Physics Informed Neural Networks for **Parameter and Model Estimation**

Alexandre Tartakovsky, Carlos Ortiz Marrero, Rama Tipireddy, Guzel Tartakovsky, and David Barajas-Solano (PNNL); Paris Perdikaris (UPenn)

Uncertainty arises from incomplete knowledge

"...there are known knowns; ... there are known unknowns; ...there are also unknown unknowns. ...it is the latter category that tends to be the difficult one."

D. Rumsfeld

Physics Informed Learning Machines (PhILMs) to "Learn" Known and Unknown Unknowns

- Challenges
 - Effective (macroscale) models have partially-known physics:
 - based on conservation laws,
 - rely on empirical constitutive relationships (Darcy Law, Fourier Law, Fick's Law, Newtonian Stress),
 - no universal models for turbulence, non-Newtonian fluids, etc.
 - Multiscale models are expensive.
 - ML methods are not accurate for extrapolation and under-sampled systems, and may lack reproducibility.

Physics Informed Learning Machines (PhILMs) to "Learn" Known and Unknown Unknowns

- Challenges
 - Effective (macroscale) models have partially-known physics:
 - based on conservation laws,
 - rely on empirical constitutive relationships (Darcy Law, Fourier Law, Fick's Law, Newtonian Stress),
 - no universal models for turbulence, non-Newtonian fluids, etc.
 - Multiscale models are expensive.
 - ML methods are not accurate for extrapolation and under-sampled systems, and may lack reproducibility.

"...flawed machine learning is producing a crisis in science." G. Allen, Rice University

Physics Informed Learning Machines (PhILMs) to "Learn" Known and Unknown Unknowns

- Challenges
 - Effective (macroscale) models have partially-known physics:
 - based on conservation laws,
 - rely on empirical constitutive relationships (Darcy Law, Fourier Law, Fick's Law, Newtonian Stress),
 - no universal models for turbulence, non-Newtonian fluids, etc.
 - Multiscale models are expensive.
 - ML methods are not accurate for extrapolation and under-sampled systems, and may lack reproducibility.
- PhILMS:*
 - Use conservation laws in addition to data to train DNN.
 - Fill gaps in data.
 - Learn parameters and unknown physics.

* "Collaboratory on Mathematics and Physics-Informed Learning Machines for Multiscale and Multiphysics Problems", ASCR, the

Applied Mathematics Program

Conservation Law PDE Models with Partially-Known Physics and Partial Measurements

- Conservation Law: $\partial u / \partial t = -\nabla \cdot \mathbf{J}$.
- **J** is an unknown flux of u.
- Dirichlet boundary condition: $u(x,t) = u_D(x,t)$.
- ▶ Neumann boundary conditions: $\mathbf{J}(x,t) \cdot \mathbf{n} = q(x,t)$.
- Initial condition: $u(x, t = 0) = u_0(x)$.
- Partial measurements of u, u_D, q, u_0 .
- ► No direct measurements of J.

Feed Forward Neural Networks

$$f(x)\approx g^L(f^{L-1}(...(g^1(x))))$$

- ► L number of layers
- $\blacktriangleright g^l(x) = g(W_l x + b_l)$
- ▶ g(x) known *activation* functions of x, W_l and b_l
- W_l and b_l unknown parameters

Physics Informed DNN for PDE Models with Partially Known Physics: $\partial u / \partial t = -\nabla \cdot \mathbf{J}$

DNNs for u and $\mathbf{J}: \hat{u}(x,t;\theta) = \mathcal{NN}_u(x,t;\theta)$ and $\hat{\mathbf{J}}(x,t,\hat{u};\theta,\gamma) = \mathcal{NN}_u(x,t;\theta,\gamma)$. Auxiliary DNNs to enforce conservation laws and boundary conditions: $g_1(x,t,\theta,\gamma) = \partial \hat{u}(x,t;\theta)/\partial t + \nabla \cdot \hat{\mathbf{J}}(x,t,\hat{u};\theta,\gamma)$ and $g_2(x,t,\theta,\gamma) = \hat{\mathbf{J}}(x,t,\hat{u};\theta,\gamma) \cdot \mathbf{n}(x)$ Jointly train all NNs:

