Communication Avoiding: The Past Decade and the New Challenges

L. Grigori and collaborators

Alpines

Inria Paris and LJLL, Sorbonne University

February 27, 2019

Plan

Motivation of our work
Short overview of results from CA dense linear algebra TSQR factorization

Preconditioned Krylov subspace methods
Enlarged Krylov methods
Robust multilevel additive Schwarz preconditioner
Unified perspective on low rank matrix approximation
Generalized LU decomposition
Prospects for the future: tensors in high dimensions
Hierarchical low rank tensor approximation
Conclusions

The communication wall: compelling numbers

Time/flop 59\% annual improvement up to 2004^{1} 2008 Intel Nehalem $3.2 \mathrm{GHz} \times 4$ cores (51.2 GFlops/socket)
2017 Intel Skylake XP $2.1 \mathrm{GHz} \times 28$ cores (1.8 TFlops/socket) $35 \times$ in 9 years
DRAM latency: 5.5% annual improvement up to 2004^{1}
DDR2 (2007) 120 ns 1 x
DDR4 (2014) 45 ns 2.6x in 7 years
Stacked memory similar to DDR4
Network latency: 15% annual improvement up to 2004^{1}
Interconnect (example one machine today): $0.25 \mu s$ to $3.7 \mu s$ MPI latency

Sources:

1. Getting up to speed, The future of supercomputing 2004, data from 1995-2004
2. G. Bosilca (UTK), S. Knepper (Intel), J. Shalf (LBL)

Can we have both scalable and robust methods ?

Difficult ... but crucial ...

since complex and large scale applications very often challenge existing methods

Focus on increasing scalability by reducing/minimizing coummunication while preserving robustness in linear algebra

- Dense linear algebra: ensuring backward stability
- Iterative solvers and preconditioners: bounding the condition number of preconditioned matrix
- Matrix approximation: attaining a prescribed accuracy

Can we have both scalable and robust methods ?

Difficult ... but crucial ...
since complex and large scale applications very often challenge existing methods

Focus on increasing scalability by reducing/minimizing coummunication while preserving robustness in linear algebra

- Dense linear algebra: ensuring backward stability
- Iterative solvers and preconditioners: bounding the condition number of preconditioned matrix
- Matrix approximation: attaining a prescribed accuracy

Communication Complexity of Dense Linear Algebra

Matrix multiply, using $2 n^{3}$ flops (sequential or parallel)

- Hong-Kung (1981), Irony/Tishkin/Toledo (2004)
- Lower bound on Bandwidth $=\Omega\left(\#\right.$ flops $\left./ M^{1 / 2}\right)$
- Lower bound on Latency $=\Omega\left(\#\right.$ flops $\left./ M^{3 / 2}\right)$

Same lower bounds apply to LU using reduction

- Demmel, LG, Hoemmen, Langou, tech report 2008, SISC 2012

$$
\left(\begin{array}{ccc}
1 & & -B \\
A & 1 & \\
& & 1
\end{array}\right)=\left(\begin{array}{lll}
1 & & \\
A & 1 & \\
& & 1
\end{array}\right)\left(\begin{array}{ccc}
1 & & -B \\
& 1 & A B \\
& & 1
\end{array}\right)
$$

And to almost all direct linear algebra
[Ballard, Demmel, Holtz, Schwartz, 09]

2D Parallel algorithms and communication bounds

If memory per processor $=n^{2} / P$, the lower bounds on communication are

$$
\# \text { words_moved } \geq \Omega\left(n^{2} / \sqrt{P}\right), \quad \# \text { messages } \geq \Omega(\sqrt{P})
$$

Most classical algorithms (ScaLAPACK) attain
lower bounds on \#words_moved but do not attain lower bounds on \#messages

\square

2D Parallel algorithms and communication bounds

If memory per processor $=n^{2} / P$, the lower bounds on communication are

$$
\# \text { words_moved } \geq \Omega\left(n^{2} / \sqrt{P}\right), \quad \# \text { messages } \geq \Omega(\sqrt{P})
$$

Most classical algorithms (ScaLAPACK) attain
lower bounds on \#words_moved but do not attain lower bounds on \#messages

