
LLNL-PRES-768139

This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-
AC52-07NA27344. Lawrence Livermore National Security, LLC

xSDK: Foundations of a Numerical Software
Ecosystem for High-performance CSE
Ulrike Meier Yang

SIAM CSE 2019Feb 26, 2019

2
LLNL-PRES-768139

xSDK Project Members:

▪ Mike Heroux
▪ Tzanio Kolev
▪ Ruipeng Li
▪ Sherry Li
▪ Piotr Luszczek
▪ Lois Curfman McInnes
▪ T. Moore
▪ Sarah Osborn

▪ Slaven Peles
▪ Ben Recht
▪ Bjorn Sjogreen
▪ Barry Smith
▪ Keita Teranishi
▪ Carol Woodward
▪ Jim Willenbring
▪ Ulrike Meier Yang
▪ …

▪ Satish Balay
▪ Cody Balos
▪ Jim Demmel
▪ Veselin Dobrev
▪ Jack Dongarra
▪ Rob Falgout
▪ Aaron Fisher
▪ David Gardner

3
LLNL-PRES-768139

xSDK Collaborators

PETSc/TAO

SuperLU

PHIST

TASMANIAN

STRUMPACK Omega_h
DTK

– AMReX: Ann Almgren, Michele Rosso (LBNL)

– DTK: Stuart Slattery, Bruno Turcksin (ORNL)

– deal.II: Wolfgang Bangerth (Colorado State University)

– hypre: Ulrike Meier Yang, Sarah Osborn, Rob Falgout (LLNL)

– MAGMA and PLASMA: Piotr Luszczek (UTK)

– MFEM: Aaron Fischer, Tzanio Kolev (LLNL)

– Omega_h: Dan Ibanez (SNL)

– PETSc/TAO: Satish Balay, Alp Denner, Barry Smith (ANL)

– PUMI: Cameron Smith (RPI)

– SUNDIALS: Cody Balos, David Gardner, Carol Woodward (LLNL)

– SuperLU and STRUMPACK: Sherry Li and Pieter Ghysels (LBNL)

– TASMANIAN: Miroslav Stoyanov, Damien Lebrun Grandie (ORNL)

– Trilinos: Keita Teranishi, Jim Willenbring, Sam Knight (SNL)

– PHIST: Jonas Thies (DLR, German Aerospace Center)

– SLEPc: José Roman (Universitat Politècnica de València)

– Alquimia: Sergi Mollins (LBNL)

– PFLOTRAN: Glenn Hammond (SNL)

and many more …

4
LLNL-PRES-768139

Outline

▪ Motivation
— Math libraries and scientific software ecosystems

— Building community and sustainability

— xSDK history and goals to fulfill ECP needs

▪ About the xSDK (eXtreme-scale Scientific software Development Kit)
— xSDK community policies

— xSDK release process

— Installing the xSDK

— Using the xSDK in ECP applications

▪ Lessons learned

5
LLNL-PRES-768139

Software libraries facilitate progress in computational science
and engineering

▪ Software library: a high-quality,

encapsulated, documented, tested, and

multiuse software collection that

provides functionality commonly

needed by application developers
— Organized for the purpose of being reused

by independent (sub)programs

— User needs to know only
• Library interface (not internal details)

• When and how to use library functionality

appropriately

• Key advantages of software libraries

– Contain complexity

– Leverage library developer expertise

– Reduce application coding effort

– Encourage sharing of code, ease distribution
of code

• References:
• https://en.wikipedia.org/wiki/Library_(computing)

• What are Interoperable Software Libraries? Introducing
the xSDK

https://en.wikipedia.org/wiki/Library_(computing)
https://ideas-productivity.org/wordpress/wp-content/uploads/2016/12/IDEAS-InteroperabilityWhatAreInteroperableSoftwareLibraries-V0.2.pdf

6
LLNL-PRES-768139

Mutual benefits for users and library developers

User perspective

Focus on primary interests

▪ Reuse algorithms and data structures

developed by experts

▪ Customize and extend to exploit

application-specific knowledge

▪ Cope with complexity and changes over

time

Provider perspective:

Share capabilities

• Broader impact of work

• Improved code quality

• Motivate new research directions

• More efficient, robust, reliable, sustainable software

• Improve developer productivity

• Better science

Software
user

Software
provider

7
LLNL-PRES-768139

Individual software libraries are not enough.

