

## An Innovative Method for Integration of Simulation/Data/Learning in the Exascale/Post-Moore Era

Kengo Nakajima Information Technology Center The University of Tokyo RIKEN R-CCS

MS137 Toward Software Ecosystems for CSE SIAM Conference on Computational Science & Engineering (CSE19) February 26, 2019, Spokane, WA, USA



# Innovative Computing Methods in the Exascale/Post-Moore Era

Kengo Nakajima Information Technology Center The University of Tokyo RIKEN R-CCS

MS137 Toward Software Ecosystems for CSE SIAM Conference on Computational Science & Engineering (CSE19) February 26, 2019, Spokane, WA, USA

# Acknowledgements

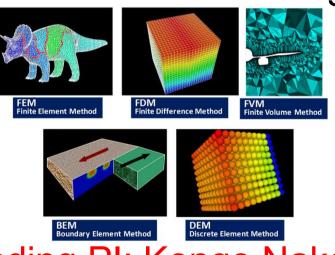
- Sponsors
  - ✓ CREST-JST, Japan
  - ✓ SPPEA-DFG, Germany
- Collaborators, Colleagues
  - ✓ Takeshi Iwashita (Hokkaido U.)
  - ✓ Takahiro Katagiri (Nagoya U.)
  - ✓ Takashi Shimokawabe (ITC/U.Tokyo)
  - ✓ Hisashi Yashiro (RIKEN R-CCS)
  - ✓ Hiroya Matsuba (RIKEN R-CCS)
  - ✓ Hiromichi Nagao (ERI/U.Tokyo)
  - ✓ Takeshi Ogita (TWCU)
  - ✓ Ryuichi Sakamoto (ITC/U.Tokyo)
  - ✓ Toshihiro Hanawa (ITC/U.Tokyo)
  - ✓ Akihiro Ida (ITC/U.Tokyo)
  - ✓ Tetsuya Hoshino (ITC/U.Tokyo)
  - ✓ Masatoshi Kawai (RIKEN R-CCS)
  - ✓ Takashi Furumura (ERI/U.Tokyo)
  - ✓ Hajime Yamamoto (Taisei)

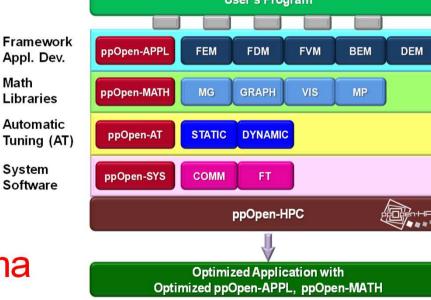






- ✓ Gerhard Wellein (Erlangen)
- ✓ Achim Basermann (DLR)
- ✓ Osni Marques (LBNL)
- ✓ Weichung Wang (NTU, Taiwan)


- Background
  - ppOpen-HPC
  - Society 5.0
- BDEC System in ITC/U.Tokyo
- Computing in the Exascale/Post Moore Era
  - Approximate Computing
  - Verification of Accuracy
  - Data Drive Approach
  - h3-Open-BDEC
- Summary

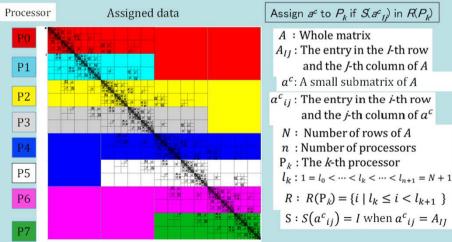


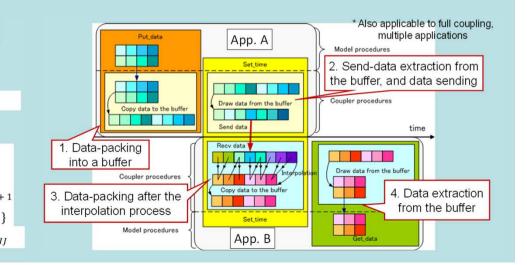

# ppOpen-HPC

**Application Framework** 

- Deutsche **DFG** Forschungsgemeinschaft with Automatic Tuning (AT) • (5+2+α)-year project (FY.2011-2018) (since April
- 2011) supported by JST/CREST and DFG/SPPEXA
- Team with 7 institutes, >50 people (5 PDs) from ulletvarious fields: Co-Design **User's Program**

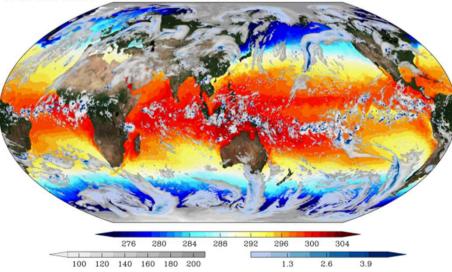


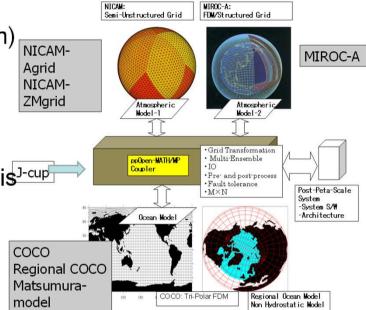


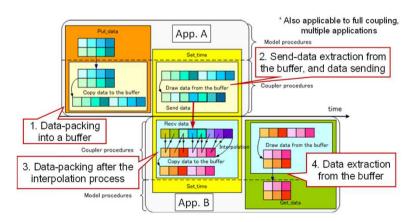


- Leading PI: Kengo Nakajima
- Open Source Software
  - <u>https://github.com/Post-Peta-Crest/ppOpenHPC</u>
  - ✓ English Documents, MIT License