	ScaLAPACK	CA algorithms
LU	partial pivoting	tournament pivoting [LG, Demmel, Xiang, 08] [Khabou, Demmel, LG, Gu, 12]
QR	column based	reduction based
	Householder	Householder
		[Ballard, Demmel, LG, Jacquelin, Nguyen, Solomonik, 14]
RRQR	column pivoting	tournament pivoting
		[Demmel, LG, Gu, Xiang 13]
[Demel		

Only several references shown, ScaLAPACK and communication avoiding algorithms

TSQR: CA QR factorization of a tall skinny matrix

J. Demmel, LG, M. Hoemmen, J. Langou, 08

References: Golub, Plemmons, Sameh 88, Pothen, Raghavan, 89, Da Cunha, Becker, Pattersson, 02

TSQR: CA QR factorization of a tall skinny matrix

J. Demmel, LG, M. Hoemmen, J. Langou, 08

Ballard, Demmel, LG, Jacquelin, Nguyen, Solomonik, 14

Strong scaling of TSQR

- Hopper: Cray XE6 (NERSC) 2×12-core AMD Magny-Cours (2.1 GHz)
- Edison: Cray CX30 (NERSC) 2×12-core Intel Ivy Bridge (2.4 GHz)
- Effective flop rate, computed by dividing $2 m n^{2}-2 n^{3} / 3$ by measured runtime

Ballard, Demmel, LG, Jacquelin, Knight, Nguyen, and Solomonik, 2015

Plan

Motivation of our work

Short overview of results from CA dense linear algebra TSQR factorization

Preconditioned Krylov subspace methods Enlarged Krylov methods
Robust multilevel additive Schwarz preconditioner

```
Unified perspective on low rank matrix approximation
    Generalized LU decomposition
Prospects for the future: tensors in high dimensions
    Hierarchical low rank tensor approximation
```

Conclusions

Challenge in getting scalable and robust solvers

On large scale computers, Krylov solvers reach less than 2% of the peak performance.

- Typically, each iteration of a Krylov solver requires
\square Sparse matrix vector product
\rightarrow point-to-point communication
\square Dot products for orthogonalization
\rightarrow global communication
- When solving complex linear systems most of the highly parallel preconditioners lack robustness
\square wrt jumps in coefficients / partitioning into irregular subdomains, e.g. one level DDM methods (Additive Schwarz, RAS)
\square A few small eigenvalues hinder the convergence of iterative methods

Focus on increasing scalability by reducing coummunication/increasing arithmetic intensity while dealing with small eigenvalues

Enlarged Krylov methods [LG, Moufawad, Nataf, 14]

- Partition the matrix into N domains
- Split the residual r_{0} into t vectors corresponding to the N domains,

- Generate t new basis vectors, obtain an enlarged Krylov subspace

$$
\begin{gathered}
\mathcal{K}_{t, k}\left(A, r_{0}\right)=\operatorname{span}\left\{R_{0}^{e}, A R_{0}^{e}, A^{2} R_{0}^{e}, \ldots, A^{k-1} R_{0}^{e}\right\} \\
\mathcal{K}_{k}\left(A, r_{0}\right) \subset \mathcal{K}_{t, k}\left(A, r_{0}\right)
\end{gathered}
$$

- Search for the solution of the system $A x=b$ in $\mathcal{K}_{t, k}\left(A, r_{0}\right)$

Enlarged Krylov subspace methods based on CG

Defined by the subspace $\mathcal{K}_{t, k}$ and the following two conditions:

1. Subspace condition: $x_{k} \in x_{0}+\mathcal{K}_{t, k}$
2. Orthogonality condition: $r_{k} \perp \mathcal{K}_{t, k}$

- At each iteration, the new approximate solution x_{k} is found by minimizing $\phi(x)=\frac{1}{2}\left(x^{t} A x\right)-b^{t} x$ over $x_{0}+\mathcal{K}_{t, k}$:

$$
\phi\left(x_{k}\right)=\min \left\{\phi(x), \forall x \in x_{0}+\mathcal{K}_{t, k}\left(A, r_{0}\right)\right\}
$$

