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Great Success of Deep Learning
• Deep learning has achieved remarkable success in many

machine learning tasks

• Compositional structure is widely considered the essence of
deep neural networks, but the mechanism stills remains
mystery.

• Deep residual network (ResNet) and its variants make use of
much deeper architectures and achieve the state-of-the-art in
numerous computer vision applications.

• composition + skip connection → dynamic system
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Dynamical System Viewpoint of ResNet

• Residual block
xl+1 = xl + f(xl,Wl)

• Closely connected with dynamic system in discrete time

xt+1 = xt + f(xt,Wt)∆t

• Motivate us to consider a formulation in continuous time –
independent of time resolution

• Allow us to study deep learning in a new framework that has
intimate connections with differential equations, numerical
analysis, and optimal control theory

• The compositional structure is explicitly taken into account as
time evolution (total time ≈ network depth)
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Related Work
• Early work: continuous-time analogs of deep neural networks

(E, 2017, Haber and Ruthotto, 2017)

• Most work on the dynamical systems viewpoint of deep
learning mainly focused on designing

I new optimization algorithms: maximum principle based (Li et
al., 2017, Li and Hao, 2018), neural ODE (Chen et al., 2018),
layer-parallel training (Günther et al., 2018)

I new network structures: stable structure (Haber and Ruthotto,
2017), multi-level structure (Lu et al., 2017, Chang et al.,
2017), reversible structure (Chang et al., 2018)

However, the mathematical aspects has not been explored yet

• Mean-field optimal control itself is still an active area of
research
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Mathematical Formulation
Given the data-label joint distribution (x0, y0) ∼ µ on Rd × Rl, we
aim to solve the following population risk minimization problem (E,
2017)

inf
θ∈L∞([0,T ],Θ)

J(θ) := Eµ

[
Φ(xT , y0) +

∫ T

0
L(xt, θt)dt

]
,

Subject to ẋt = f(xt, θt).

T > 0, time length (network “depth”)
f : Rd ×Θ→ Rd, feed-forward dynamics
Φ : Rd × Rl → R, terminal loss function
L : Rd ×Θ→ R, regularizer
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Two Sides of the Same Coin: Optimal Control

Maximum principle (Pontrayagin, 1950s): – local characterization
of optimal solution in terms of ODEs of state and co-state
variables, giving necessary condition

Dynamic programming (Bellman, 1950s) – global characterization
of the value function in terms of PDE (HJB equation), giving
necessary and sufficient condition / later made rigorous by the
development of viscosity solution by Crandall and Lions (1980s)

Intimately connected through the method of characteristics in
Hamiltonian mechanics
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Mean-Field Pontrayagin’s Maximum Principle
We assume:
• (A1) The function f is bounded; f, L are continuous in θ; and
f, L,Φ are continuously differentiable with respect to x.

• (A2) The distribution µ has bounded support in Rd × Rl.

Theorem (Mean-field PMP)
Let (A1), (A2) be satisfied and θ∗ ∈ L∞([0, T ],Θ) be a solution of
mean-field optimal control problem. Then, there exists absolutely
continuous µ-a.s. stochastic processes x∗,p∗ such that

ẋ∗t = f(x∗t , θ∗t ), x∗t = x0,

ṗ∗t = −∇xH(x∗t , p∗t , θ∗t ), p∗T = −∇xΦ(x∗T , y0),
EµH(x∗t , p∗t , θ∗t ) = max

θ∈Θ
EµH(x∗t , p∗t , θ), a.e. t ∈ [0, T ],

where the Hamiltonian function H : Rd × Rd ×Θ→ R is given by
H(x, p, θ) = p · f(x, θ)− L(x, θ).
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Discussion of Mean-Field PMP

• It is a necessary condition for optimality
• What’s new compared to classical PMP: the expectation over
µ in the Hamiltonian maximization condition

• It includes, as a special case, the necessary conditions for the
optimality of the sampled optimal control problem (by
considering the empirical measure µN := 1

N

∑N
i=1 δ(xi0,yi0))

min
θ∈L∞([0,T ],Θ)

JN (θ) := 1
N

N∑
i=1

[
Φ(xiT , yi0) +

∫ T

0
L(xit, θt)dt

]
,

subject to ẋit = f(xit, θt), i = 1, . . . , N.
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Small-Time Uniqueness
Uniqueness + existence: necessary condition becomes sufficient

In the sequel, assume
• (A1′) f is bounded; f, L,Φ are twice continuously

differentiable with respect to both x, θ, with bounded and
Lipschitz partial derivatives.

Theorem (Small-time uniqueness)
Suppose that H(x, p, θ) is strongly concave in θ, uniformly in
x, p ∈ Rd, i.e.H(x, p, θ) + λ0I � 0 for some λ0 > 0. Then, for
sufficiently small T , the solution of the PMP is unique.

Remark
• The strong concavity of the Hamiltonian does not imply that

the loss function J is strongly convex, or even convex:
f(x, θ) = θσ(x), L(x) = 1

2λ‖θ‖
2.