# **Featured Developments**

- ppOpen-AT: AT Language for Loop Optimization
  - Focusing on Optimum Memory Access
- HACApK library for H-matrix comp. in ppOpen-APPL/BEM (OpenMP/MPI Hybrid Version)
  - First Open Source Library by OpenMP/MPI Hybrid
- ppOpen-MATH/MP (Coupler for Multiphysics Simulations, Loose Coupling of FEM & FDM)
- Sparse Linear Solvers

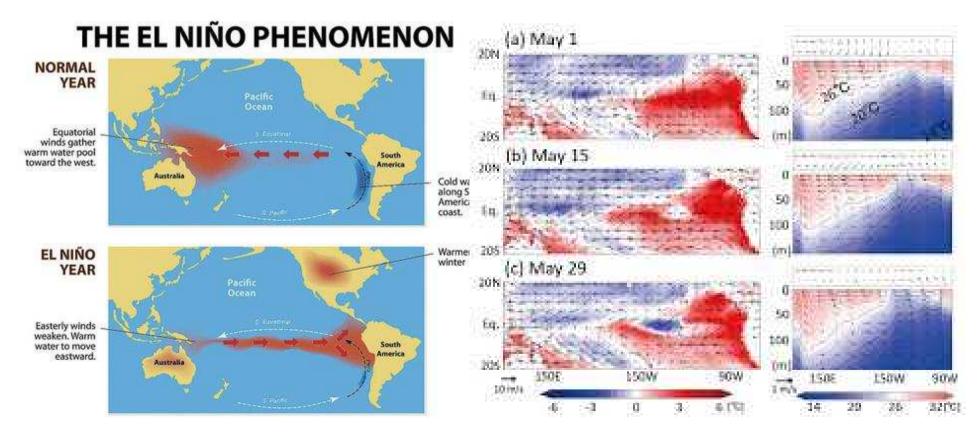

ben-HPC



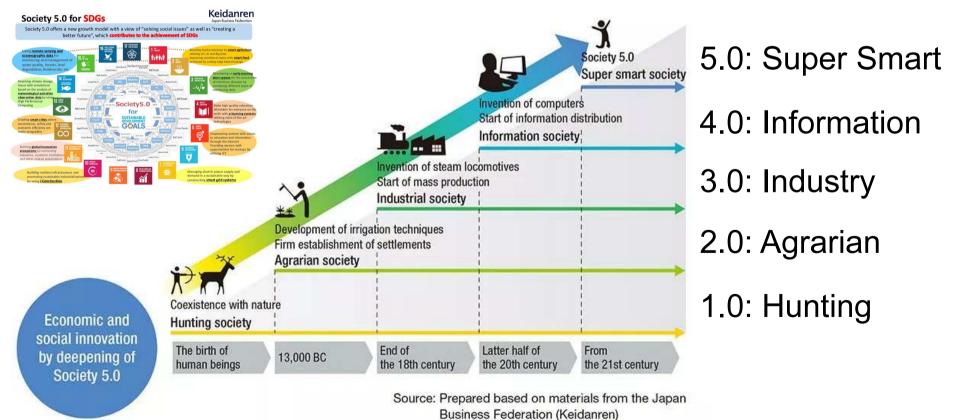

#### Atmosphere-Ocean Coupling on OFP by NICAM/COCO/ppOpen-MATH/MP

- High-resolution global atmosphere-ocean coupled simulation by NICAM and COCO (Ocean Simulation) through ppOpen-MATH/MP on the K computer is achieved.
  - ppOpen-MATH/MP is a coupling software for the models employing various discretization method.
- An O(km)-mesh NICAM-COCO coupled simulation is planned on the Oakforest-PACS system.
  - A big challenge for optimization of the codes on new Intel Xeon Phi processor
  - New insights for understanding of global climate dynamics



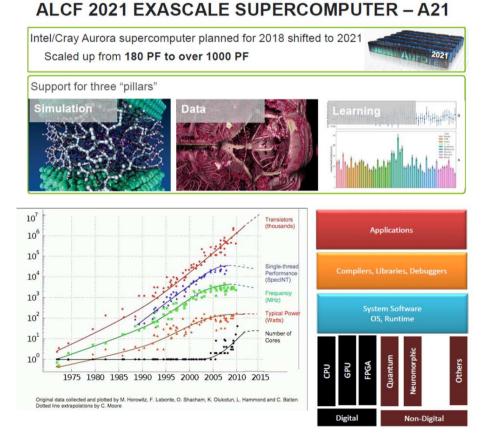






[C/O M. Satoh (AORI/UTokyo)@SC16]

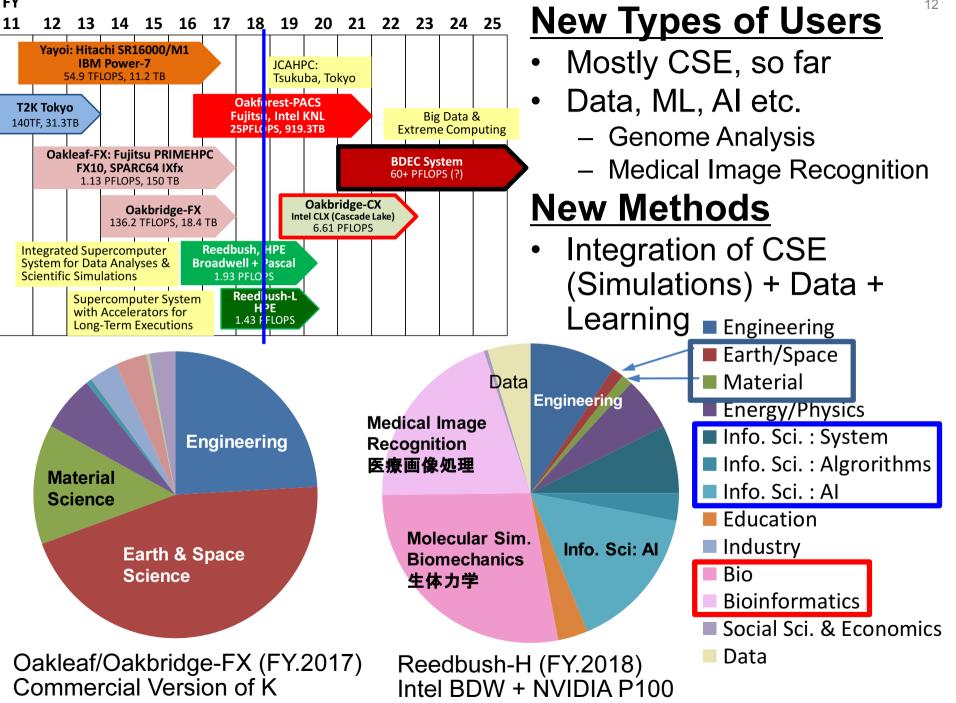
#### El Niño Simulations [U.Tokyo, RIKEN September 2017] Mechanism of the Abrupt Terminate of Super El Niño in 1997/1998 has been revealed by Atmosphere-Ocean Coupling Simulations for the Entire Earth using ppOpen-HPC on the K computer




