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Motivation of our work

The communication wall: compelling numbers

Time/flop 59% annual improvement up to 20041

2008 Intel Nehalem 3.2GHz×4 cores (51.2 GFlops/socket) 1x

2017 Intel Skylake XP 2.1GHz×28 cores (1.8 TFlops/socket) 35x in 9 years

DRAM latency: 5.5% annual improvement up to 20041

DDR2 (2007) 120 ns 1x

DDR4 (2014) 45 ns 2.6x in 7 years

Stacked memory similar to DDR4

Network latency: 15% annual improvement up to 20041

Interconnect (example one machine today): 0.25 µs to 3.7 µs MPI latency

Sources:
1. Getting up to speed, The future of supercomputing 2004, data from 1995-2004
2. G. Bosilca (UTK), S. Knepper (Intel), J. Shalf (LBL)
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Motivation of our work

Can we have both scalable and robust methods ?

Difficult ... but crucial ...
since complex and large scale applications very often challenge existing
methods

Focus on increasing scalability by reducing/minimizing coummunication
while preserving robustness in linear algebra

� Dense linear algebra: ensuring backward stability

� Iterative solvers and preconditioners: bounding the condition number of
preconditioned matrix

� Matrix approximation: attaining a prescribed accuracy
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Short overview of results from CA dense linear algebra TSQR factorization

Communication Complexity of Dense Linear Algebra

Matrix multiply, using 2n3 flops (sequential or parallel)

� Hong-Kung (1981), Irony/Tishkin/Toledo (2004)

� Lower bound on Bandwidth = Ω(#flops/M1/2)

� Lower bound on Latency = Ω(#flops/M3/2)

Same lower bounds apply to LU using reduction

� Demmel, LG, Hoemmen, Langou, tech report 2008, SISC 2012 I −B
A I

I

 =

 I
A I

I

I −B
I AB

I


And to almost all direct linear algebra

[Ballard, Demmel, Holtz, Schwartz, 09]
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Short overview of results from CA dense linear algebra TSQR factorization

2D Parallel algorithms and communication bounds

If memory per processor = n2/P, the lower bounds on communication are

#words moved ≥ Ω(n2/
√

P), #messages ≥ Ω(
√

P)

Most classical algorithms (ScaLAPACK) attain
lower bounds on #words moved
but do not attain lower bounds on #messages

ScaLAPACK CA algorithms

LU partial pivoting tournament pivoting
[LG, Demmel, Xiang, 08]

[Khabou, Demmel, LG, Gu, 12]

QR column based reduction based
Householder Householder

[Demmel, LG, Hoemmen, Langou, 08]

[Ballard, Demmel, LG, Jacquelin, Nguyen, Solomonik, 14]

RRQR column pivoting tournament pivoting
[Demmel, LG, Gu, Xiang 13]

Only several references shown, ScaLAPACK and communication avoiding algorithms
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Short overview of results from CA dense linear algebra TSQR factorization

TSQR: CA QR factorization of a tall skinny matrix

J. Demmel, LG, M. Hoemmen, J. Langou, 08

References: Golub, Plemmons, Sameh 88, Pothen, Raghavan, 89, Da Cunha, Becker,

Patterson, 02
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Short overview of results from CA dense linear algebra TSQR factorization

TSQR: CA QR factorization of a tall skinny matrix

J. Demmel, LG, M. Hoemmen, J. Langou, 08

Ballard, Demmel, LG, Jacquelin, Nguyen, Solomonik, 14
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Short overview of results from CA dense linear algebra TSQR factorization

Strong scaling of TSQR

� Hopper: Cray XE6 (NERSC) 2 x 12-core AMD Magny-Cours (2.1 GHz)

� Edison: Cray CX30 (NERSC) 2 x 12-core Intel Ivy Bridge (2.4 GHz)

� Effective flop rate, computed by dividing 2mn2 − 2n3/3 by measured runtime

Ballard, Demmel, LG, Jacquelin, Knight, Nguyen, and Solomonik, 2015
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Preconditioned Krylov subspace methods Enlarged Krylov methods

Challenge in getting scalable and robust solvers

On large scale computers, Krylov solvers reach less than 2% of the peak
performance.

