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Uncertainty arises from incomplete knowledge

“...there are known knowns; ... there are known unknowns; ...there are also
unknown unknowns. ...it is the latter category that tends to be the difficult
one.”

D. Rumsfeld
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Physics Informed Learning Machines (PhILMs) to
“Learn” Known and Unknown Unknowns

I Challenges
Effective (macroscale) models have partially-known physics:

• based on conservation laws,
• rely on empirical constitutive relationships (Darcy Law, Fourier

Law, Fick’s Law, Newtonian Stress),
• no universal models for turbulence, non-Newtonian fluids, etc.

Multiscale models are expensive.
ML methods are not accurate for extrapolation and
under-sampled systems, and may lack reproducibility.
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Physics Informed Learning Machines (PhILMs) to
“Learn” Known and Unknown Unknowns

I Challenges
Effective (macroscale) models have partially-known physics:

• based on conservation laws,
• rely on empirical constitutive relationships (Darcy Law, Fourier

Law, Fick’s Law, Newtonian Stress),
• no universal models for turbulence, non-Newtonian fluids, etc.

Multiscale models are expensive.
ML methods are not accurate for extrapolation and
under-sampled systems, and may lack reproducibility.

“...flawed machine learning is producing a crisis in science.” G. Allen, Rice
University
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Physics Informed Learning Machines (PhILMs) to
“Learn” Known and Unknown Unknowns

I Challenges
Effective (macroscale) models have partially-known physics:

• based on conservation laws,
• rely on empirical constitutive relationships (Darcy Law, Fourier

Law, Fick’s Law, Newtonian Stress),
• no universal models for turbulence, non-Newtonian fluids, etc.

Multiscale models are expensive.
ML methods are not accurate for extrapolation and
under-sampled systems, and may lack reproducibility.

I PhILMS:∗
Use conservation laws in addition to data to train DNN.
Fill gaps in data.
Learn parameters and unknown physics.

∗“Collaboratory on Mathematics and Physics-Informed Learning Machines for Multiscale and Multiphysics Problems”, ASCR, the

Applied Mathematics Program
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Conservation Law PDE Models with
Partially-Known Physics and Partial Measurements

I Conservation Law: ∂u/∂t = −∇ · J.
I J is an unknown flux of u.
I Dirichlet boundary condition: u(x, t) = uD(x, t).
I Neumann boundary conditions: J(x, t) · n = q(x, t) .
I Initial condition: u(x, t = 0) = u0(x).
I Partial measurements of u, uD, q, u0.
I No direct measurements of J.
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Feed Forward Neural Networks

f(x) ≈ gL(fL−1(...(g1(x))))

I L - number of layers
I gl(x) = g(Wlx+ bl)

I g(x) - known activation functions of x, Wl and bl
I Wl and bl unknown parameters
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Physics Informed DNN for PDE Models with
Partially Known Physics: ∂u/∂t = −∇ · J

DNNs for u and J: û(x, t; θ) = NN u(x, t; θ) and
Ĵ(x, t, û; θ, γ) = NN u(x, t; θ, γ).
Auxiliary DNNs to enforce conservation laws and boundary conditions:
g1(x, t, θ, γ) = ∂û(x, t; θ)/∂t+∇ · Ĵ(x, t, û; θ, γ) and
g2(x, t, θ, γ) = Ĵ(x, t, û; θ, γ) · n(x)
Jointly train all NNs:

(θ, γ) = min
θ,γ
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Tartakovsky et al, arXiv:1808.03398, 2018; Rassi et al, arXiv:1711.10566, 2017; arXiv:1711.10561, 2017.
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Learning Relative Conductivity k(u) in Unsaturated
Flow Equations

∇ · [k(u)∇u(x)] = 0, û = NN u(x; θ) and k̂ = NNK(û(x; θ); γ)

g1(x; θ, γ) = ∇ ·
[
k̂ (û(x; θ); γ)∇û(x; θ)

]
= NN g1(x; θ, γ)

Left: Reference u field and measurements. Center: Error in the estimated
u. Right: Estimated and reference k(u).

Tartakovsky et al, arXiv:1808.03398, 2018
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Effect of the measurement noise
1% random noise

Left: Error in the estimated u. Right: Estimated and reference k(u).
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Bioreactor model with unknown reaction rate µ(S)
dX
dt = µ(S)X(t)− F (t)X(t)

V (t) , dS
dt = −kµ(S)X(t)− F (t)[Sin−S(t)]

V (t) ,
dV
dt = F (t). Only S, X and V measurements are available.
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Parameter (k(x)) Estimation in Saturated Flow
Equations

∇ · [k(x)∇u(x)] = 0, û = NN u(x; θ) and k̂ = NN k(x; γ)

g1(x; θ, γ) = ∇ ·
[
k̂ (x; γ)∇û(x; θ)

]
= NN g1(x; θ, γ)

Left: Reference k field. Center: Reference u field. Right: Error in the
estimated k(u) versus number of collocation points.

Tartakovsky et al, arXiv:1808.03398, 2018
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Comparison with the Maximum a Posteriori (MAP)
Estimation Method
∇ · [k(x)∇u(x)] = 0

Left: PhI-DNN estimate. Center: MAP estimate. Right: MAP versus
PhI-DNN.
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Thank you
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