# Society 5.0 (= Super Smart Society) by the Cabinet Office of Japan

 Paradigm Shift towards Knowledge-Intensive & Super Smart Society by Digital Innovation (IoT, AI, Big Data etc.)

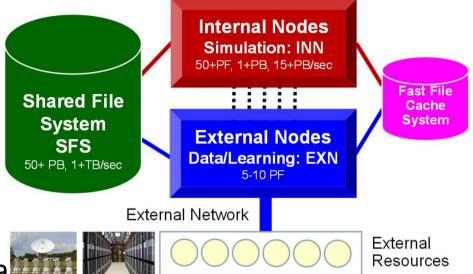



# **CSE towards Society 5.0 ?**

- Integration of CSE, Data and Learning: AI for HPC
  - Simulation + Data + Learning (S+D+L) in A21 of US-DOE
    - The First Exascale System in 2021
  - AI + Big Data + Computing (A+B+C) ?
- Power Consumption
  - Important Issue in the Exascale/Post Moore Era
  - Heterogeneous
     Architecture
  - Various types of HW for
     Various types of Workload
    - CPU, GPU
    - FPGA
    - Quantum/Neuromorphic
    - Custom Chips



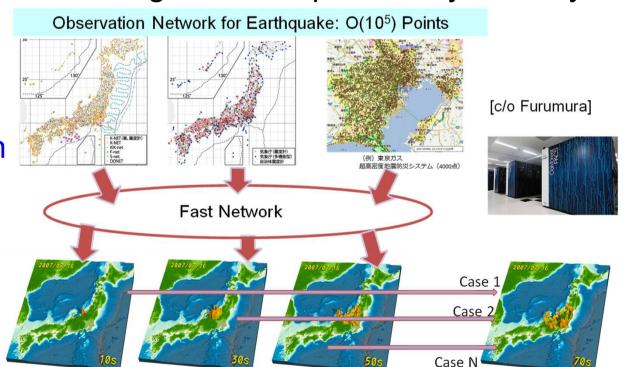
- Background
  - ppOpen-HPC
  - Society 5.0
- BDEC System in ITC/U.Tokyo
- Computing in the Exascale/Post Moore Era
  - Approximate Computing
  - Verification of Accuracy
  - Data Drive Approach
  - h3-Open-BDEC
- Summary


FY

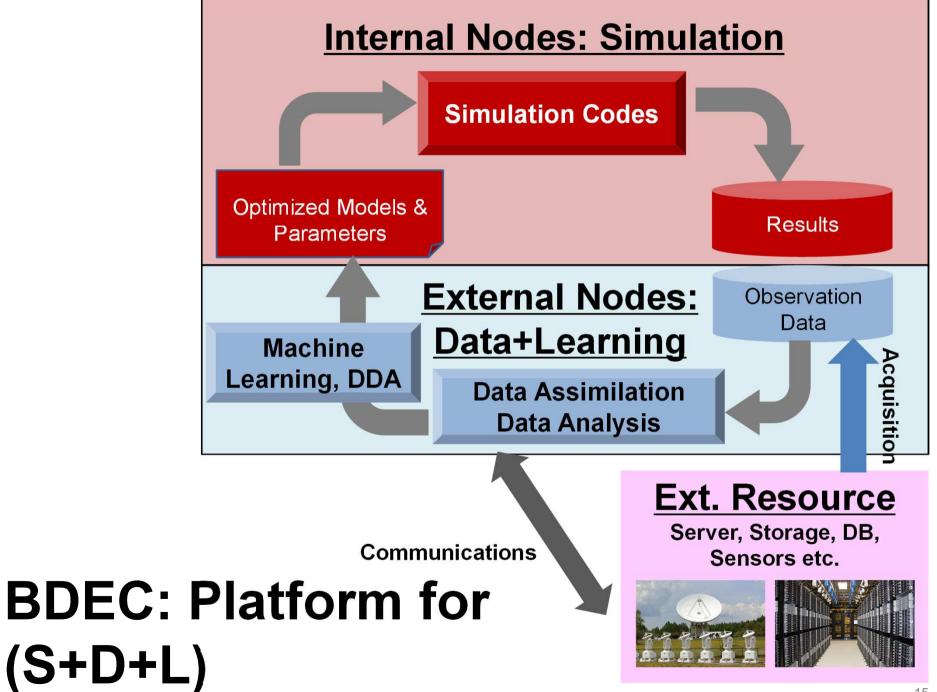


12

# **BDEC System at ITC/U.Tokyo**


- Platform for (S+D+L)
   Big Data & Extreme Comp.
- April 2021
- 60+ PF, 3.5-4.5 MW
  - External Nodes for Data Acquisition/Analysis (EXN)
    - 5-10 PF, 200+ TB
  - Internal Nodes for CSE/Data
     Analysis (INN)
    - 50+ PF, 1+ PB, 15+ PB/sec.
  - Shared File System (50+PB, 1+TB/sec) + File Cache
- Architectures of EXN and INN could be different
  - EXN could include GPU, FPGA, Quantum Device, and more flexible