� Typically, each iteration of a Krylov solver requires
� Sparse matrix vector product
→ point-to-point communication

� Dot products for orthogonalization
→ global communication

� When solving complex linear systems most of the highly parallel
preconditioners lack robustness
� wrt jumps in coefficients / partitioning into irregular subdomains, e.g. one

level DDM methods (Additive Schwarz, RAS)
� A few small eigenvalues hinder the convergence of iterative methods

Focus on increasing scalability by reducing coummunication/increasing
arithmetic intensity while dealing with small eigenvalues
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Preconditioned Krylov subspace methods Enlarged Krylov methods

Enlarged Krylov methods [LG, Moufawad, Nataf, 14]

� Partition the matrix into N domains

� Split the residual r0 into t vectors corresponding to the N domains,

r0 R
e
0

� Generate t new basis vectors, obtain an enlarged Krylov subspace

Kt,k(A, r0) = span{Re
0 ,ARe

0 ,A
2Re

0 , ...,A
k−1Re

0}

Kk(A, r0) ⊂ Kt,k(A, r0)

� Search for the solution of the system Ax = b in Kt,k(A, r0)
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Preconditioned Krylov subspace methods Enlarged Krylov methods

Enlarged Krylov subspace methods based on CG

Defined by the subspace Kt,k and the following two conditions:

1. Subspace condition: xk ∈ x0 +Kt,k

2. Orthogonality condition: rk ⊥ Kt,k

� At each iteration, the new approximate solution xk is found by
minimizing φ(x) = 1

2 (x tAx)− btx over x0 +Kt,k :

φ(xk) = min{φ(x),∀x ∈ x0 +Kt,k(A, r0)}

� Can be seen as a particular case of a block Krylov method
� AX = S(b), such that S(b)ones(t, 1) = b;Re

0 = AX0 − S(b)
� Orthogonality condition involves the block residual Rk ⊥ Kt,k
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Preconditioned Krylov subspace methods Enlarged Krylov methods

Convergence analysis

Given

� A is an SPD matrix, x∗ is the solution of Ax = b

� ||x∗ − xk ||A is the k th error of CG, e0 = x∗ − x0

� ||x∗ − xk ||A is the k th error of ECG

Result

CG ECG

||x∗ − xk ||A ≤ 2||e0||A
(√

κ− 1√
κ+ 1

)k

where κ = λmax (A)
λmin(A)

||x∗ − xk ||A ≤ 2||ê0||A
(√

κt − 1
√
κt + 1

)k

where κt = λmax (A)
λt (A) , ê0 ≡ E0(Φ>1 E0)−1

( 0
...
0
1

)
, Φ1

denotes the t eigenvectors associated to the smallest

eigenvalues, and E0 is the initial enlarged error.

From here on, results on enlarged CG obtained with O. Tissot
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Preconditioned Krylov subspace methods Enlarged Krylov methods

Classical CG vs. Enlarged CG derived from Block CG

Algorithm 1 Classical CG

1: p1 = r0(r>0 Ar0)−1/2

2: while ||rk−1||2 > ε||b||2 do

3: αk = p>k rk−1

4: xk = xk−1 + pkαk

5: rk = rk−1 − Apkαk

6: zk+1 = rk − pk (p>k Ark )

7: pk+1 = zk+1(z>k+1Azk+1)−1/2

8: end while

Cost per iteration
# flops = O( n

P ) ← BLAS 1 & 2
# words = O(1)
# messages = O(1) from SpMV +
O(logP) from dot prod + norm

Algorithm 2 ECG

1: P1 = Re
0 (Re

0
>ARe

0 )−1/2

2: while ||
∑>

i=1 R
(i)
k ||2 < ε||b||2 do

3: αk = P>k Rk−1 . t × t matrix
4: Xk = Xk−1 + Pkαk

5: Rk = Rk−1 − APkαk

6: Zk+1 = APk − Pk (P>k AAPk ) −
Pk−1(P>k−1AAPk )

7: Pk+1 = Zk+1(Z>k+1AZk+1)−1/2

8: end while
9: x =

∑>
i=1 X

(i)
k

Cost per iteration

# flops = O( nt2

P ) ← BLAS 3
# words = O(t2) ← Fit in the buffer
# messages = O(1) from SpMV +
O(logP) from A-ortho
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Preconditioned Krylov subspace methods Enlarged Krylov methods

Test cases

� 3 of 5 largest SPD matrices of Tim Davis’ collection
� Heterogeneous linear elasticity problem discretized with FreeFem++

using P1 FE

div(σ(u)) + f = 0 on Ω,

u = uD on ∂ΩD ,

σ(u) · n = g on ∂ΩN ,

� u ∈ Rd is the unknown displacement field, f is
some body force.

