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Great Success of Deep Learning

e Deep learning has achieved remarkable success in many
machine learning tasks

e Compositional structure is widely considered the essence of
deep neural networks, but the mechanism stills remains
mystery.

e Deep residual network (ResNet) and its variants make use of
much deeper architectures and achieve the state-of-the-art in
numerous computer vision applications.

e composition + skip connection — dynamic system
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Dynamical System Viewpoint of ResNet

e Residual block
xip1 = 21+ fx, W)

e Closely connected with dynamic system in discrete time

Tip1 = 2 + f(ag, Wi) At
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Dynamical System Viewpoint of ResNet

e Residual block
xip1 = 21+ fx, W)

e Closely connected with dynamic system in discrete time
Top1 = o+ f(ag, Wi) At

e Motivate us to consider a formulation in continuous time —
independent of time resolution

o Allow us to study deep learning in a new framework that has
intimate connections with differential equations, numerical
analysis, and optimal control theory

e The compositional structure is explicitly taken into account as
time evolution (total time &~ network depth)
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Related Work

e Early work: continuous-time analogs of deep neural networks
(E, 2017, Haber and Ruthotto, 2017)

e Most work on the dynamical systems viewpoint of deep
learning mainly focused on designing

» new optimization algorithms: maximum principle based (Li et
al., 2017, Li and Hao, 2018), neural ODE (Chen et al., 2018),
layer-parallel training (Giinther et al., 2018)

» new network structures: stable structure (Haber and Ruthotto,
2017), multi-level structure (Lu et al., 2017, Chang et al.,
2017), reversible structure (Chang et al., 2018)

However, the mathematical aspects has not been explored yet

e Mean-field optimal control itself is still an active area of
research
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Mathematical Formulation

Given the data-label joint distribution (zg,y0) ~ 1 on R% x R, we
aim to solve the following population risk minimization problem (E,
2017)

T
inf  J(6) =E, |®(xr, / Lz, 0,)dt] |
perti i 6) (9) u[ (x7,90) + A (@, 6;) ]

Subject to @y = f(x, 6;).

T >0, time length (network “depth”)
f:R¥x O —= R4, feed-forward dynamics

d:R? x R - R, terminal loss function
L:R*x0 =R, regularizer
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Two Sides of the Same Coin: Optimal Control

Maximum principle (Pontrayagin, 1950s): — local characterization
of optimal solution in terms of ODEs of state and co-state
variables, giving necessary condition

Dynamic programming (Bellman, 1950s) — global characterization
of the value function in terms of PDE (HJB equation), giving
necessary and sufficient condition / later made rigorous by the
development of viscosity solution by Crandall and Lions (1980s)

Intimately connected through the method of characteristics in
Hamiltonian mechanics
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Mean-Field Pontrayagin’s Maximum Principle

We assume:

e (Al) The function f is bounded; f, L are continuous in ; and
f, L, ® are continuously differentiable with respect to x.

e (A2) The distribution 1 has bounded support in R? x R’
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Mean-Field Pontrayagin’s Maximum Principle

We assume:

e (Al) The function f is bounded; f, L are continuous in ; and
f, L, ® are continuously differentiable with respect to x.

e (A2) The distribution 1 has bounded support in R? x R’

Theorem (Mean-field PMP)

Let (A1), (A2) be satisfied and 8* € L>°(]0,T],©) be a solution of
mean-field optimal control problem. Then, there exists absolutely
continuous p-a.s. stochastic processes x*, p* such that

&f = f(x,07), xf = o,
pr = =V H(zy,pf, 0;), pr = —Va®(z7, yo),
E,H(z},p;,0f) = IanagEuH(azf,pf,G), a.e.t €0,T],

€

where the Hamiltonian function H : R¢ x R x © — R is given by
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Discussion of Mean-Field PMP

e |t is a necessary condition for optimality

e What's new compared to classical PMP: the expectation over
4 in the Hamiltonian maximization condition

e It includes, as a special case, the necessary conditions for the
optimality of the sampled optimal control problem (by
considering the empirical measure iy 1= % > ;21 6(%7%))

S T )
INOISESy [@(xay@ + L(x;,e»dt] ,

min
GELOO([O,T],@) i=1

subject to il = f(x,6,), i=1,...,N.
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Small-Time Uniqueness
Uniqueness + existence: necessary condition becomes sufficient

In the sequel, assume
e (Al') f is bounded; f, L, ® are twice continuously
differentiable with respect to both x, 8, with bounded and
Lipschitz partial derivatives.
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Small-Time Uniqueness
Uniqueness + existence: necessary condition becomes sufficient

In the sequel, assume
e (Al') f is bounded; f, L, ® are twice continuously
differentiable with respect to both x, 8, with bounded and
Lipschitz partial derivatives.