- Possible Applications
  - Atmosphere-Ocean
     Simulations with Data
     Assimilation
  - Real-Time Disaster Sim. (Flood, Earthquakes, Tsunami)
    - Earthquake Simulations with Data Assimilation
  - Data Driven Approach

# Real-Time Earthquake Simulation with Data Assimilation

- Seismic Observation Data (100Hz/3-dir's/O(10<sup>3</sup>) pts) by JDXnet is available through SINET in Real Time
  - Peta Server in ERI/U.Tokyo: O(10<sup>2</sup>) GB/day⇒EXN of BDEC
  - $O(10^5)$  pts in future including stations operated by industry
- External Nodes
  - Real-Time Data Acquisition
  - Data Assimilation
  - Update of
     Underground
     Model
- Internal Nodes
  - Large-Scale
     Multiple
     Simulations



Real-Time Data/Simulation Assimilation Real-Time Update of Underground Model



- Background
  - ppOpen-HPC
  - Society 5.0
- BDEC System in ITC/U.Tokyo
- Computing in the Exascale/Post Moore Era
  - Approximate Computing
  - Verification of Accuracy
  - Data Drive Approach
  - h3-Open-BDEC
- Summary

## Computing in the Exascale/Post Moore Era

- Power Consumption is the Most Important Issue in the Post Moore Era
  - It is already important now.
  - Memory performance in the Post Moore Era is relatively better than now, but data movement should be reduced from the view point of energy consumption.
- Quantum Computing, FPGA ?: "Partial" Solution
  - Could be a solution in certain applications (e.g. searching, graph, data clustering etc.)
  - Contributions to (S+<u>D+L</u>)/(A+<u>B+C</u>)
- How to save Energy for Sustainability ?
  - (1) Approximate Computing by Low/Adaptive Precision
  - (2) Reduction of Computations: Data Driven Approach

# Approximate Computing with Low/Adaptive/Trans Precision

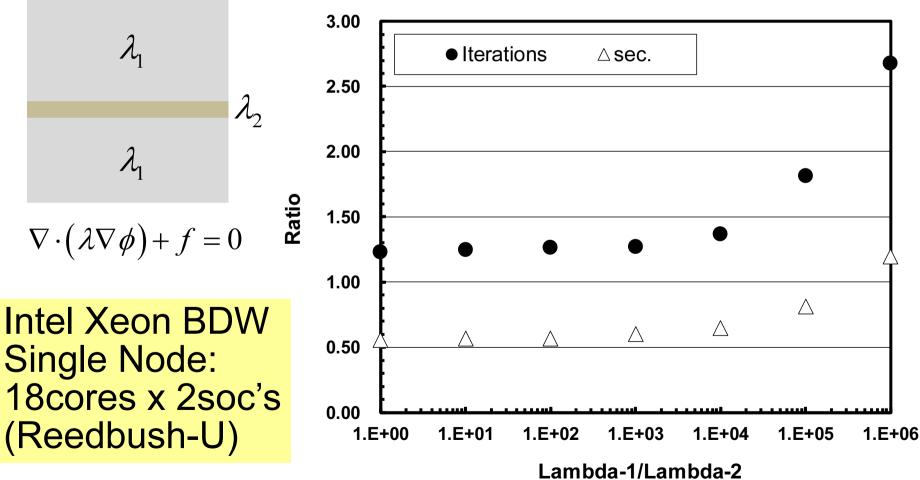
- Lower Precision: Save Time & Energy & Memory
- Approximate Computing: originally for image recognition etc.
  - Approach for Numerical Computations
    - SIAM PP18 Sessions, ICS-HPC 2018 Workshop
  - OPRECOMP: Open transPREcision COMPuting (Horizon 2020)
- Computations with Low Precision
- Mixed Precision Approach (FP16-32-64-128)
- Iterative Refinement
  - such computations may provide results with less accuracy

## Numerical Library with High-**Performance/Adaptive-Precision/High-Reliability Extension of ppOpen-HPC towards the Post Moore Era**

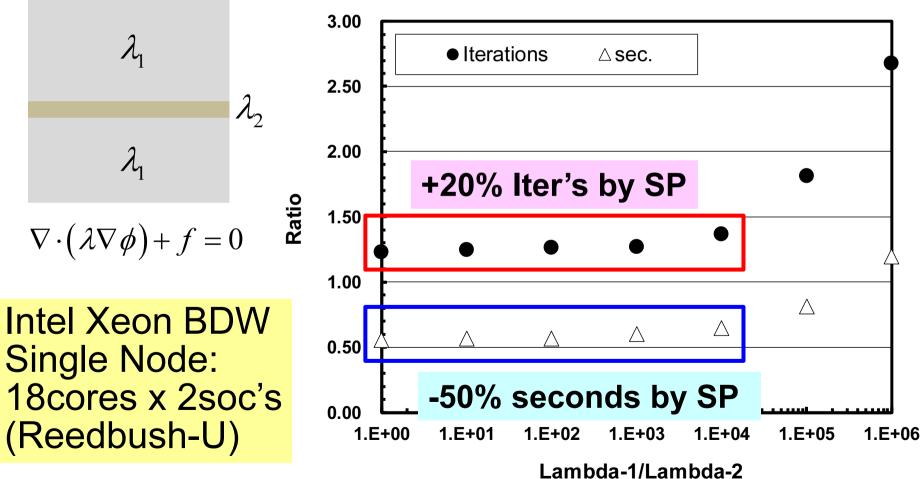


Lower/Adaptive Precision + Accuracy Verification

- Collaboration with "Pure" Applied Mathematicians
- Iterative Refinement
- Automatic Tuning (AT): Selection of the optimum precision, which minimizes computation time and power consumption under certain target accuracy


- implemented to "ppOpen-HPC".