� Young’s modulus E and Poisson’s ratio ν,
(E1, ν1) = (2 · 1011, 0.25), and
(E2, ν2) = (107, 0.45).

Name Size Nonzeros Problem

Hook 1498 1,498,023 59,374,451 Structural problem
Flan 1565 1,564,794 117,406,044 Structural problem
Queen 4147 4,147,110 316,548,962 Structural problem

Ela 4 4,615,683 165,388,197 Linear elasticity
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Preconditioned Krylov subspace methods Enlarged Krylov methods

Enlarged CG: dynamic reduction of search directions
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Iteration
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1

10
0
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5 (+1)(+2)(+2)(+2)

Flan_1565, # procs = 56
8
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16

20

Figure : solid line: normalized residual (scale on the left),
dashed line: number of search directions (scale on the
right)

→ Reduction occurs when the convergence has started
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Preconditioned Krylov subspace methods Enlarged Krylov methods

Strong scalability

� Run on Kebnekaise, Ume̊a University (Sweden) cluster, 432 nodes with
Broadwell processors (28 cores per node)

� Compiled with Intel Suite 18

� PETSc 3.7.6 (linked with the MKL)

� Pure MPI (no threading)

� Stopping criterion tolerance is set to 10−5 (PETSc default value)

� Block diagonal preconditioner, number blocks equals number of MPI
processes
� Cholesky factorization on the block with MKL-PARDISO solver

17 of 43



Preconditioned Krylov subspace methods Enlarged Krylov methods

Strong scalability
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Preconditioned Krylov subspace methods Robust multilevel additive Schwarz preconditioner

Additive Schwarz methods

Solve M−1Ax = M−1b, where A ∈ Rn×n is SPD
Original idea from Schwarz algorithm at the continuous level (Schwarz 1870)

� Symmetric formulation,
Additive Schwarz (1989)

M−1
AS,1 :=

N1∑
j=1

RT
1j A
−1
1j R1j

� DOFs partitioned into N1 domains of
dimensions n11, n12, . . . n1,N1

� R1j ∈ Rn1j×n: restriction operator

� A1j ∈ Rn1j×n1j : matrix associated to
domain j , A1j = R1jAR

T
1j

� (D1j)j=1:N1
: algebraic partition of

unity

Ω1;1 Ω1;2

Ω1;3

Ω1;4

Ω1;5

Ω1;6

Ω1;7

Ω1;8

Ω1;9

Ω1;10

Ω1;11

Ω1;12

Ω1;13

Ω1;14

Ω1;15
Ω1;16

A1

Page 56 

Direct factorization of a matrix in  
arrow block diagonal form 

1 1 

1 1 1/2 1 1 1/2 
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Preconditioned Krylov subspace methods Robust multilevel additive Schwarz preconditioner

Upper bound for the eigenvalues of M−1
AS ,1A

Let kc be number of distinct colours to colour the subdomains of A. The
following holds (e.g. Chan and Mathew 1994)

λmax(M−1
AS,1A) ≤ kc

→ Two level preconditioners are required

� Early references: [Nicolaides 87], [Morgan 92], [Chapman, Saad 92],
[Kharchenko, Yeremin 92], [Burrage, Ehrel, and Pohl, 93]

� Our work uses the theoretical framework of the Fictitious space lemma
(Nepomnyaschikh 1991).
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Preconditioned Krylov subspace methods Robust multilevel additive Schwarz preconditioner

Construction of the coarse space for 2nd level

Consider the generalized eigenvalue problem for each domain j , for given τ :

Find (u1jk , λ1jk) ∈ Rni,1 × R, λ1jk ≤ 1/τ

such that R1j Ã1jR
T
1j u1jk = λ1jkD1jA1jD1ju1jk

where Ã1j is a local SPSD splitting of A suitably permuted, V1 basis of S1,

S1 :=
N1⊕
j=1

D1jR
>
1j Z1j , Z1j = span {u1jk | λ1jk < 1/τ}

M−1
AS,2 := V1

(
V T

1 AV1

)−1
V T

1 +
N1∑
j=1

RT
1j A
−1
1j R1j

Theorem (H. Al Daas, LG, 2018)