▪ Well-designed libraries provide critical functionality … But alone are

not sufficient to address all aspects of next-generation scientific

simulation and analysis.

▪ Applications need to use software packages in combination on ever

evolving architectures

8
LLNL-PRES-768139

Need software ecosystem perspective

Ecosystem: A group of independent but interrelated elements

comprising a unified whole

Ecosystems are challenging!

“We often think that when we have completed our
study of one we know all about two, because ‘two’ is
‘one and one.’ We forget that we still have to make
a study of ‘and.’ ”

− Sir Arthur Stanley Eddington (1892−1944), British astrophysicist

9
LLNL-PRES-768139

Difficulties in combined use of independently
developed software packages

Challenges:

▪ Obtaining, configuring, and installing multiple independent
software packages is tedious and error prone.
— Need consistency of compiler (+version, options), 3rd-

party packages, etc.

▪ Namespace conflicts

▪ Incompatible versioning

▪ And even more challenges for deeper levels of
interoperability

Levels of package
interoperability:
• Interoperability level 1

• Both packages can be used (side
by side) in an application

• Interoperability level 2

• The libraries can exchange data
(or control data) with each other

• Interoperability level 3

• Each library can call the other
library to perform unique
computations

Ref: What are Interoperable Software Libraries? Introducing the xSDK

https://ideas-productivity.org/wordpress/wp-content/uploads/2016/12/IDEAS-InteroperabilityWhatAreInteroperableSoftwareLibraries-V0.2.pdf

10 xSDK Tutorial @ 3rd Annual ECP Meeting 2019-01-15

Libraries
• Solvers, etc.
• Interoperable.

Frameworks & tools
• Doc generators.
• Test, build framework.

Extreme-scale Scientific Software Development Kit (xSDK)

SW engineering
• Productivity tools.
• Models, processes.

Domain components
• Reacting flow, etc.
• Reusable.

Documentation content
• Source markup.
• Embedded examples.

Testing content
• Unit tests.
• Test fixtures.

Build content
• Rules.
• Parameters.

Library interfaces
• Parameter lists.
• Interface adapters.
• Function calls.

Shared data objects
• Meshes.
• Matrices, vectors.

Native code & data objects
• Single use code.
• Coordinated component use.
• Application specific.

Extreme-scale Science Applications

Domain component interfaces
• Data mediator interactions.
• Hierarchical organization.
• Multiscale/multiphysics coupling.

Extreme-scale

Scientific

Software

Ecosystem

11
LLNL-PRES-768139

Interoperable Design of Extreme-scale
Application Software (IDEAS)

Motivation
Enable increased scientific productivity, realizing the potential of extreme-
scale computing, through a new interdisciplinary and agile approach to the
scientific software ecosystem.

Objectives
Address confluence of trends in hardware and

increasing demands for predictive multiscale,
multiphysics simulations.

Respond to trend of continuous refactoring with
efficient agile software engineering methodologies
and improved software design.

Approach
ASCR/BER partnership ensures delivery of both crosscutting methodologies and metrics

with impact on real application and programs.

Interdisciplinary multi-lab team (ANL, LANL, LBNL, LLNL, ORNL, PNNL, SNL)

ASCR Co-Leads: Mike Heroux (SNL) and Lois Curfman McInnes (ANL)

BER Lead: David Moulton (LANL)

Integration and synergistic advances in three communities deliver scientific
productivity; outreach establishes a new holistic perspective for the broader scientific
community.

Impact on Applications & Programs
Terrestrial ecosystem use cases tie IDEAS to modeling and
simulation goals in two Science Focus Area (SFA) programs and
both Next Generation Ecosystem Experiment (NGEE) programs
in DOE Biologic and Environmental Research (BER).

Software
Productivity for
Extreme-scale

Science
Methodologies

for Software
Productivity

Use Cases:
Terrestrial
Modeling

Extreme-Scale Scientific
Software Development

Kit (xSDK)

www.ideas-productivity.org

11

IDEAS history

ASCR/BER partnership
began in Sept 2014

Program Managers:
• Paul Bayer, David Lesmes

(BER)
• Thomas Ndousse-Fetter

(ASCR)

First-of-a-kind project:
qualitatively new
approach based on
making productivity and
sustainability the explicit
and primary principles
for guiding our decisions
and efforts.