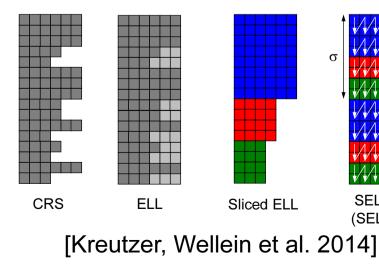
- Preconditioned Iterative Solvers for Practical Problems with III-Conditioned Matrices with Adaptive Precision - FP16-32-64-128
- Staring from April 2018, as a part of JHPCN Project in Japan (Preliminary Works in FY.2018)

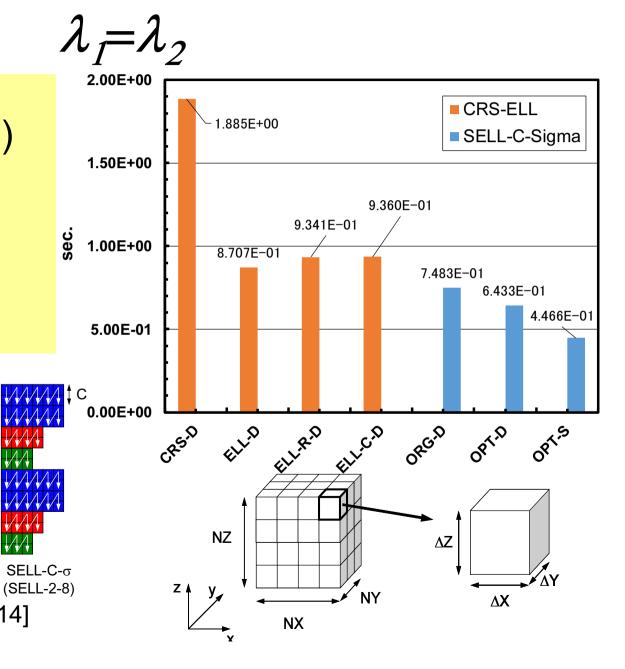

#### **Numerical Library with High-Performance/Adaptive-JHPCI Precision/High-Reliability** 20+ Members from 13 Institutions (Japan, Germany)



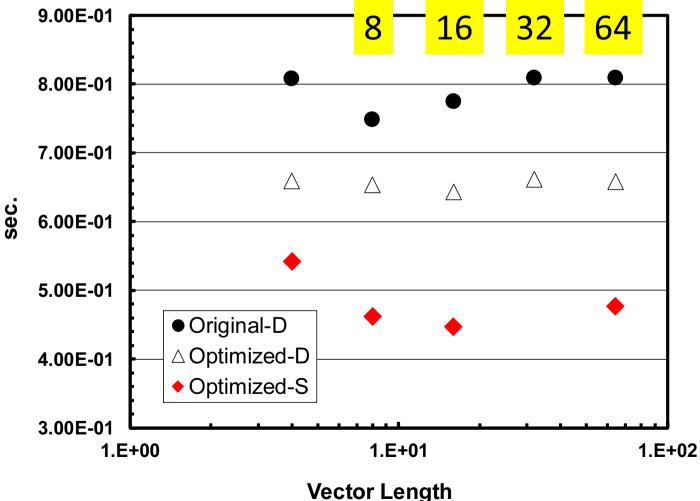
## Results: $\lambda_1/\lambda_2 \sim$ Condition Number Ratio of Iterations & Computation Time Single/Double: Down is Good



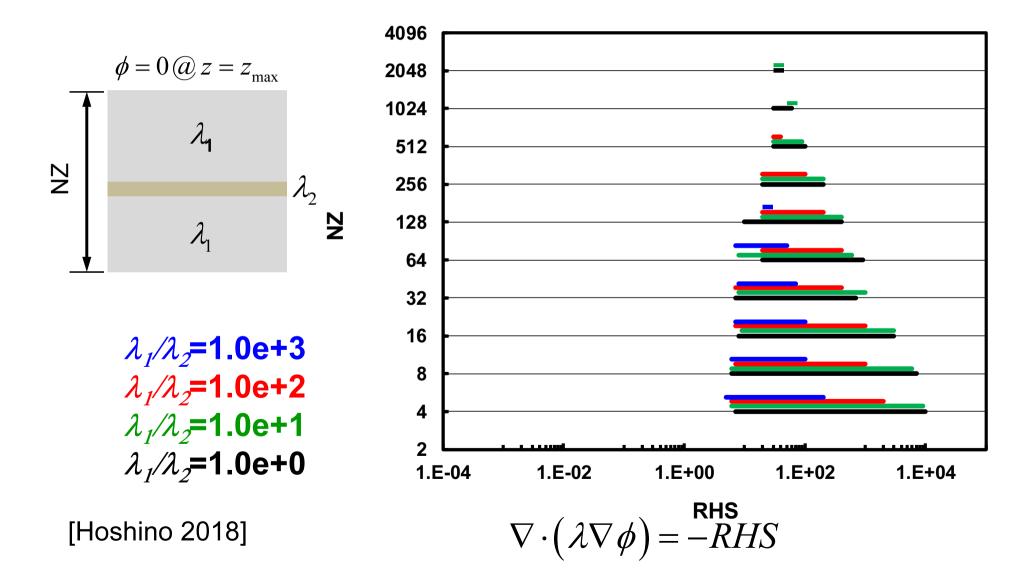

## Results: $\lambda_1/\lambda_2 \sim$ Condition Number Ratio of Iterations & Computation Time Single/Double: Down is Good