Theorem (Small-time uniqueness)

Suppose that H(x,p,0) is strongly concave in 6, uniformly in
z,p € RY, j.e. H(x,p,0) + NI <0 for some \g > 0. Then, for
sufficiently small T', the solution of the PMP is unique.

Remark

e The strong concavity of the Hamiltonian does not imply that
the loss function J is strongly convex, or even convex:
F(2,0) = 8o (x), L(z) = A6

e small T — low capacity model (the number of parameters is

still infinite)
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From Mean-Field PMP to Sampled PMP

Goal:
population risk minimization <+— empirical risk minimization

mean-field PMP — sampled PMP
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From Mean-Field PMP to Sampled PMP

Goal:
population risk minimization <+— empirical risk minimization

mean-field PMP — sampled PMP

Strategy: Denote
& = f(2?,0:,), x5 = o,
pr = —VaH(xi,pf,0:),  pr = —Va®(2F,v0).
Assume the solution of mean-field PMP satisfies
F(0"), :=EVeH(z{ ,p? ,07) = 0.
We wish to find the solution of

Fx(6%), := ZVeH 0Ny =0
=1

This can be done through a contraction mapping

Gn(8) =60 — DFN(0%) ' Fxn(6).
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Error Estimates for Sampled PMP

Definition
For p> 0 and z € U, define S,(z) :={y € U : ||z — y|| < p}. We say that the
mapping F is stable on S,(z) if there exists a constant K, > 0 such that for

all y, z € S,(z),
ly — 2l < K,||F(y) — F(2)]l-
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Error Estimates for Sampled PMP

Definition

For p> 0 and z € U, define S,(z) :={y € U : ||z — y|| < p}. We say that the
mapping F is stable on S,(z) if there exists a constant K, > 0 such that for
all y, z € Sy(z),

ly = 2ll < K[| F(y) = F(2)]|

Theorem (Neighboring solution for sampled PMP)

Let 0" be a solution F = 0, which is stable on S,(0") for some p > 0. Then,
there exists positive constants so,C, K1, K2 and p1 < p and a random variable
0N € S, (8%) C L>([0,T)],0O), such that

Ns?

0— 0| >Cs] <4 —_—
10— 6 > 03] < s (-

), s € (0, so],

Ns2
N < —_ %0 ).
u[Fn (6 )#0]_46@( K1+K250)

In particular, 8~ — 8* and Fx(8"™) — 0 in probability.
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Error Estimates for Sampled PMP

Theorem

Let 8" be a solution of the mean-filed PMP such that there exists Ao > 0
satisfying that for a.e. t € [0,T), EV2,H (z¢" ,p?",0;) + Mol < 0. Then the
random variable O~ defined previously satisfies, with probability at least

1 —6exp[—(NA2) /(K1 + K2Xo)], that 6 is a strict local maximum of

N . N .
sampled Hamiltonian + Zjil H(z? " p? *".0). In particular, if the
finite-sampled Hamiltonian has a unique local maximizer, then @~ is a solution

of the finite-sampled PMP with the same high probability.

15/26



Error Estimates for Sampled PMP

Theorem

Let 8" be a solution of the mean-filed PMP such that there exists Ao > 0
satisfying that for a.e. t € [0,T), EV2,H (z¢" ,p?",0;) + Mol < 0. Then the
random variable O~ defined previously satisfies, with probability at least

1 —6exp[—(NA2) /(K1 + K2Xo)], that 6 is a strict local maximum of
sampled Hamiltonian + Zjil H GN’iyp?N’i, 0). In particular, if the
finite-sampled Hamiltonian has a unique local maximizer, then @~ is a solution
of the finite-sampled PMP with the same high probability.