12
LLNL-PRES-768139

xSDK for ECP: Project goals, description, scope

Project Description
▪ Develop community policies and interoperability layers among xSDK component packages
▪ Determine xSDK sustainability strategy for ECP
▪ Work with ECP applications to motivate and test xSDK

Project Scope
▪ Enable the seamless combined use of diverse, independently developed software packages as needed by ECP

applications
— coordinated use of on-node resources
— integrated execution
— coordinated & sustainable documentation, testing, packaging, and deployment

Goals: Create a value-added aggregation of ECP mathematics libraries, to increase the
combined usability, standardization and interoperability of these libraries, as needed to
support large-scale multiphysics and multiscale problems.

13
LLNL-PRES-768139

SW engineering
• Productivity tools.
• Models, processes.

Libraries
• Solvers, etc.
• Interoperable.

Frameworks & tools
• Doc generators.
• Test, build framework.

Extreme-Scale Scientific Software Development Kit (xSDK)

Domain components
• Reacting flow, etc.
• Reusable.

xSDK functionality, April 2016

Tested on key machines at ALCF, NERSC,
OLCF, also Linux, Mac OS X

xSDK History: Version 0.1.0: April 2016

Multiphysics Application C

Application B

April 2016
• 4 math libraries
• 1 domain

component
• PETSc-based xSDK

installer
• 14 mandatory

xSDK community
policies

Notation: A B:

A can use B to provide
functionality on behalf of A

https://xsdk.info

HDF5

BLAS

More
external
software

Application A

Alquimia
hypre

Trilinos

PETSc

SuperLU

More

contributed

librariesMore
domain

components

xSDK

Installer

14
LLNL-PRES-768139

SW engineering
• Productivity tools.
• Models, processes.

Libraries
• Solvers, etc.
• Interoperable.

Frameworks & tools
• Doc generators.
• Test, build framework.

Extreme-Scale Scientific Software Development Kit (xSDK)

Domain components
• Reacting flow, etc.
• Reusable.

xSDK functionality, Feb 2017

Tested on key machines at ALCF, NERSC,
OLCF, also Linux, Mac OS X

xSDK History: Version 0.2.0: February 2017

Multiphysics Application C

Application B

https://xsdk.info

HDF5

BLAS

More
external
software

Application A

Alquimia hypre

Trilinos

PETSc

SuperLU

More

contributed

libraries

PFLOTRAN

More
domain

components

February 2017
• 4 math libraries
• 2 domain

components
• Spack xSDK

installer
• 14 mandatory

xSDK community
policies

Notation: A B:

A can use B to provide
functionality on behalf of A

15
LLNL-PRES-768139

SW engineering
• Productivity tools.
• Models, processes.

Libraries
• Solvers, etc.
• Interoperable.

Frameworks & tools
• Doc generators.
• Test, build framework.

Extreme-Scale Scientific Software Development Kit (xSDK)

Domain components
• Reacting flow, etc.
• Reusable.

xSDK functionality, Dec 2017

Tested on key machines at ALCF, NERSC,
OLCF, also Linux, Mac OS X

Multiphysics Application C

Application B

https://xsdk.info

MAGMA

Alquimia
hypre

Trilinos

PETSc

SuperLU More
contributed

libraries

PFLOTRAN

More
domain

components

MFEM

SUNDIALS

HDF5

BLAS

More
external
software

Application A

December 2017
• 7 math libraries
• 2 domain components
• Spack xSDK installer
• 16 mandatory xSDK

community policies

xSDK History: Version 0.3.0: December 2017

Notation: A B:

A can use B to provide
functionality on behalf of A

16
LLNL-PRES-768139

SW engineering
• Productivity tools.
• Models, processes.

Libraries
• Solvers, etc.
• Interoperable.

Frameworks & tools
• Doc generators.
• Test, build framework.