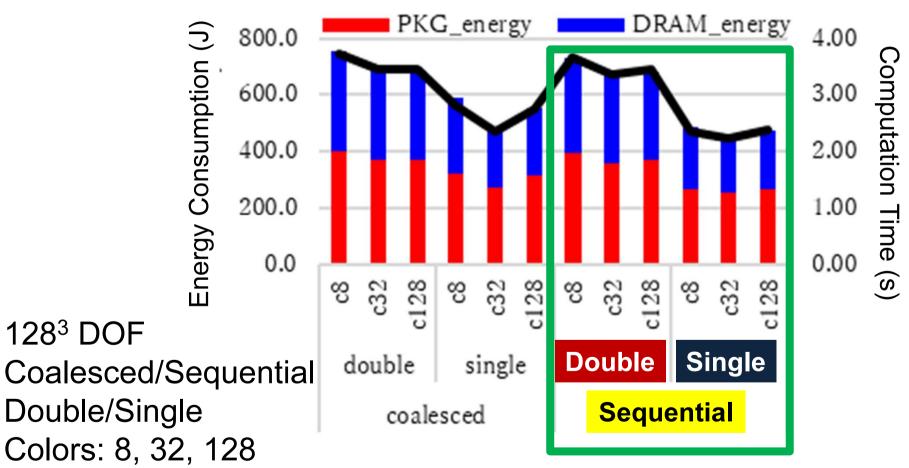

## ICCG: ELL/Sliced ELL/SELL-C-σ


ICCG Solvers on Intel Xeon/Phi (KNL) (Oakforest-PACS) Single Node: 64/68 cores

SELL-C- $\sigma$  for ICCG







## Results on OFP, Poisson-3D-OMP Effect of SIMD Vector Length in SELL-C-σ 10 colors, 128<sup>3</sup>



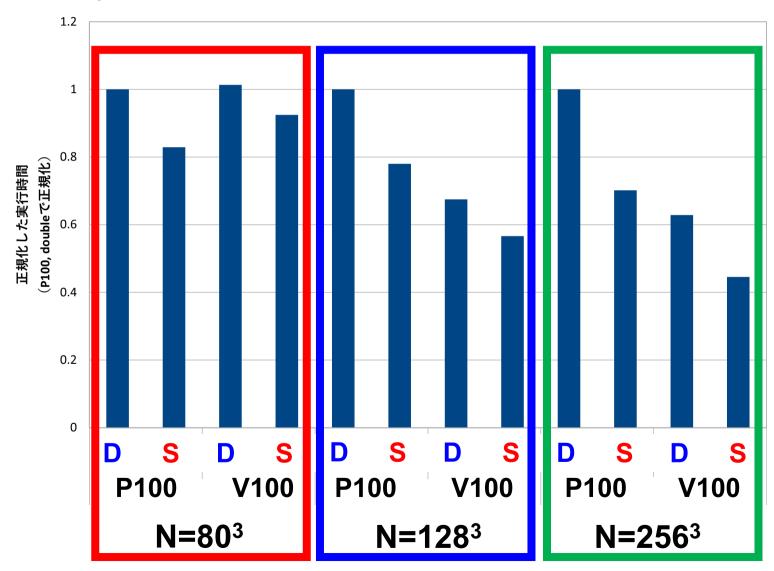
#### FP32 (Single) with FP16 Precond. V100, All Problems converge in FP32/64



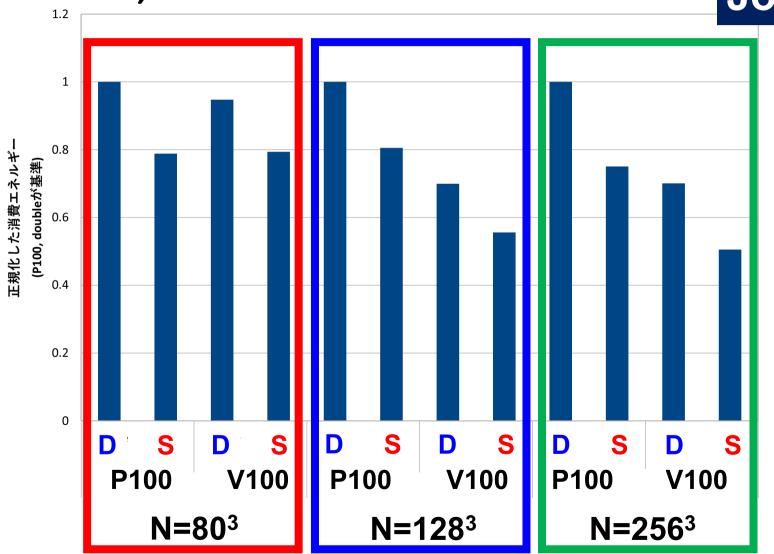
### 3D Poisson Solvers on Reedbush-H $\lambda_1 = \lambda_2$ CPU only: Intel BDW: sec. & Joule



• Watt-value of SP may increase due to larger density of comp.


•

•


•

[Sakamoto et al. 2018]

## Computation Time (Normalized): P100, V100 [Sakamoto et al. 2018]



### [Sakamoto et al. 2018] Energy Consumption (Normalized): P100, V100 Joule



# Approximate Computing with Low/Trans Precision

- Accuracy verification is important
  - Iterative Refinement
- A lot of methods for accuracy verification have been developed for problems with dense matrices
  - But very few examples for sparse matrices & H-matrices
- Generally speaking, processes for accuracy verification is very expensive
  - Sophisticated Method needed
  - Automatic Selection of Optimum Precision by Technology of AT (Auto Tuning)

# Accuracy Verification of Sparse Linear Solver (1/2)

[Ogita, Ushiro, Oishi 2001]

- 1. Solve Ax = b where  $\tilde{x}$  is the numerical solution 2. Calculate upper bound of  $||A^{-1}||$
- 3. Calculate lower/upper bound of  $r = A\tilde{x} b \Rightarrow r_{low}$  and  $r_{upp}$  (in higher preecision)

4. Solve 
$$Az = r_{low}$$
 and/or  $Az = r_{upp}$ 

5. Calculate upper bound of absolute error:  $\varepsilon_{abs} \ge \|\tilde{x} - x^*\|_{\infty}$  $(x^*: \text{exact solution of } Ax = b)$ 