- Can be seen as a particular case of a block Krylov method $A X=S(b)$, such that $S(b) \operatorname{ones}(t, 1)=b ; R_{0}^{e}=A X_{0}-S(b)$ Orthogonality condition involves the block residual $R_{k} \perp \mathcal{K}_{t, h}$

Enlarged Krylov subspace methods based on CG

Defined by the subspace $\mathcal{K}_{t, k}$ and the following two conditions:

1. Subspace condition: $x_{k} \in x_{0}+\mathcal{K}_{t, k}$
2. Orthogonality condition: $r_{k} \perp \mathcal{K}_{t, k}$

- At each iteration, the new approximate solution x_{k} is found by minimizing $\phi(x)=\frac{1}{2}\left(x^{t} A x\right)-b^{t} x$ over $x_{0}+\mathcal{K}_{t, k}$:

$$
\phi\left(x_{k}\right)=\min \left\{\phi(x), \forall x \in x_{0}+\mathcal{K}_{t, k}\left(A, r_{0}\right)\right\}
$$

- Can be seen as a particular case of a block Krylov method
$\square A X=S(b)$, such that $S(b)$ ones $(t, 1)=b ; R_{0}^{e}=A X_{0}-S(b)$
\square Orthogonality condition involves the block residual $R_{k} \perp \mathcal{K}_{t, k}$

Convergence analysis

Given

- A is an SPD matrix, x^{*} is the solution of $A x=b$
- $\left\|x^{*}-\bar{x}_{k}\right\|_{A}$ is the $k^{\text {th }}$ error of CG, $e_{0}=x^{*}-x_{0}$
- $\left\|x^{*}-x_{k}\right\|_{A}$ is the $k^{\text {th }}$ error of ECG

Result

CG
$\left\|x^{*}-\bar{x}_{k}\right\|_{A} \leq 2\left\|e_{0}\right\|_{A}\left(\frac{\sqrt{\kappa}-1}{\sqrt{\kappa}+1}\right)^{k}$
where $\kappa=\frac{\lambda_{\max }(A)}{\lambda_{\min }(A)}$

ECG

$$
\left\|x^{*}-x_{k}\right\|_{A} \leq 2\left\|\hat{e}_{0}\right\|_{A}\left(\frac{\sqrt{\kappa_{t}}-1}{\sqrt{\kappa_{t}}+1}\right)^{k}
$$

where $\kappa_{t}=\frac{\lambda_{\max }(A)}{\lambda_{t}(A)}, \hat{e}_{0} \equiv E_{0}\left(\Phi_{1}^{\top} E_{0}\right)^{-1}\left(\begin{array}{c}0 \\ \dddot{0} \\ 1\end{array}\right), \Phi_{1}$ denotes the t eigenvectors associated to the smallest eigenvalues, and E_{0} is the initial enlarged error.

From here on, results on enlarged CG obtained with O . Tissot

Classical CG vs. Enlarged CG derived from Block CG

Algorithm 1 Classical CG

$$
\begin{aligned}
& p_{1}=r_{0}\left(r_{0}^{\top} A r_{0}\right)^{-1 / 2} \\
& \text { while }\left\|r_{k-1}\right\|_{2}>\varepsilon\|b\|_{2} \text { do } \\
& \quad \alpha_{k}=p_{k}^{\top} r_{k-1} \\
& \quad x_{k}=x_{k-1}+p_{k} \alpha_{k} \\
& r_{k}=r_{k-1}-A p_{k} \alpha_{k} \\
& \quad z_{k+1}=r_{k}-p_{k}\left(p_{k}^{\top} A r_{k}\right) \\
& \quad p_{k+1}=z_{k+1}\left(z_{k+1}^{\top} A z_{k+1}\right)^{-1 / 2} \\
& \text { end while }
\end{aligned}
$$

