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Introduction

e Multiphysics applications have specific coupling properties:

e Coupled in the bulk (magnetohydrodynamics, cosmology)
e Coupled across interfaces (climate, tokamaks)

e Multiphysics simulation challenges include:
e Multirate processes, but too close to analytically reformulate.

e Optimal solvers may exist for some pieces, but not for the whole.
e Mixing of stiff/nonstiff processes, challenging standard solvers.

e Many legacy codes utilize lowest-order time step splittings, may
suffer from:
e Low accuracy typically O(h)-accurate;
symmetrization/extrapolation may improve this but at significant
cost [Ropp, Shadid & Ober 2005].
e Poor/unknown stability even when each part utilizes a stable step

size, the combined problem may admit unstable modes [Estep et al.,
2007].
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Need for Flexible High-Order Multirate Integrators

Multirate methods evolve distinct problem components with their own
rate-specific time steps.
e Historical approaches:
e Simple (h)-accurate subcycling approaches
e Interpolation to handle fast/slow coupling (typically (h?) ,
sometimes (h®) ) [Kveerng & Rentrop, 1999; . . . ].

e Extrapolation methods to bootstrap accuracy for low order methods
[Engstler & Lubich, 1997; Constantinescu & Sandu, 2013; . . . ].

e Next-generation methods will require a variety of criteria:

e High-order accuracy stability, both within and between components

e Flexible rate structure within integration, or even to dynamically
identify fast vs slow partitioning of components

e Robust temporal error estimation adaptivity of step size(s)

e Enable problem-specific options, e.g. SSP or symplectic for specific
components
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GARK framework for 2-rate problem

* Comsidor: @ Generali Gt = F(Ly). y(t) = 3o
j:{s’f} 2{5’5} e F(t,y) with fast portion and a slow portion
BT T BT e slow time-step size h, fast time-step size h/m

e time-scale separation m
e Additive:

y(t)=F(ty), Fy=FfEGy)+ LGy, t=2t, ylt)=u
e Stage and Solution Updates:
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GARK h* Order Conditions

For o, v, € {f, s}, and assuming cl?} = Afo/} 1} = Alostis)

bloITlel 1 plodreled = % [, 7]
o [eg 2 1 o o,V v 1
plor (c{ }) =3 plottalovd v = < [n?]
bl (o)’ 2 L bl oot Alowtotvr _ 1 1]
4 8
(o}t {o,u}( {u})2 _ 1 (o} pA{om} A lnrt vy _ 1
b A c 5 b A A c TR

Here, exponentiation and x denote component-wise operators.

We'll refer to these as “fast” conditions when ¢ = f (and “slow” when
o =s).

As expected, the number of conditions increases dramatically with
order: 2 for h, 4 for h? 10 for h3, and 28 for h* (note: h® has 86).
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MIS methods

o GARK: flexibile theory for solving order conditions

e Construct from base inner and outer methods Tp = {AO O, O},
wherec <cz+1,z:1,.. O_1and T = {AI bl I} where
cl §cl+1, i=1,...,s.

e MIS method formulation solves sub-problem [1]

e RFSMR concept focuses on defining the residual for splitting [4]

— i—1 s {s}
'T'*Z] 1(aioj*aio—1j)f{}(k' )

I .
® aké{%_ ) = O 10 T+f{f} (k{fl}) T € [ 11, 1+1y1],Z:2,...,SO+1
e Final step solutlon accumulated similarly to stage solutions

e If both Tp and 77 are at least h3, and T© satisfies

SO
Z (c? - cio,l) (ei+ei1)T A% + (1 - csoo) (; +elo A° O) = %, (1)
i=2

then the MIS method is h®.
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Relaxed Multirate Infinitesimal Step (RMIS) Methods
compared
e New method: RMIS

e Uses same sub-problems as MIS
e =X (0] - a2,) £ (k)

(7.3} . _
« A5 = oo et f (KUY Telmy ] i =2, 5041
K i—1

e Preserves linear invariants
e Final step solution accumulated by using only fast stage values at
the stage times the slow function is evaluate
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Relaxed Multirate Infinitesimal Step (RMIS) Methods
compared
e New method: RMIS

e Uses same sub-problems as MIS

[} r. frd Z;ili (ag — aiCll ) f{S} (k{S})

° Bk({ai ) = O lo T +f{f} (k{f 7'}) T E [Ti,laTi+l,1] ,Z‘ = 2, ey SO+1

e Preserves hnear 1nvar1ants
e Final step solution accumulated by using only fast stage values at
the stage times the slow function is evaluate

e Comparatively, choose:

biflT = [(QbT (9 — Q)BT oo (1— Q) bIT]
béf;ig = [bl e-lr b2 el ) Oe1:| c Rsosl _ RSf,

where e] [1 0 - O] c 7
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Simplification of RMIS Order Conditions

Lemma (Sexton & Reynolds, 2018)

Choosing b/} = b%\];[IS’ and assuming Tt has explicit first stage, then:
bl (C{f}>q — bl (C{s})q, g=01,...,

pITAUSY = plstraAls S}
blITAl st = plsttAlss}

(b{f} % C{f}>T ALY — (b{s} % c{s}>T AlsSt

(b{f} y C{f})T Alfst — (b{s} y C{s}>T Adss)

Hence, all of the fast fourth order conditions are equivalent to their
slow counterparts, reducing the 28 total conditions to just 14.

We anticipate a similar result for the fifth order conditions (86 — 43),
but have yet to perform the analysis.
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RMIS Method Order
Theorem (Sexton & Reynolds, 2018)

Assume that Ty is at least third order. Assume that To is explicit, at
least fourth order, and satisfies

1
vOTAO L = 13’ (2)
where
0, i=1,
SO .
v = QP (7 — e ) + (e —e?4) 3507, 1<i<s?,
bo ( —c%_ 1), 1=s9,

then the coefficients coefficients ALY Alfsh Als: S} Alsst gnd bist
satisfy all of the “slow” fourth-order conditions.