κ
(

M−1
AS,2ALSP

A
)
≤ (kc + 1) (2 + (2kc + 1)kmτ)

where kc is the number of distinct colors required to color the graph of A,
km ≤ N1, where N1 is the number of subdomains
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Preconditioned Krylov subspace methods Robust multilevel additive Schwarz preconditioner

Construction of the coarse space for 2nd level

Consider the generalized eigenvalue problem for each domain j , for given τ :

Find (u1jk , λ1jk) ∈ Rni,1 × R, λ1jk ≤ 1/τ

such that R1j Ã1jR
T
1j u1jk = λ1jkD1jA1jD1ju1jk
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D1jR
>
1j Z1j , Z1j = span {u1jk | λ1jk < 1/τ}

M−1
AS,2 := V1

(
V T

1 AV1

)−1
V T

1 +
N1∑
j=1

RT
1j A
−1
1j R1j

� Generalization of Geneo theory fulfilled by standard FE and bilinear forms
[Spillane, Dolean, Hauret, Nataf, Pechstein, Scheichl’13]

� km = max number of domains that share a common vertex

� Ã1j is the Neumann matrix of domain j , D1j is nonsingular.
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Preconditioned Krylov subspace methods Robust multilevel additive Schwarz preconditioner

Local SPSD splitting of A wrt a subdomain

� For each domain j , a local SPSD splitting is a decomposition
A = Ã1j + C , where Ã1j and C are SPSD

� Ideally Ã1j is local

� Consider domain 1, where A11 corresponds to interior DOFs, A22 the
DOFs at the interface of 1 with all other domains, and A33 the rest of
DOFs:

A =

A11 A12

A21 A22 A23

A32 A33


� We note S(A22) the Schur complement with respect to A22,

S(A22) = A22 − A21A−1
11 A12 − A23A−1

33 A32.
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Preconditioned Krylov subspace methods Robust multilevel additive Schwarz preconditioner

Algebraic local SPSD splitting lemma

Let A ∈ Rn×n, an SPD matrix, and Ã11 ∈ Rn×n be partitioned as follows

A =

A11 A12

A21 A22 A23

A32 A33

 , Ã11 =

A11 A12

A21 Ā22

0


where Aii ∈ Rmi×mi is non trivial matrix for i ∈ {1, 2, 3}. If Ā22 ∈ Rm2×m2 is
a symmetric matrix verifying the following inequalities

uTA21A−1
11 A12u ≤ uT Ā22u ≤ uT

(
A22 − A23A−1

33 A32

)
u, ∀u ∈ Rm2 ,

then A− Ã11 is SPSD, that is the following inequality holds

0 ≤ uT Ã11u ≤ uTAu, ∀u ∈ Rn.

� Remember: S(A22) = A22 − A23A−1
33 A32 − A21A−1

11 A12.

� The left and right inequalities are optimal
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Preconditioned Krylov subspace methods Robust multilevel additive Schwarz preconditioner

Multilevel Additive Schwarz MMAS

with H. Al Daas, P. Jolivet, P. H. Tournier

Ω1;1 Ω1;2

Ω1;3

Ω1;4

Ω1;5

Ω1;6

Ω1;7

Ω1;8

Ω1;9

Ω1;10

Ω1;11

Ω1;12

Ω1;13

Ω1;14

Ω1;15
Ω1;16

A1

D1;3Z1;3

D1;1Z1;1

V1

for level i = 1 and each domain j = 1 : N1 in parallel (A = A1) do
A1j = R1jA1R

T
1j (local matrix associated to domain j)

Ã1j is Neumann matrix of domain j (local SPSD splitting)
Solve Gen EVP, set Z1j = span

{
u1jk | λ1jk <

1
τ

}
Find (u1jk , λ1jk ) ∈ Rn1j × R
R1j Ã1jR

>
1j u1jk = λ1jkD1jA1jD1ju1jk .