Algorithm 2 ECG
1: $P_{1}=R_{0}^{e}\left(R_{0}^{e \top} A R_{0}^{e}\right)^{-1 / 2}$
2: while $\left\|\sum_{i=1}^{\top} R_{k}^{(i)}\right\|_{2}<\varepsilon\|b\|_{2}$ do
3: $\alpha_{k}=P_{k}^{\top} R_{k-1} \quad \triangleright t \times t$ matrix
4: $\quad X_{k}=X_{k-1}+P_{k} \alpha_{k}$
5: $\quad R_{k}=R_{k-1}-A P_{k} \alpha_{k}$
6: $\quad Z_{k+1}=A P_{k}-P_{k}\left(P_{k}^{\top} A A P_{k}\right)-$ $P_{k-1}\left(P_{k-1}^{\top} A A P_{k}\right)$
$P_{k+1}=Z_{k+1}\left(Z_{k+1}^{\top} A Z_{k+1}\right)^{-1 / 2}$
end while
9: $x=\sum_{i=1}^{\top} x_{k}^{(i)}$

Cost per iteration

\# flops $=O\left(\frac{n}{p}\right) \leftarrow$ BLAS $1 \& 2$
$\#$ words $=O(1)$
$\#$ messages $=O(1)$ from SpMV + $O(\log P)$ from dot prod + norm

Cost per iteration

\# flops $=O\left(\frac{n t^{2}}{P}\right) \leftarrow$ BLAS 3
$\#$ words $=O\left(t^{2}\right) \leftarrow$ Fit in the buffer $\#$ messages $=O(1)$ from SpMV + $O(\log P)$ from A-ortho

Test cases

- 3 of 5 largest SPD matrices of Tim Davis' collection
- Heterogeneous linear elasticity problem discretized with FreeFem++ using \mathbb{P}_{1} FE

$$
\begin{aligned}
\operatorname{div}(\sigma(u))+f & =0 & & \text { on } \Omega \\
u & =u_{D} & & \text { on } \partial \Omega_{D} \\
\sigma(u) \cdot n & =g & & \text { on } \partial \Omega_{N}
\end{aligned}
$$

- $u \in \mathbb{R}^{d}$ is the unknown displacement field, f is some body force.
- Young's modulus E and Poisson's ratio ν, $\left(E_{1}, \nu_{1}\right)=\left(2 \cdot 10^{11}, 0.25\right)$, and $\left(E_{2}, \nu_{2}\right)=\left(10^{7}, 0.45\right)$.

Name	Size	Nonzeros	Problem
Hook_1498	$1,498,023$	$59,374,451$	Structural problem
Flan_1565	$1,564,794$	$117,406,044$	Structural problem
Queen_4147	$4,147,110$	$316,548,962$	Structural problem
Ela_4	$4,615,683$	$165,388,197$	Linear elasticity

Enlarged CG: dynamic reduction of search directions

Figure : solid line: normalized residual (scale on the left), dashed line: number of search directions (scale on the right)
\rightarrow Reduction occurs when the convergence has started

Strong scalability

- Run on Kebnekaise, Umeå University (Sweden) cluster, 432 nodes with Broadwell processors (28 cores per node)
- Compiled with Intel Suite 18
- PETSc 3.7.6 (linked with the MKL)
- Pure MPI (no threading)
- Stopping criterion tolerance is set to 10^{-5} (PETSc default value)
- Block diagonal preconditioner, number blocks equals number of MPI processes
\square Cholesky factorization on the block with MKL-PARDISO solver

Strong scalability

Additive Schwarz methods

Solve $M^{-1} A x=M^{-1} b$, where $A \in \mathbb{R}^{n \times n}$ is SPD
Original idea from Schwarz algorithm at the continuous level (Schwarz 1870)

- Symmetric formulation, Additive Schwarz (1989)

$$
M_{A S, 1}^{-1}:=\sum_{j=1}^{N_{1}} R_{1 j}^{T} A_{1 j}^{-1} R_{1 j}
$$

- DOFs partitioned into N_{1} domains of dimensions $n_{11}, n_{12}, \ldots n_{1, N_{1}}$
- $R_{1 j} \in \mathbb{R}^{n_{1 j} \times n}:$ restriction operator
- $A_{1 j} \in \mathbb{R}^{n_{1 j} \times n_{1 j}}:$ matrix associated to domain $j, A_{1 j}=R_{1 j} A R_{1 j}^{T}$
- $\left(D_{1 j}\right)_{j=1: N_{1}}$: algebraic partition of unity

18 of 43

Upper bound for the eigenvalues of $M_{A S, 1}^{-1} A$

Let k_{c} be number of distinct colours to colour the subdomains of A. The following holds (e.g. Chan and Mathew 1994)

$$
\lambda_{\max }\left(M_{A S, 1}^{-1} A\right) \leq k_{c}
$$

\rightarrow Two level preconditioners are required

- Early references: [Nicolaides 87], [Morgan 92], [Chapman, Saad 92], [Kharchenko, Yeremin 92], [Burrage, Ehrel, and Pohl, 93]
- Our work uses the theoretical framework of the Fictitious space lemma (Nepomnyaschikh 1991).