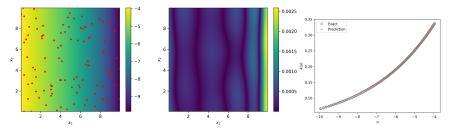
$$\begin{aligned} (\theta, \gamma) &= \min_{\theta, \gamma} \quad \left[\quad \frac{1}{N_c} \frac{1}{N_{tc}} \sum_{i=1}^{N_c} \sum_{j=1}^{N_{tc}} g_1(x_i, t_j, \theta, \gamma)^2 \right. \\ &+ \quad \frac{1}{N_q} \frac{1}{N_{tq}} \sum_{i=1}^{N_q} \sum_{i=1}^{N_{tq}} (g_2(x_i, t_j; \theta, \gamma) - q^*(x_i, t_j))^2 \\ &+ \quad \frac{1}{N_u} \frac{1}{N_{tu}} \sum_{i=1}^{N_u} \sum_{i=1}^{N_{tu}} (\hat{u}(x_i, t_j; \theta) - u^*(x_i, t_j))^2 \right] \end{aligned}$$

Tartakovsky et al, arXiv:1808.03398, 2018; Rassi et al, arXiv:1711.10566, 2017; arXiv:1711.10561, 2017.

Learning Relative Conductivity k(u) in Unsaturated Flow Equations

$$\nabla \cdot [k(u)\nabla u(x)] = 0, \qquad \hat{u} = \mathcal{NN}_u(\mathbf{x}; \theta) \text{ and } \hat{k} = \mathcal{NN}_K(\hat{u}(\mathbf{x}; \theta); \gamma)$$

$$g_1(\mathbf{x};\theta,\gamma) = \nabla \cdot \left[\hat{k} \left(\hat{u}(\mathbf{x};\theta);\gamma \right) \nabla \hat{u}(\mathbf{x};\theta) \right] = \mathcal{N}\mathcal{N}_{g_1}(\mathbf{x};\theta,\gamma)$$

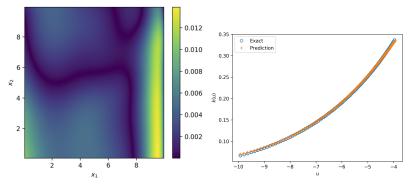


Left: Reference u field and measurements. Center: Error in the estimated u. Right: Estimated and reference k(u).

Tartakovsky et al, arXiv:1808.03398, 2018

Effect of the measurement noise

1% random noise

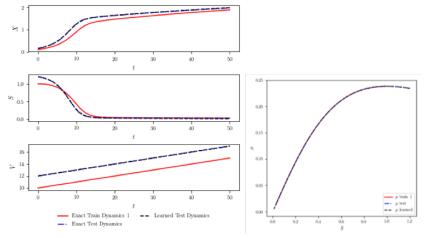


Left: Error in the estimated u. Right: Estimated and reference k(u).

Bioreactor model with unknown reaction rate $\mu(S)$

$$\frac{dX}{dt} = \mu(S)X(t) - \frac{F(t)X(t)}{V(t)}, \frac{dS}{dt} = -k\mu(S)X(t) - \frac{F(t)[S_{in} - S(t)]}{V(t)},$$

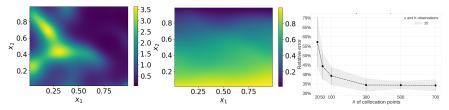
$$\frac{dV}{dt} = F(t). \text{ Only } S, X \text{ and } V \text{ measurements are available.}$$



Parameter (k(x)) **Estimation in Saturated Flow Equations**

$$\nabla \cdot [k(x)\nabla u(x)] = 0, \qquad \hat{u} = \mathcal{N}\mathcal{N}_u(\mathbf{x}; \theta) \text{ and } \hat{k} = \mathcal{N}\mathcal{N}_k(\mathbf{x}; \gamma)$$

$$g_1(\mathbf{x};\theta,\gamma) = \nabla \cdot \left[\hat{k}\left(\mathbf{x};\gamma\right) \nabla \hat{u}(\mathbf{x};\theta) \right] = \mathcal{N}\mathcal{N}_{g_1}(\mathbf{x};\theta,\gamma)$$

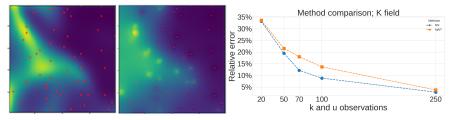


Left: Reference k field. Center: Reference u field. Right: Error in the estimated k(u) versus number of collocation points.

Tartakovsky et al, arXiv:1808.03398, 2018

Comparison with the Maximum a Posteriori (MAP) Estimation Method

 $\nabla \cdot [k(x)\nabla u(x)] = 0$



Left: PhI-DNN estimate. Center: MAP estimate. Right: MAP versus PhI-DNN.