Theorem
Let ON be the random variable defined previously. Then there exist constants
K17K2 such that,

* N 2
BII(O") — J(0")] > 5] < dexp (—M) s (0,50]
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Mean-Field Dynamic Programming Principle

Key idea: take the joint distribution of (z,yp) as state variable in
Wasserstein space and consider the associated value function as
solution of an infinite-dimensional Hamilton-Jacobi-Bellman (HJB)
equation. Finally obtain uniqueness, regardless of time length.
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Mean-Field Dynamic Programming Principle

Key idea: take the joint distribution of (z,yp) as state variable in
Wasserstein space and consider the associated value function as
solution of an infinite-dimensional Hamilton-Jacobi-Bellman (HJB)
equation. Finally obtain uniqueness, regardless of time length.

Notation:
w concatenation of (z,y) as (d + [)-dimensional variable
(Q,F,P) fixed probability space, F is the Borel c—algebra of R+

L2(F;R¥")  the space of square-integrable random variables with L? metric
Pa (R the space of square-integrable measures with 2-Wasserstein metric

W e L*(F; R <= Pw € P2(R*)

We use f(w,0), L(w,8),®(w) to denote corresponding functions
in the extended (d + [)-dimensional space (e.g. ®(w) := ®(z,y)).
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Notation (cont.)

Given ¢ € L?(F,R%") and a control process 8 € L>([0,T], ©),
we consider the following dynamic system for ¢t < s < T

WiEo — ¢4 [* FwEee 0, ar.
t

Let u = P¢ € P2(R*), we denote the law of W559 for simplicity
by
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Notation (cont.)

Given ¢ € L?(F,R%") and a control process 8 € L>([0,T], ©),
we consider the following dynamic system for ¢t < s < T

WiEo — ¢4 [* FwEee 0, ar.
t

Let u = P¢ € P2(R*), we denote the law of W559 for simplicity
by

In the sequel, we assume
e (A1”) f,L,® is bounded; f, L, ® are Lipschitz continuous
with respect to x, and the Lipschitz constants of f and L are
independent of 6.

o (A2") u € Py(RIHY.
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Continuity of Value Function and Mean-Field
DPP

We rewrite the time-dependent objective functional and value
function as

J(t,11,0) = (& P”“"+/ ), BL9) ds,

(t,p) = f
vt m) oeLool(I[l()T]@)J( 1:0).
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Continuity of Value Function and Mean-Field
DPP

We rewrite the time-dependent objective functional and value
function as

J(t, 1,8) = (B(.), P4 +/ 2), PUAOY ds,

(t,p) = f
vt m) oeLool(I[l()T]@)J( 1:0).

Theorem (Lipschitz continuity of value function)

The function (t, ) — J(t, p, @) is Lipschitz continuous on
[0, T] x P2(RIHY), uniformly with respect to 6, and the value
function v*(t, 1) is Lipschitz continuous on [0, T] x Pg(RH).
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Continuity of Value Function and Mean-Field
DPP

We rewrite the time-dependent objective functional and value
function as

J(t, 1,8) = (B(.), P4 +/ 2), PUAOY ds,

(t,p) = f
vt m) oeLool(I[l()T]@)J( 1:0).

Theorem (Lipschitz continuity of value function)

The function (t, ) — J(t, p, @) is Lipschitz continuous on

[0, T] x P2(RIHY), uniformly with respect to 6, and the value
function v*(t, 1) is Lipschitz continuous on [0, T] x Pg(RH).
Theorem (Mean-field DPP)

Forall0<t<t<T,pec Pg(Rd”), we have

i
*(t, 1) = inf L(.,8,), Pbrby ds 1 o*(F, P9
vt =, it [ (L6, B0)ds ot (B
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Derivative in Wasserstein Space

To define derivative w.r.t. measure, we lift function u : P2(R**) — R into its
“extension” U : L*(F; R = R by

UlX] = u(Px), VX € L*(F;R¥.
If U is Fréchet differentiable, we can define
d,u(Px)(X) = DU(X),

for some function 9, u(Px) : R — R,
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Derivative in Wasserstein Space