5. Calculate upper bound of relative error:  $\varepsilon_{rel} \ge \frac{\|\tilde{x} - x^*\|_{\infty}}{\|x^*\|}$ 

Special Method for Rather Well-Conditioned Matrices (M-Matrix)

If "monotone" matrix 
$$A$$
 satisfies  $||A\tilde{y} - e||_{\infty} < 1$   
where  $e = (1, 1, ..., 1)^T$  and  $\tilde{y}$ : solution of  $Ay = e$   
 $||A^{-1}||_{\infty} \le \frac{||\tilde{y}||_{\infty}}{1 - ||A\tilde{y} - e||_{\infty}}$ 

#### **Verification Algorithm**

1. Solve a discretized linear system Ax = b.

 $\succ \hat{x}$ : a computed solution

2. Solve a linear system Ay = e where all elements of *e* are 1's.

 $\succ \hat{y}$ : a computed solution

- 3. Verify M-property of A using  $\hat{y}$ .  $(\hat{y} > 0 \Rightarrow A\hat{y} > 0)$
- 4. Compute an error bound using  $\|x - \hat{x}\|_{\infty} \le \frac{\|\hat{y}\|_{\infty} \|b - A\hat{x}\|_{\infty}}{1 - \|e - A\hat{y}\|_{\infty}}$

 $\text{if } \|e - A\hat{y}\|_{\infty} < 1.$ 

#### **Numerical Results**

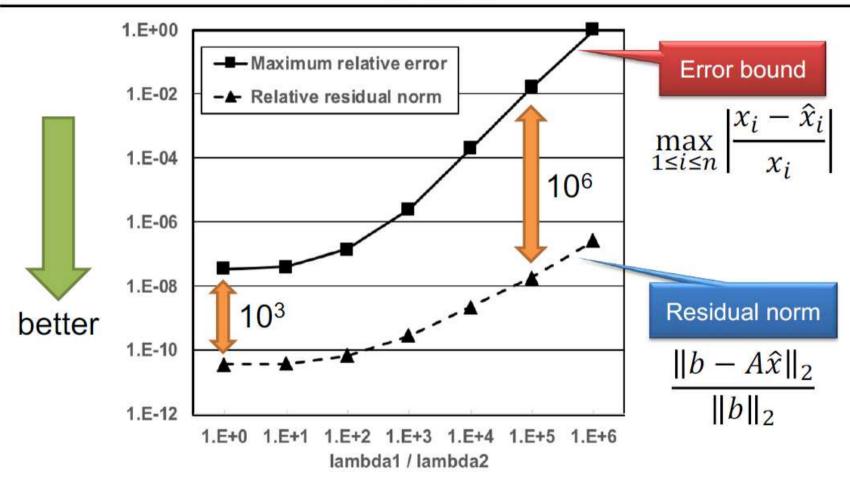
- Computer: Reedbush-U (1 node)
  - Intel Xeon E5-2695v4 (Broadwell-EP, 2.1GHz 18 cores) x 2 sockets
  - 1.21 TFLOP/s per socket, 256 GiB (153.6GB/s)
- Solver: ICCG with CM-RCM, MC(20)
- Stopping criteria:

For Ax = b,  $\frac{\|b - A\hat{x}\|_2}{\|b\|_2} < 10^{-12}$ For Ay = e,  $\|e - A\hat{y}\|_{\infty} < 10^{-2}$ 

• FP64 (double precision), OpenMP (36 threads)

Result (1):  $\lambda_1 = \lambda_2 = 1.0$ NX=NY=NZ=128 (n = 2,097,152)

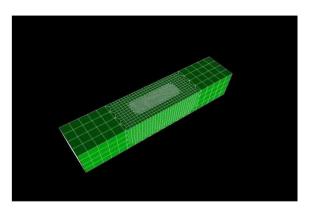
Upper bounds of maximum relative error and relative residual norm:

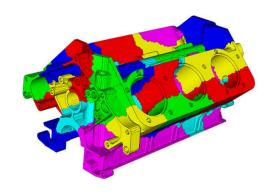

$$-\max_{1\le i\le n} \left| \frac{x_i - \hat{x}_i}{x_i} \right| \le 3.38 \times 10^{-8}$$

$$-\frac{\|b - Ax\|_2}{\|b\|_2} < 3.66 \times 10^{-11}$$

Computing time

|                       | Approximation<br>Solve Ax=b<br>(415 iter's) | Verification-1<br>Solve Ay=e<br>(211 iter's) | Verification-2 | Total |
|-----------------------|---------------------------------------------|----------------------------------------------|----------------|-------|
| Method-1              | 2.38                                        | 1.18                                         |                | 3.56  |
| Method-2<br>(2 RHS's) | 2.99                                        |                                              | 1.17e-02       | 3.00  |


# **Result (2):** Vary $\lambda_1/\lambda_2 \sim \text{cond between 1 and 10}^6$



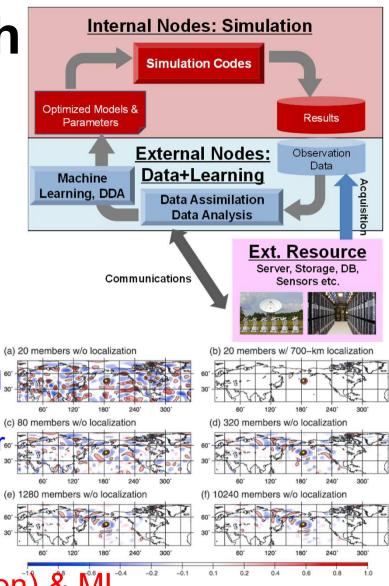

It is difficult to estimate the error of a computed solution only from residual norm!