• small T → low capacity model (the number of parameters is
still infinite)
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From Mean-Field PMP to Sampled PMP
Goal:
population risk minimization ←→ empirical risk minimization

mean-field PMP ←→ sampled PMP

Strategy: Denote

ẋθt = f(xθt , θt), xθ0 = x0,

ṗθt = −∇xH(xθt , pθt , θt), pθT = −∇xΦ(xθT , y0).
Assume the solution of mean-field PMP satisfies

F (θ∗)t := E∇θH(xθ
∗
t , pθ

∗
t , θ∗t ) = 0.

We wish to find the solution of

FN (θN )t := 1
N

N∑
i=1

∇θH(xθ
N ,i
t , pθ

N ,i
t , θNt ) = 0.

This can be done through a contraction mapping
GN (θ) := θ −DFN (θ∗)−1

FN (θ).
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Error Estimates for Sampled PMP

Definition
For ρ > 0 and x ∈ U , define Sρ(x) := {y ∈ U : ‖x− y‖ ≤ ρ}. We say that the
mapping F is stable on Sρ(x) if there exists a constant Kρ > 0 such that for
all y, z ∈ Sρ(x),

‖y − z‖ ≤ Kρ‖F (y)− F (z)‖.

Theorem (Neighboring solution for sampled PMP)
Let θ∗ be a solution F = 0, which is stable on Sρ(θ∗) for some ρ > 0. Then,
there exists positive constants s0, C,K1,K2 and ρ1 < ρ and a random variable
θN ∈ Sρ1 (θ∗) ⊂ L∞([0, T ],Θ), such that

µ[‖θ − θN‖L∞ ≥ Cs] ≤ 4 exp
(
− Ns2

K1 +K2s

)
, s ∈ (0, s0],

µ[FN (θN ) 6= 0] ≤ 4 exp
(
− Ns2

0
K1 +K2s0

)
.

In particular, θN → θ∗ and FN (θN )→ 0 in probability.
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Error Estimates for Sampled PMP

Theorem
Let θ∗ be a solution of the mean-filed PMP such that there exists λ0 > 0
satisfying that for a.e. t ∈ [0, T ], E∇2

θθH(xθ
∗
t , pθ

∗
t , θ∗t ) + λ0I � 0. Then the

random variable θN defined previously satisfies, with probability at least
1− 6 exp [−(Nλ2

0)/(K1 +K2λ0)], that θNt is a strict local maximum of
sampled Hamiltonian 1

N

∑N

i=1 H(xθ
N ,i
t , pθ

N ,i
t , θ). In particular, if the

finite-sampled Hamiltonian has a unique local maximizer, then θN is a solution
of the finite-sampled PMP with the same high probability.

Theorem
Let θN be the random variable defined previously. Then there exist constants
K1,K2 such that,

P[|J(θN )− J(θ∗)| ≥ s] ≤ 4 exp
(
− Ns2

K1 +K2s

)
, s ∈ (0, s0].
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Mean-Field Dynamic Programming Principle

Key idea: take the joint distribution of (xt, y0) as state variable in
Wasserstein space and consider the associated value function as
solution of an infinite-dimensional Hamilton-Jacobi-Bellman (HJB)
equation. Finally obtain uniqueness, regardless of time length.

Notation:
w concatenation of (x, y) as (d+ l)-dimensional variable
(Ω,F ,P) fixed probability space, F is the Borel σ−algebra of Rd+l

L2(F ;Rd+l) the space of square-integrable random variables with L2 metric
P2(Rd+l) the space of square-integrable measures with 2-Wasserstein metric

W ∈ L2(F ;Rd+l)⇐⇒ PW ∈ P2(Rd+l)

We use f̄(w, θ), L̄(w, θ), Φ̄(w) to denote corresponding functions
in the extended (d+ l)-dimensional space (e.g. Φ̄(w) := Φ(x, y)).
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Notation (cont.)

Given ξ ∈ L2(F ,Rd+l) and a control process θ ∈ L∞([0, T ],Θ),
we consider the following dynamic system for t ≤ s ≤ T :

W t,ξ,θ
s = ξ +

∫ s

t
f̄(W t,ξ,θ

τ , θτ ) dτ.

Let µ = Pξ ∈ P2(Rd+l), we denote the law of W t,ξ,θ
s for simplicity

by
Pt,µ,θs := P

W t,ξ,θ
s

.

In the sequel, we assume
• (A1′′) f, L,Φ is bounded; f, L,Φ are Lipschitz continuous

with respect to x, and the Lipschitz constants of f and L are
independent of θ.

• (A2′′) µ ∈ P2(Rd+l).
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Continuity of Value Function and Mean-Field
DPP
We rewrite the time-dependent objective functional and value
function as

J(t, µ,θ) = 〈Φ̄(.), Pt,µ,θT 〉+
∫ T

t
〈L̄(.,θs), Pt,µ,θs 〉 ds,

v∗(t, µ) = inf
θ∈L∞([0,T ],Θ)

J(t, µ,θ).