Extreme-Scale Scientific Software Development Kit (xSDK)

Domain components
• Reacting flow, etc.
• Reusable.

xSDK functionality, Dec 2018

Tested on key machines at ALCF, NERSC,
OLCF, also Linux, Mac OS X

xSDK History: Version 0.4.0: December 2018

Multiphysics Application C

Application B

Impact: Improved code quality,
usability, access, sustainability

Foundation for work on
performance portability, deeper
levels of package interoperability

Each xSDK member package uses or can
be used with one or more xSDK packages,
and the connecting interface is regularly
tested for regressions.

https://xsdk.info

Application A

Alquimia hypre

Trilinos

PETSc

SuperLU
More

libraries

PFLOTRAN

More domain
components

MFEM

SUNDIALS

HDF5

BLAS

More
external
software

STRUMPACK

SLEPc
AMReX

PUMI

Omega_h

DTK Tasmanian

PHIST

deal.II

PLASMA

December 2018
• 17 math libraries
• 2 domain

components
• 16 mandatory xSDK

community policies
• Spack xSDK installer

MAGMA

17
LLNL-PRES-768139

xSDK: https://xsdk.info
Building the foundation of an extreme-scale scientific software ecosystem

xSDK community policies: Help address challenges in interoperability and sustainability of software

developed by diverse groups at different institutions

xSDK compatible package: must satisfy the mandatory xSDK
policies (M1, ..., M16)
Topics include: configuring, installing, testing, MPI usage, portability, contact and version
information, open source licensing, namespacing, and repository access

Also specify recommended policies, which currently are
encouraged but not required (R1, ..., R6)

Topics include: public repository access, error handling, freeing system resources, and library
dependencies

xSDK member package:
(1) Must be an xSDK-compatible package, and
(2) it uses or can be used by another package in the xSDK, and the

connecting interface is regularly tested for regressions.

xSDK policies 0.4.0: Dec 2018

• Facilitate combined use of
independently developed packages

Impact:

• Improved code quality, usability, access,
sustainability

• Foundation for work on deeper levels of
interoperability and performance
portability

We encourage feedback and
contributions!

https://xsdk.info/
https://xsdk.info/

18
LLNL-PRES-768139

xSDK compatible package: Must satisfy mandatory
xSDK policies:
M1. Support xSDK community GNU Autoconf or CMake options.

M2. Provide a comprehensive test suite.

M3. Employ user-provided MPI communicator.

M4. Give best effort at portability to key architectures.

M5. Provide a documented, reliable way to contact the development team.

M6. Respect system resources and settings made by other previously called
packages.

M7. Come with an open source license.

M8. Provide a runtime API to return the current version number of the software.

M9. Use a limited and well-defined symbol, macro, library, and include file name
space.

M10. Provide an accessible repository (not necessarily publicly available).

M11. Have no hardwired print or IO statements.

M12. Allow installing, building, and linking against an outside copy of external
software.

M13. Install headers and libraries under <prefix>/include/ and <prefix>/lib/.

M14. Be buildable using 64 bit pointers. 32 bit is optional.

M15. All xSDK compatibility changes should be sustainable.

M16. The package must support production-quality installation compatible with
the xSDK install tool and xSDK metapackage.

xSDK community policies

Also recommended policies, which
currently are encouraged but not
required:
R1. Have a public repository.
R2. Possible to run test suite under valgrind in order to
test for memory corruption issues.
R3. Adopt and document consistent system for error
conditions/exceptions.
R4. Free all system resources it has acquired as soon as
they are no longer needed.
R5. Provide a mechanism to export ordered list of library
dependencies.
R6. Provide versions of dependencies.

xSDK member package: Must be an xSDK-
compatible package, and it uses or can be
used by another package in the xSDK, and
the connecting interface is regularly tested
for regressions.

We welcome feedback. What policies make
sense for your software?

https://xsdk.info/policies

https://xsdk.info/policies

19
LLNL-PRES-768139

Compatibility with xSDK community policies

To help developers of packages
who are considering compatibility
with xSDK community policies, we
provide:

▪ Template with instructions to
record compatibility progress

▪ Examples of compatibility status
for xSDK packages

— Explain approaches used by other
packages to achieve compatibility with
xSDK policies

