gaussian

» Non-Gaussian if propagation through non-linear system




Non-linearity of the power grid

» Nonlinear State Transition Functions
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» Nonlinear Measurement Functions
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Non-linearity index to quantify the

linearization errors
» 15 order Taylor approximation
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» Non-linearity indices
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Smaller prediction steps improves quality mm-
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of linearization, requiring interpolation e e e =

» Smaller prediction steps reduces the linearization error of the
nonlinear process.
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» Interpolation Is required to match the w
measurement rate with the prediction t
steps .

# Interpolation factor r = number of added
pseudo measurements between two v
conseculive measurements

# New samplingrate F, = F,(r+1)




interpolation reduces the non-linearity and ot

b iy L

thus the impact of non-Gaussian noises e et e
Non-lineanty decreases with the Estimation errors decreases with the
interpolation factors interpolation factors
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Trade-off between estimation accuracy and

computation time

Computation time increases with the MSEs of the EKF estimates decreases with
interpolation factors (r) interpolation factors (r)
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Adaptive interpolation based on the

nonlineari

index
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Additional ideas to accommodate non-

Gaussian noises

» Particle filtering (PF): Sequential Monte Carlo technique which
does not require Gauss assumption

» Gaussian mixture approach

» Adjustment of the parameters of Kalman filter to minimize the
impact of non-Gaussian noise




Summary

» Noises in power grid dynamic state estimation exhibit non-
Gaussian nature.

» The impact of non-Gaussian noises can be significant
enough that new mathematical methods need to be
developed.

» Interpolation methods are showing improvement for non-
Gaussian noises.

» Other methods (Gaussian mixture, adaptive parameters)
are being explored.
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