Theorem (Lipschitz continuity of value function)
The function (t, µ) 7→ J(t, µ,θ) is Lipschitz continuous on
[0, T ]× P2(Rd+l), uniformly with respect to θ, and the value
function v∗(t, µ) is Lipschitz continuous on [0, T ]× P2(Rd+l).

Theorem (Mean-field DPP)
For all 0 ≤ t ≤ t̂ ≤ T , µ ∈ P2(Rd+l), we have

v∗(t, µ) = inf
θ∈L∞([0,T ],Θ)

[ ∫ t̂

t
〈L̄(.,θs), Pt,µ,θs 〉 ds+ v∗(t̂,Pt,µ,θ

t̂
)
]
.
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Derivative in Wasserstein Space
To define derivative w.r.t. measure, we lift function u : P2(Rd+l)→ R into its
“extension” U : L2(F ;Rd+l)→ R by

U [X] = u(PX), ∀X ∈ L2(F ;Rd+l).

If U is Fréchet differentiable, we can define

∂µu(PX)(X) = DU(X),

for some function ∂µu(PX) : Rd+l → Rd+l.

Given a smooth u : P2(Rd+l)→ R and the following dynamic system,

Wt = ξ +
∫ t

0
f̄(Ws) ds, ξ ∈ L2(F ;Rd+l),

we have the chain rule

u(PWt ) = u(PW0 ) +
∫ t

0
〈∂µu(PWs )(.) · f̄(.), PWs〉 ds.
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Infinite-Dimensional HJB Equation

Now we can write down the HJB equation, with v(t, µ) being the
unknown solution,{∂v
∂t

+ inf
θt∈Θ

〈
∂µv(t, µ)(.) · f̄(., θt) + L̄(., θt), µ

〉
= 0, on [0, T )× P2(Rd+l),

v(T, µ) = 〈Φ̄(.), µ〉, on P2(Rd+l).
(1)

Theorem (Verification theorem)
Let v be function in C1,1([0, T ]× P2(Rd+l)). If v is a solution to
(1) and there exists θ∗(t, µ), a mapping (t, µ) 7→ θ attaining the
infimum in (1), then v(t, µ) = v∗(t, µ), and θ∗ is the optimal
feedback control.
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Lifted HJB Equation
For convenience, we define the Hamiltonian
H(µ, p) : P2(Rd+l)× L2

µ(Rd+l)→ R as

H(µ, p) := inf
θ∈Θ

〈
p(.) · f̄(., θ) + L̄(., θ), µ

〉
.

Then the original HJB can be rewritten as
∂v

∂t
+H(µ, ∂µv(t, µ)) = 0, on [0, T )× P2(Rd+l),

v(T, µ) = 〈Φ̄(.), µ〉, on P2(Rd+l).

The “lifted” Bellman equation is formally like above except that
the state space is enlarged

∂V

∂t
+H(ξ,DV (t, ξ)) = 0, on [0, T )× L2(F ;Rd+l),

V (T, ξ) = E[Φ̄(ξ)], on L2(F ;Rd+l).
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Viscosity Solution: “Weak” Solution of PDE
Intuition: use monotonicity of the value function and sidestep
non-differentiability through the test function

Definition
We say that a bounded, uniformly continuous function u is a
viscosity subsolution (supersolution) to the original HJB equation
(1) if the lifted function U defined by U(t, ξ) = u(t,Pξ) is a
viscosity subsolution (supersolution) to the lifted Bellman
equation, that is

U(T, ξ) ≤ (≥)E[Φ̄(ξ)],

and for any test function ψ ∈ C1,1([0, T ]× L2(F ;Rd+l)) such that
the map U − ψ has a local maximum (minimum) at
(t0, ξ0) ∈ [0, T )× L2(F ;Rd+l), one has

∂tψ(t0, ξ0) +H(ξ0, Dψ(t0, ξ0)) ≥ (≤)0.
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Existence and Uniqueness

Theorem (Existence)
The value function v∗(t, µ) is a viscosity solution to the HJB
equation (1).

Theorem (Uniqueness)
Let u1 and u2 be viscosity subsolution and supersolution to (1)
respectively. Then u1 ≤ u2. Consequently, the value function
v∗(t, µ) is the unique viscosity solution to the HJB equation (1).
In particular, if the Hamiltonian H(µ, p) is defined on a unique
minimizer θ∗, then the optimal control process θ∗ is also unique.
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Summary

1. We introduced the mathematical formulation of the
population risk minimization problem of continuous-time deep
learning in the context of mean-field optimal control.

2. Mean-field Pontrayagin’s maximum principle and mean-field
dynamic programming principle (HJB equation) provide us
new perspectives towards theoretical understanding of deep
learning: uniqueness, generalization estimates in finite-sample
case with explicit rate, etc. More to be developed.

Thank you for your attention!
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