
Neural Ordinary
Differential Equations

Ricky T. Q. Chen*, Yulia Rubanova*, Jesse Bettencourt*, David Duvenaud

University of Toronto

Background: Ordinary Differential Equations (ODEs)

- Model the instantaneous change of a state.

(explicit form)

- Solving an initial value problem (IVP) corresponds to integration.

(solution is a trajectory)

- Euler method approximates with small steps:

Residual Networks interpreted as an ODE Solver
- Hidden units look like:

- Final output is the composition:

Haber & Ruthotto (2017). E (2017).

Residual Networks interpreted as an ODE Solver
- Hidden units look like:

- Final output is the composition:

- This can be interpreted as an Euler
discretization of an ODE.

Haber & Ruthotto (2017). E (2017).

- In the limit of smaller steps:

Deep Learning as Discretized Differential Equations
Many deep learning networks can be interpreted as ODE solvers.

Network Fixed-step Numerical Scheme

ResNet, RevNet, ResNeXt, etc. Forward Euler

PolyNet Approximation to Backward Euler

FractalNet Runge-Kutta

DenseNet Runge-Kutta

Lu et al. (2017)
Chang et al. (2018)
Zhu et al. (2018)

Deep Learning as Discretized Differential Equations
Many deep learning networks can be interpreted as ODE solvers.

Network Fixed-step Numerical Scheme

ResNet, RevNet, ResNeXt, etc. Forward Euler

PolyNet Approximation to Backward Euler

FractalNet Runge-Kutta

DenseNet Runge-Kutta

Lu et al. (2017)
Chang et al. (2018)
Zhu et al. (2018)

But:
(1) What is the underlying dynamics?
(2) Adaptive-step size solvers provide better error handling.

“Neural” Ordinary Differential Equations

Instead of y = F(x),

Parameterize

“Neural” Ordinary Differential Equations

Instead of y = F(x), solve y = z(T)
given the initial condition z(0) = x.

Parameterize

“Neural” Ordinary Differential Equations

Solve the dynamic using any
black-box ODE solver.

- Adaptive step size.
- Error estimate.
- O(1) memory learning.

Instead of y = F(x), solve y = z(T)
given the initial condition z(0) = x.

Backprop without knowledge of the ODE Solver
Ultimately want to optimize some loss

Backprop without knowledge of the ODE Solver
Ultimately want to optimize some loss

Naive approach: Know the solver. Backprop through the solver.
- Memory-intensive.
- Family of “implicit” solvers perform inner optimization.

Backprop without knowledge of the ODE Solver
Ultimately want to optimize some loss

Naive approach: Know the solver. Backprop through the solver.
- Memory-intensive.
- Family of “implicit” solvers perform inner optimization.

Our approach: Adjoint sensitivity analysis. (Reverse-mode Autodiff.)
- Pontryagin (1962).

+ Automatic differentiation.
+ O(1) memory in backward pass.

Continuous-time Backpropagation

Residual network.

Forward:

Backward:

Params:

Define:Adjoint method.

Continuous-time Backpropagation

Residual network.

Forward:

Backward:

Params:

Adjoint method.

Forward:

Define:

Continuous-time Backpropagation

Residual network.

Forward:

Backward:

Params:

Adjoint method.

Forward:

Backward:

Adjoint DiffEqAdjoint State

Define:

Continuous-time Backpropagation

Residual network.

Forward:

Backward:

Params:

Adjoint method.

Forward:

Backward:

Params:

Adjoint DiffEqAdjoint State

Define:

A Differentiable Primitive for AutoDiff

Forward:

Backward:

A Differentiable Primitive for AutoDiff

Forward:

Backward:

A Differentiable Primitive for AutoDiff

Reversible networks (Gomez et al. 2018) also only require O(1)-memory, but
require very specific neural network architectures with partitioned dimensions.

Don’t need to store layer activations for reverse pass - just follow dynamics in
reverse!

Reverse versus Forward Cost

- Empirically, reverse
pass roughly half as
expensive as forward
pass.

-

- Adapts to instance
difficulty.

-

- Num evaluations can
be viewed as number of
layers in neural nets.

NFE = Number of Function Evaluations.

Dynamics Become Increasingly Complex

- Dynamics become
more demanding to
compute during
training.

- Adapts computation
time according to
complexity of diffeq.

In contrast, Chang et al. (ICLR 2018)
explicitly add layers during training.

Continuous-time RNNs for Time Series Modeling
- We often want arbitrary measurement times, ie. irregular time intervals.
- Can do VAE-style inference with a latent ODE.

ODEs vs Recurrent Neural Networks (RNNs)

- RNNs learn very
stiff dynamics,
have exploding
gradients.

-

- Whereas ODEs
are guaranteed
to be smooth.

Continuous Normalizing Flows

Instantaneous Change of variables (iCOV):

- For a Lipschitz continuous function

Continuous Normalizing Flows

Instantaneous Change of variables (iCOV):

- For a Lipschitz continuous function

- In other words,

Continuous Normalizing Flows

Instantaneous Change of variables (iCOV):

- For a Lipschitz continuous function

- In other words,

With an
invertible F:

Continuous Normalizing Flows

1D: 2D: Data Discrete-NF CNF

Stochastic Unbiased Log Density

Stochastic Unbiased Log Density

Can further reduce time complexity using stochastic estimators.

Grathwohl et al. (2019)

FFJORD - Stochastic Continuous Flows

Grathwohl et al. (2019)

MNIST - Model Samples CIFAR10 - Model Samples

ODE Solving as a Modeling Primitive
Adaptive-step solvers with O(1) memory backprop.

github.com/rtqichen/torchdiffeq

Future directions we’re currently working on:

- Latent Stochastic Differential Equations.
- Network architectures suited for ODEs.
- Regularization of dynamics to require fewer evaluations.

Thanks!
Yulia Rubanova Jesse Bettencourt David Duvenaud

Co-authors:

Extra Slides

Latent Space Visualizations

• Released an implementation of reverse-mode
autodiff through black-box ODE solvers.

• Solves a system of size 2D + K + 1.

• In contrast, forward-mode implementation
solves a system of size D^2 + KD.

• Tensorflow has Dormand-Prince-Shampine
Runge-Kutta 5(4) implemented, but uses
naive autodiff for backpropagation.

How much precision is needed?

https://docs.google.com/file/d/1-51ddfTReHHWHQF897E1JQ96GCQajtrq/preview
https://docs.google.com/file/d/1gvuKFmRWqGQ9V-lYKLhp-_nJ-wrs2V-u/preview

Explicit Error Control

- More fine-grained
control than
low-precision floats.

- Cost scales with
instance difficulty.

NFE = Number of Function Evaluations.

Computation Depends on Complexity of Dynamics

- Time cost is dominated by
evaluation of dynamics f.

NFE = Number of Function Evaluations.

Why not use an ODE solver as modeling primitive?
- Solving an ODE is expensive.

Future Directions
- Stochastic differential equations and Random ODEs. Approximates stochastic

gradient descent.
- Scaling up ODE solvers with machine learning.
- Partial differential equations.
- Graphics, physics, simulations.