Condition (2) is analagous to (1), that guarantees the MIS method is
h3.
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RMIS & MIS Order Summary

Combining these two results with the existing MIS method theory, we
have:

MIS: if (a) Ty is h3, (b) Tp is explicit and h3, and (c) Tp satisfies (1),
then the MIS method is h3.

XMIS: if (a) Ty is h3 and has explicit first stage, (b) Tp is explicit and h?,
and (c) To satisfies (2), then the RMIS method is h*.

Finally, since MIS and RMIS only differ in their selection of b{/}, then
if all of the above assumptions are satisfied, we may use MIS as an h?
embedding for the h* RMIS method.
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Choosing Base Methods

e Represent 4-stage 4th order RK method in terms of stage times ¢

and cg
e Solve RFSMR and RMIS order condition on the outer/slow base
method
0 0 0 O O 1 ‘ 73rdr‘nrder MIsS
Y I
3/8 — Rule : % -1 1 00 '
111 -1 1 0
‘ 1 33 1
8 8 8 8
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1 1
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Numerical order and efficiency results

o Test Problems e Methods

RMIS w/ 4-stage Base (4th)

RMIS w/ 3-stage Knoth-Wolke (3rd)
RFSMR w/ 4-stage Base (3rd)
RFSMR w/ 3-stage Knoth-Wolke (3rd)

e Inverter-chain:
weakly coupled,
literature [3]

e Kuhn stability:
strongly coupled,
linear [2] I

e Brusselator:
chemical reaction 0l
network,
nonlinear [?]
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Inverter-chain test results
Inverter chain efficiency

Inverter chain convergence :
T
—=—0pt-3/8
—s—0pt-3/8 —&—RMIS-3/8
102 AMIS90 o[ —<— RMIS-KW3
—<—RMIS-KW3 2 4
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5 10°® 4th order Il
® @ 10°
= \\\rﬂ z
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10 \ 108 e\ Lo
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h Total Function Calls

e Fixed step h
o Efficiency horizontal shift depends on number of stages in base
method

o v
e RMS error \/>"" % where ¥ from high order implicit solve
with tiny h
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Kuhn stability test results

Kuhn linear convergence Kuhn linear ‘
10948 4«‘970;)(—3/8 e 10° e Optas N
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h
e Fixed step h
e Numerical order and efficiency results are cleaner for this 2 x 2
linear problem

2
e RMS error \/ S W where ytrue is exact solution
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Brusselator test results

Br convergence

= —=—Opt-3/8
Opt-3/8

—4—RMIS-3/8 \ —&—RMIS-3/8
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e With fixed step h, our new methods are more efficient for stronger
error requirements
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&

& 2
e RMS error y/> 1, % where ¥ from high order implicit solve
with tiny A
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Software
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e An updated implementation can be found at
https://drreynolds@bitbucket.org/drreynolds/rmis.git

e Testing the RMIS-3/8 method with this new implementation on
the Brusselator problem shows close to round-off absolute error

differences

e The same convergence properties are observed

J.M. Sexton and D.R. Reynolds (LBL


http://www.smu.edu
https://fastmath-scidac.org/
https://lbl.gov/
 https://drreynolds@bitbucket.org/drreynolds/rmis.git
 https://drreynolds@bitbucket.org/drreynolds/rmis.git
https://www.siam.org/Conferences/CM/Main/cse19

Conclusions

e The Generalized-structure Additively-partitioned Runge Kutta
can be used in creating new methods based on Multirate
Infinitesimal Step Methods with desirable properties

e Using one of our coupling approaches with a base method that
also satisfies the slow coupling conditions is a fourth order overall
method.

e These multiple coupling approaches allows for approximations of
local error by using them together.
e Future areas of interest include:
e Time-step adaptivity for the slow-time scale based on embeddings
e Time-step adaptivity for the time-scale ratio based on embeddings
[ ]
[ ]

Investigate extensions to allow implicitness at the slow time scale
Extensions to fifth order (or higher)
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GARK Fifth Order Conditions

The h® conditions are, for o, v, u, A € f,s:

4
c = conditions
b{U}T( {U}) [2 ditions),
(b{a} " (c{a})2>TA{a,u}c{u} _

2
(b{"} % c{a})TA{a,u} (c{”}) —
(b{"} % c{a})TA{w}A{%M}C{u} —
plott (A{”’”}c{”})Q _
biotT A o} (c{”})S _
blottalow} (c{”} % (A{u,u}c{u})) _

b1 A Lo} A (vn} (C{u})2 _

[4 conditions],

[4 conditions],
[8 conditions],
[4 conditions],
[4 conditions],
[8 conditions],

[8 conditions],

=8l B~ = 8|~ 5= 5| -

blodTAlovy At At Al oI — [16 conditions].

—_
[\
o
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Subcycling as a One-Step Method

Consider taking 3 substeps of size % with the midpoint method,

0[]0 O
c| A

50 -

0 1

Basic steps

Z1 = Yn
22 =Yn + %f(zl)
Y* =yn + 2 f(22)

23 =y"
2 =y" + % f(23)
Y=yt 4 B f(z)

25 — y**
26 =y + L f(z5)

b

Single step

21 = Yn

(

(
24 = yn + % f(22) + £ f(23)
z5 = yn + 2 f(22) + % f(24)
26 = Yn + 5 f(22) + 4 f(24)

+ 2 f(25)

Yn+1 = Yn + %f(ZZ) + %f(ZzL)
h
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