Let S1 =
⊕N1

j=1 D1jR
>
1j Z1j , V1 basis of S1, A2 = V T

1 A1V1, A2 ∈ Rn2×n2

end for

Preconditioner defined as: M−1
A1,MAS = V1A

−1
2 V T

1 +
∑N1

j=1 R
>
1j A
−1
1j R1j
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Preconditioned Krylov subspace methods Robust multilevel additive Schwarz preconditioner

Multilevel Additive Schwarz MMAS

~A2;1 =
P4
j=1 V

>
1

~A1;jV1

A1

(R>
1 D1Z1)>A(R>

1 D1Z1)

(R>
11D11Z11)>A(R>

6 D6Z6)

~A2;1 =
P4
j=1 V

>
1

~A1;jV1

for level i = 2 to logd Ni do
for each domain j = 1 : Ni in parallel do

Ãij =
∑jd

k=(j−1)d+1
VT
i−1Ãi−1,kVi−1 (local SPSD splitting)

Aij = RijAiR
T
ij (local matrix associated to domain j)

Solve Gen EVP, Zij = span
{
uijk | λijk <

1
τ

}
Find (uijk , λijk ) ∈ Rnij × R
Rij ÃijR

>
ij uijk = λijkDijAijDijuijk

M−1
Ai ,MAS = ViA

−1
i+1V

T
i +

∑Ni
j=1 R

>
ij A
−1
ij Rij

Let Si =
⊕Ni

j=1 DijR
>
ij Zij , Vi basis of Si , Ai+1 = V T

i AiVi , Ai+1 ∈ Rni+1×ni+1

end for end for
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Preconditioned Krylov subspace methods Robust multilevel additive Schwarz preconditioner

Robustness and efficiency of multilevel AS

Theorem (Al Daas, LG, Jolivet, Tournier)

Given the multilevel preconditioner defined at each level i = 1 : logd N1 as

M−1
Ai ,MAS = ViA

−1
i+1V T

i +

Ni∑
j=1

R>ij A−1
ij Rij

then M−1
MAS = M−1

A1,MAS and,

κ(M−1
Ai ,MASAi ) ≤ (kic + 1) (2 + (2kic + 1)kiτ) ,

where kic = number of distinct colours to colour the graph of A,
ki = max number of domains that share a common vertex.

Communication efficiency

� Construction of M−1
MAS preconditioner requires O(logd N1) messages.

� Application of M−1
MAS preconditioner requires O((log2 N1)logd N1 ) messages

per iteration.
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Preconditioned Krylov subspace methods Robust multilevel additive Schwarz preconditioner
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Preconditioned Krylov subspace methods Robust multilevel additive Schwarz preconditioner

Parallel performance for linear elasticity

� Machine: IRENE (Genci), Intel Skylake 8168,
2,7 GHz, 24 cores each

� Stopping criterion: 10−5 (10−2 for 3rd level)

� Young’s modulus E and Poisson’s ratio ν take
two values, (E1, ν1) = (2 · 1011, 0.35), and

(E2, ν2) = (107, 0.45)

Linear elasticity, 121x106 unknowns, PETSc versus GenEO HPDDM

PETSc GAMG HPDDM
# P PCSetUp KSPSolve Total Deflation Domain Coarse Solve Total

subspace factor matrix

1,024 39.9 85.7 125.7 185.8 26.8 3.0 62.0 277.7
2,048 42.1 21.2 63.3 76.1 8.5 4.2 28.5 117.3
4,096 95.1 182.8 277.9 32.0 3.6 8.5 18.1 62.4

More details in P. Jolivet’s talk, MS 199, this morning
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Preconditioned Krylov subspace methods Robust multilevel additive Schwarz preconditioner

Parallel performance for linear elasticity

� Machine: IRENE (Genci), Intel Skylake 8168,
2,7 GHz, 24 cores each

� Stopping criterion: 10−5 (10−2 for 3rd level)

� Young’s modulus E and Poisson’s ratio ν take
two values, (E1, ν1) = (2 · 1011, 0.35), and

(E2, ν2) = (107, 0.45)

Linear elasticity, 616 · 106 unknowns, GenEO versus GenEO multilevel

# P Deflation Domain Coarse Solve Total # iter
subspace factor matrix

GenEO
8192 113.3 11.9 27.5 52.0 152.8 53

GenEO multilevel
8192 113.3 11.9 13.2 52.0 138.5 53

A2 of dimension 328 · 103 × 328 · 103, A3 of dimension 5120× 5120.
More details in P. Jolivet’s talk, MS 199, this morning
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Low rank matrix approximation

� Problem: given m × n matrix A, compute rank-k approximation ZW T ,
where Z is m × k and W T is k × n.