To define derivative w.r.t. measure, we lift function u : P2(R**) — R into its
“extension” U : L*(F; R = R by

UlX] = u(Px), VX € L*(F;R¥.
If U is Fréchet differentiable, we can define
d,u(Px)(X) = DU(X),
for some function 9, u(Px) : R4 — R4+,

Given a smooth u : Po(R**!) — R and the following dynamic system,

t
Wy =¢ +/ fWo)ds, ¢ e L*(F;R™,
0
we have the chain rule

u(Bw,) = u(Powy) + / (OB, )(.) - F(), Puw,) ds.
0
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Infinite-Dimensional HJB Equation

Now we can write down the HJB equation, with v(t, 1) being the
unknown solution,

{gt + 1nf <8#v (t, 1) () - F(,0:) + L(.,0:), ,u> =0, on [0,7) x P2(R*tH),

(T, u) <<I>(~)7u>7 on Py(RHH).
(1)
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Infinite-Dimensional HJB Equation

Now we can write down the HJB equation, with v(t, 1) being the
unknown solution,

{gt + lnf <8#U t :u‘)( ) f(70t) + E('79f)7 )UJ> =0, on [OvT) X PQ(Rd+l)a
(T, u) <<1>(,),,L>7 on Py(R).

(1)
Theorem (Verification theorem)
Let v be function in CY1([0, T] x P2(R4*)). If v is a solution to
(1) and there exists 0*(t, 1), a mapping (t, u) — 0 attaining the
infimum in (1), then v(t, u) = v*(t, ), and 6* is the optimal
feedback control.
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Lifted HJB Equation

For convenience, we define the Hamiltonian
H(p,p) : P2(RH) x L2(RH!) - R as

H(p,p) = inf <p(-) - f(,0) + L(.,0), u>-
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Lifted HJB Equation

For convenience, we define the Hamiltonian
H(p,p) : P2(RH) x L2(RH!) - R as

H(p,p) = inf (p(.) f(,0) + L(,0), 1)

0cO

Then the original HJB can be rewritten as

ot

{31} + H(p, 0pv(t, 1)) =0, on [0,T) x Pa(RIF,
(T, 1) = (D(.), ), on Py(RH).

The "lifted” Bellman equation is formally like above except that
the state space is enlarged

ot

{av +H(E,DV(t,€) =0, on [0,T) x L?(F; R4,
V(T,¢) = E[@(¢)], on L*(F;RH).
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Viscosity Solution: “Weak” Solution of PDE

Intuition: use monotonicity of the value function and sidestep
non-differentiability through the test function

Definition
We say that a bounded, uniformly continuous function u is a
viscosity subsolution (supersolution) to the original HJB equation
(1) if the lifted function U defined by U(t,§) = u(t,P¢) is a
viscosity subsolution (supersolution) to the lifted Bellman
equation, that is

U(T,¢) < (2)E[®(¢)],

and for any test function ¢ € C11([0, T] x L?(F; R*)) such that
the map U — 9 has a local maximum (minimum) at
(to, &) € [0,T) x L?(F;R4*Y), one has

(o, o) + H(&o, Dip(to, &0)) > (<)0.
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Existence and Uniqueness

Theorem (Existence)

The value function v*(t, i) is a viscosity solution to the HJB
equation (1).
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Existence and Uniqueness

Theorem (Existence)

The value function v*(t, i) is a viscosity solution to the HJB
equation (1).

Theorem (Uniqueness)

Let uy and ug be viscosity subsolution and supersolution to (1)
respectively. Then uy < us. Consequently, the value function
v*(t, ) is the unique viscosity solution to the HJB equation (1).
In particular, if the Hamiltonian H(u,p) is defined on a unique
minimizer 8*, then the optimal control process 8* is also unique.
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Summary

1. We introduced the mathematical formulation of the
population risk minimization problem of continuous-time deep
learning in the context of mean-field optimal control.

2. Mean-field Pontrayagin’s maximum principle and mean-field
dynamic programming principle (HJB equation) provide us
new perspectives towards theoretical understanding of deep
learning: uniqueness, generalization estimates in finite-sample
case with explicit rate, etc. More to be developed.

Thank you for your attention!
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