▪ Available at

https://github.com/xsdk-project/xsdk-policy-compatibility

https://github.com/xsdk-project/xsdk-policy-compatibility

20
LLNL-PRES-768139

Processes for xSDK release and delivery

• 2-level release process

– xSDK member packages

• Achieve compatibility with xSDK community policies prior to release

– https://github.com/xsdk-project/xsdk-policy-compatibility

• Have a Spack package

• Port to target platforms

• Provide user support

– xSDK

• Ensure and test compatibility of mostly independent package releases

• Obtaining the latest release: https://xsdk.info/releases

• Draft xSDK package release process checklist:
– https://docs.google.com/document/d/16y2bL1RZg8wke0vY8c97ssvhRYNez34Q4QGg4LolEUk/edit?usp=sharing

xSDK delivery process

• Regular releases of
software and
documentation,
primarily through
member package
release processes

• Anytime open access
to production software
from GitHub, BitBucket
and related community
platforms

https://github.com/xsdk-project/xsdk-policy-compatibility
https://xsdk.info/releases
https://docs.google.com/document/d/16y2bL1RZg8wke0vY8c97ssvhRYNez34Q4QGg4LolEUk/edit?usp=sharing

21 xSDK Tutorial @ 3rd Annual ECP Meeting 2019-01-15

https://xsdk.info/downloadDownloading

xSDK

Installing xSDK https://xsdk.info/installing-the-software

https://xsdk.info/download
https://xsdk.info/installing-the-software

22
LLNL-PRES-768139

Application interactions with xSDK

▪ PFLOTRAN and Alquimia
— Multiscale & multiphysics modeling of watershed dynamics

— Provided as part of xSDK

— Spack script for individual application packages

▪ Nalu in ExaWind
— Learned about hypre through Trilinos (xSDK Trilinos)

▪ Laghos in CEED
— MFEM and hypre

— Planning to use SuperLU, SUNDIALS and PUMI

▪ AMPE and Truchas in ExaAM
— SUNDIALS and hypre

— Wrote Spack script for AMPE and Truchas

23
LLNL-PRES-768139

xSDK lessons learned: General observation

▪ Working toward shared understanding of issues and perspectives is

essential and takes time
— Need regular opportunities for exchanging ideas, persistence, patience, informal interaction

— Must establish common vocabulary

▪ Lots of fun, too … xSDK: Life is good ☺

The pursuit is the reward.Face the bumps with a smile.Think outside the box.It takes all kinds.

24
LLNL-PRES-768139

xSDK lessons learned: Users’ perspective

▪ Building the whole xSDK takes time and produces a very large executable.
— Future releases should allow building of a subsection.

▪ Need better documentation for xSDK

▪ Application developers might use their own versions of xSDK libraries.
— Some capabilities might no longer be supported, but necessary for their applications.

— It will be important to provide flexibility through the xSDK to allow users to use their own

versions of some xSDK libraries.

▪ xSDK member libraries should also pursue improved compatibilities where

possible to avoid for users to have building their own versions.
— New version typically provides improvement performance and interoperability (compilers, and

other libraries)

25
LLNL-PRES-768139

xSDK lessons learned: Developers’ perspective

▪ Requires some code modifications to eliminate naming conflicts
— Namespaces

— Unique prefix for function names and preprocessor macros

▪ Maintaining interoperability needs close communication with the developers of

other packages
— Coordination for release scheduling is challenging

▪ Work toward better, faster, more people-efficient workflow for development and

testing is important!
— Continuous and integrated testing

— Multiple compilers

— Multiple parallel runtime setting (OpenMP, CUDA, etc.)

26
LLNL-PRES-768139

Upcoming xSDK releases for ECP

FY19-FY20: Regular releases of xSDK for ECP

Theme throughout ECP timeframe: Expanding ECP math
library capabilities for predictive science: Sustainable
coordination and delivery of math libraries across independent
development efforts, with enhanced capabilities as needed by
ECP applications

• Additional math packages compatible with xSDK community policies

• Deeper multilevel interoperability, including control inversion and
adaptive execution

• Coordination with broader ECP software ecosystem

Disclaimer
This document was prepared as an account of work sponsored by an agency of the United States government. Neither the United
States government nor Lawrence Livermore National Security, LLC, nor any of their employees makes any warranty, expressed or
implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus,
product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific
commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or
imply its endorsement, recommendation, or favoring by the United States government or Lawrence Livermore National Security,
LLC. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States government
or Lawrence Livermore National Security, LLC, and shall not be used for advertising or product endorsement purposes.