# (Near) Future Works in FY.2019

- Accuracy Verification + AT
  - More Reasonable Method for Accuracy Verification
    - III-Conditioned Sparse/H Mat.: Combined with Iterative Refinement
  - Strategy for Selection of Optimum Precision by AT (and ML)
    - Accuracy, Computation Time, Power Consumption
  - Trans-Precision
    - Challenging Approach: e.g. AT + FPGA
- FEM with Local Adaptive Precision
  - Precision changes on each element
    - New Idea
  - Heterogeneity, Stress Concentration, Elastic-Plastic (Linear-NL), Separation
  - Load In-Balancing in Parallel Computing
  - Discussions in WCCM 2018 in NYC
- Towards "Appropriate Computing"
  - Approximate Computing + Accuracy Verification + Automatic Tuning (AT)






- Background
  - ppOpen-HPC
  - Society 5.0
- BDEC System in ITC/U.Tokyo
- Computing in the Exascale/Post Moore Era
  - Approximate Computing
  - Verification of Accuracy
  - Data Drive Approach
  - h3-Open-BDEC
- Summary

## Computing in the Exascale/Post Moore Era

- Power Consumption is the Most Important Issue in the Post Moore Era
  - It is already important now.
  - Memory performance in the Post Moore Era is relatively better than now, but data movement should be reduced from the view point of energy consumption.
- Quantum Computing, FPGA ?: "Partial" Solution
  - Could be a solution in certain applications (e.g. searching, graph, data clustering etc.)
  - Contributions to (S+<u>D+L</u>)/(A+<u>B+C</u>)
- How to save Energy for Sustainability ?
  - (1) Approximate Computing by Low/Adaptive Precision
  - (2) Reduction of Computations: Data Driven Approach

## **Data Driven Approach** DDA, Integration of (S+D+L)

- Real-World Simulations
  - Non-Linear: Huge Number of Parameter Studies needed
    - Reduction of cases is a very crucial issue
  - Data Assimilation
    - Mid-Range Weather Prediction: 50- (a) 20 me 100 Ensemble Cases, 1,000 needed<sup>60</sup> for accurate solution.
    - 50-100 (or fewer) may be enough for accurate solution, if opt. parameters are selected (e.g. by ML),
- Data Driven Approach (DDA)
  - Integration of CSE & (Observation) & ML
  - O(10<sup>3</sup>-10<sup>4</sup>) Training Data Sets: Difficult
    - Successful under Only Limited Conditions using Simplified Models
- <sup>38</sup> hDDA: Hierarchical DDA by More Efficient Training Approach



[Miyoshi et al. 2014]

# h3-Open-BDEC

- Innovative Software Infrastructure for (S+D+L)
  - h3: Hierarchical, Hybrid, Heterogeneous
  - Extension of ppOpen-HPC
  - Plug-in Existing Tools/Lib.
- Innovative/New Ideas
  - Adaptive Precision + Accuracy Verification + AT
    - Appropriate Computing
  - hDDA for General Problems by ML -> Reduction of Computations
    - Simplified/Local/Surrogate Model by ML
    - Multilevel/Multi-nested Approach using AMR
    - MOR (Model Order Reduction)
    - UQ (Uncertainty Quantification)

|                                                                                                                         | h3-Open-BDEC                                                                     |                                                    |                                                        |  |  |  |
|-------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|----------------------------------------------------|--------------------------------------------------------|--|--|--|
|                                                                                                                         | New Principle for<br>Computations                                                | Simulation + Data +<br>Learning                    | Integration +<br>Communications+<br>Utilities          |  |  |  |
| .)                                                                                                                      | h3-Open-MATH<br>Algorithms with High-<br>Performance, Reliability,<br>Efficiency | h3-Open-APP: Simulation<br>Application Development | h3-Open-SYS<br>Control & Integration                   |  |  |  |
|                                                                                                                         | h3-Open-VER<br>Verification of Accuracy                                          | h3-Open-DATA: Data<br>Data Science                 | h3-Open-UTIL<br>Utilities for Large-Scale<br>Computing |  |  |  |
| ز                                                                                                                       | h3-Open-AT<br>Automatic Tuning                                                   | h3-Open-DDA: Learning<br>Data Driven Approach      |                                                        |  |  |  |
| <complex-block></complex-block>                                                                                         |                                                                                  |                                                    |                                                        |  |  |  |
| <ul> <li>Various Functions on<br/>Heterogeneous Architectures</li> <li>On)</li> <li>Including CPUL GPUL EPGA</li> </ul> |                                                                                  |                                                    |                                                        |  |  |  |

 Including CPU, GPU, FPGA, Quantum Devices

- Background
  - ppOpen-HPC
  - Society 5.0
- BDEC System in ITC/U.Tokyo
- Computing in the Exascale/Post Moore Era
  - Approximate Computing
  - Verification of Accuracy
  - Data Drive Approach
  - h3-Open-BDEC
- Summary

# Summary

- ppOpen-HPC
- Society 5.0 in Japan
- BDEC System, Next Stage
  - Platform for Simulation + Data + Learning (S+D+L)
  - Prototype for the Post-Moore Era Computing
    - Heterogeneous
    - Power Consumption
- Development of Software is also needed
  - h3-Open-BDEC
    - Extension of ppOpen-HPC towards Society 5.0
    - Low/Adaptive/Trans Precision
    - Reduction of Computations: Data Driven Approach
  - Proposals to Japanese Government

# ICPP 2019 in Kyoto

#### 48th International Conference on Parallel Processing August 5-8, 2019

http://www.icpp-conf.org/

Submission Open:February 01, 2019Deadline for Submission (10-pages):April 15, 2019Author Notification:May 17, 2019Camera-Ready Due:June 07, 2019



#### **Invited Speakers**

Depei Qian (Sun Yat-Sen University & Beihang University, China) Satoshi Sekiguchi (AIST, Japan) Richard Vuduc (Georgia Tech, USA)

We are also calling for Exhibitors !!!