� Best rank-k approximation Ak = UkΣkVk is rank-k truncated SVD of A
[Eckart and Young, 1936]

min
rank(Ãk )≤k

||A− Ãk ||2 = ||A− Ak ||2 = σk+1(A)

min
rank(Ãk )≤k

||A− Ãk ||F = ||A− Ak ||F =

√√√√ n∑
j=k+1

σ2
j (A)
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Low rank matrix approximation: trade-offs

Communication optimal if computing a rank-k approximation on P processors requires

# messages = Ω (log P) .
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Deterministic rank-k matrix approximation

Given A ∈ Rm×n, U =

(
U1

U2

)
∈ Rm,m, V =

(
V1 V2

)
∈ Rn,n, U,V

invertible, U1 ∈ Rl′×m, V1 ∈ Rn×l , k ≤ l ≤ l ′.

UAV = Ā =

(
Ā11 Ā12

Ā21 Ā22

)
=

(
I

Ā21Ā+
11 I

)(
Ā11 Ā12

S(Ā11)

)
= U

(
Q1 Q2

)(R11 R12

R22

)
,

where Ā11 ∈ Rl′,l , Ā+
11Ā11 = I , S(Ā11) = Ā22 − Ā21Ā+

11Ā12.

� Generalized LU computes the approximation

Ãk = U−1

(
I

Ā21Ā+
11

)(
Ā11 Ā12

)
V−1

� QR computes the approximation

Ãk = Q1

(
R11 R12

)
V−1 = Q1QT

1 A, where Q1 is orth basis for (AV1)
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Unified perspective: generalized LU factorization

Given U1,A,V1, Q1 orth. basis of (AV1), k = l = l ′, rank-k approximation,

Ãk = AV1(U1AV1)−1U1A

Deterministic algorithms Randomized algorithms∗

V1 column permutation and ... V1 random matrix and ...
QR with column selection Randomized QR

(a.k.a. strong rank revealing QR) (a.k.a. randomized SVD)

U1 = QT
1 , Ãk = Q1Q

T
1 A U1 = QT

1 , Ãk = Q1Q
T
1 A

||R−1
11 R12||max is bounded

LU with column/row selection Randomized LU with row selection
(a.k.a. rank revealing LU) (a.k.a. SVD via Row extraction)

U1 row permutation s.t. U1Q1 =

(
Q̄11

Q̄21

)
U1 row permutation s.t. U1Q1 =

(
Q̄11

Q̄21

)
||Q̄21Q̄

−1
11 ||max is bounded ||Q̄21Q̄

−1
11 ||max bounded

Randomized LU approximation
U1 random matrix

with J. Demmel, A. Rusciano ∗ For a review, see Halko et al., SIAM Review 11
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Deterministic column selection: tournament pivoting

� Partition A = (A1,A2,A3,A4).

� Select k cols from each column
block, by using QR with column
pivoting

� At each level i of the tree
� At each node j do in parallel

� Let Av,i−1,Aw,i−1 be the cols
selected by the children of node j

� Select k cols from
(Av,i−1,Aw,i−1), by using QR
with column pivoting

� Return columns in Aji

[Demmel, LG, Gu, Xiang 13], [LG, Cayrols, Demmel 18]
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Deterministic guarantees for rank-k approximation

� CA QR with column selection based on binary tree tournament pivoting:

1 ≤ σi (A)

σi (R11)
,
σj(R22)

σk+j(A)
≤
√

1 + F 2
TP(n − k), FTP ≤

1√
2k

(n/k)log2(
√

2fk)

for any 1 ≤ i ≤ k , and 1 ≤ j ≤ min(m, n)− k .

� CA LU with column/row selection with binary tree tournament pivoting:

1 ≤ σi (A)

σi (Ā11)
,
σj(S(Ā11))

σk+j(A)
≤

√
(1 + F 2

TP(n − k))/σmin(Q̄11)

≤
√

(1 + F 2
TP(n − k)) (1 + F 2

TP(m − k)),

for any 1 ≤ i ≤ k , and 1 ≤ j ≤ min(m, n)− k , U1Q1 =

(
Q̄11

Q̄21

)
.
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Probabilistic guarantees

� Combine deterministic guarantees with sketching ensembles satisfying
Johnson-Lindenstrauss properties → better bounds

� Consider U1 ∈ Rl′×m,V1 ∈ Rn×l are Subsampled Randomized Hadamard
Transforms (SRHT), l ′ > l .
� Compute Ãk through generalized LU costs O(mn log2 l

′) flops

Let U1 ∈ Rl′×m and V1 ∈ Rn×l be drawn from SRHT ensembles,
l = 10ε−1(

√
k +

√
8 log(n/δ))2 log(k/δ), l ≥ log 2(n/δ),

l ′ = 10ε−1(
√

l +
√

8 log(m/δ))2 log(k/δ), l ′ ≥ log 2(m/δ).

With probability 1− 5δ, the generalized LU approximation Ãk satisfies

‖A− Ãk‖2
2 = O(1)σ2

k+1(A) + O(
log(n/δ)

l
+

log(m/δ)

l ′
)(σ2

k+1(A) + . . . σ2
n(A))
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Growth factor in Gaussian elimination

ρ(A) :=
maxk ||Sk ||max

||A||max
, where A ∈ Rm×n,

Sk is Schur complement obtained at iteration k

Deterministic algorithms

� LU with partial pivoting ρ(A) ≤ 2n

� CA LU with column/row selection with binary tree tournament pivoting:

||Sk(Ā11)||max ≤ min((1 + FTP

√
k)||A||max ,FTP

√
1 + F 2

TP(m − k)σk(A))

Randomized algorithms
U,V Haar distributed matrices,

E[log(ρ(UAV ))] = O(log(n))
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Prospects for the future: tensors

Many open questions - only a few recalled

Communication bounds few existing results

� Symmetric tensor contractions [Solomonik et al, 18]

� Bound for volume of communication for matricized tensor times
Khatri-Rao product [Ballard et al, 17]

Approximation algorithms

� Algorithms as ALS, DMRG, intrinsically sequential in the number of
modes

� Dynamically adapt the rank to a given error

� Approximation of high rank tensors
� but low rank in large parts, e.g. due to stationarity in the model the tensor

describes

For an overview, see Kolda and Bader, SIAM Review 2009
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Hierarchical low rank tensor approximation

� Decompose A ∈ Rn1×...nd in subtensors A1j ∈ Rn1/2×...nd/2, j = 1 : 2d .

� Decompose recursively each subtensor A1j until depth L

Input: A, 2Ld subtensors Aij , i = 1 : L, tree
T with 2Ld leaves and height L
Output: Ã in hierarchical format
Ensure: ||A − Ã||F < ε
for each level i from L to 1 do

for each node j with merge allowed do
Compute Ãij s.t. ||Aij − Ãij ||F < ε/2di

if storage(Ãij ) < storage (children approx.) in T

then

keep Aij approximation in Ã
else keep children approx. in Ã

merge of ancestors not allowed endif
endfor

endfor

Coulomb potential, 5123,
V (x , y , z) = 1

|x−y| + 1
|y−z| + 1

|x−z|
hierarchical format requires 7% of

storing A for ε = 10−5

with V. Ehrlacher and D. Lombardi
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Compressing the solution of Vlasov-Poisson equation

� Hierarchical tensors in the spirit of hierarchical matrices (Hackbusch et
al), but no information on the represented function required. Speed,
velocity, time 512x256x160, compression factor of 350 for ε = 10−3.
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Conclusions

Most of the methods discussed available in libraries:
� Dense CA linear algebra

� progressively in LAPACK/ScaLAPACK and some vendor libraries

� Iterative methods:
preAlps library https://github.com/NLAFET/preAlps:
� Enlarged CG: Reverse Communication Interface
� Enlarged GMRES will be available as well

� Multilevel Additive Schwarz
� will be available in HPDDM as multilevel Geneo (P. Jolivet)

Acknowledgements
� NLAFET H2020 european project, ANR
� Total
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Prospects for the future

� Multilevel Additive Schwarz
� from theory to practice, find an efficient local algebraic splitting that allows

to solve the Gen. EVP locally on each processor

� Tensors in high dimensions
� ERC Synergy project Extreme-scale Mathematically-based Computational

Chemistry project (EMC2), with E. Cances, Y. Maday, and J.-P. Piquemal.

Collaborators: G. Ballard, S. Cayrols, H. Al Daas, J. Demmel, M. Hoemmen,
P. Jolivet, N. Knight, S. Moufawad, F. Nataf, D. Nguyen, J. Langou, E.
Solomonik, A. Rusciano, P. H. Tournier, O. Tissot.
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