Construction of the coarse space for 2 nd level

Consider the generalized eigenvalue problem for each domain j, for given τ :

$$
\begin{aligned}
& \text { Find }\left(u_{1 j k}, \lambda_{1 j k}\right) \in \mathbb{R}^{n_{i, 1}} \times \mathbb{R}, \lambda_{1 j k} \leq 1 / \tau \\
& \text { such that } R_{1 j} \tilde{A}_{1 j} R_{1 j}^{T} u_{1 j k}=\lambda_{1 j k} D_{1 j} A_{1 j} D_{1 j} u_{1 j k}
\end{aligned}
$$

where $\tilde{A}_{1 j}$ is a local SPSD splitting of A suitably permuted, V_{1} basis of S_{1},

$$
\begin{aligned}
\mathcal{S}_{1} & :=\bigoplus_{j=1}^{N_{1}} D_{1 j} R_{1 j}^{\top} Z_{1 j}, \quad Z_{1 j}=\operatorname{span}\left\{u_{1 j k} \mid \lambda_{1 j k}<1 / \tau\right\} \\
M_{A S, 2}^{-1} & :=V_{1}\left(V_{1}^{T} A V_{1}\right)^{-1} V_{1}^{T}+\sum_{j=1}^{N_{1}} R_{1 j}^{T} A_{1 j}^{-1} R_{1 j}
\end{aligned}
$$

Theorem (H. Al Daas, LG, 2018)

$$
\kappa\left(M_{A S, 2_{A L S P}}^{-1} A\right) \leq\left(k_{c}+1\right)\left(2+\left(2 k_{c}+1\right) k_{m} \tau\right)
$$

where k_{c} is the number of distinct colors required to color the graph of A, $k_{m} \leq N_{1}$, where N_{1} is the number of subdomains

Construction of the coarse space for 2 nd level

Consider the generalized eigenvalue problem for each domain j, for given τ :

$$
\begin{aligned}
& \text { Find }\left(u_{1 j k}, \lambda_{1 j k}\right) \in \mathbb{R}^{n_{i, 1}} \times \mathbb{R}, \lambda_{1 j k} \leq 1 / \tau \\
& \text { such that } R_{1 j} \tilde{A}_{1 j} R_{1 j}^{T} u_{1 j k}=\lambda_{1 j k} D_{1 j} A_{1 j} D_{1 j} u_{1 j k}
\end{aligned}
$$

where $\tilde{A}_{1 j}$ is a local SPSD splitting of A suitably permuted, V_{1} basis of S_{1},

$$
\begin{aligned}
\mathcal{S}_{1} & :=\bigoplus_{j=1}^{N_{1}} D_{1 j} R_{1 j}^{\top} Z_{1 j}, \quad Z_{1 j}=\operatorname{span}\left\{u_{1 j k} \mid \lambda_{1 j k}<1 / \tau\right\} \\
M_{A S, 2}^{-1} & :=V_{1}\left(V_{1}^{T} A V_{1}\right)^{-1} V_{1}^{T}+\sum_{j=1}^{N_{1}} R_{1 j}^{T} A_{1 j}^{-1} R_{1 j}
\end{aligned}
$$

- Generalization of Geneo theory fulfilled by standard FE and bilinear forms [Spillane, Dolean, Hauret, Nataf, Pechstein, Scheichl'13]
- $k_{m}=$ max number of domains that share a common vertex
- $\tilde{A}_{1 j}$ is the Neumann matrix of domain $j, D_{1 j}$ is nonsingular.

Local SPSD splitting of A wrt a subdomain

- For each domain j, a local SPSD splitting is a decomposition $A=\tilde{A}_{1 j}+C$, where $\tilde{A}_{1 j}$ and C are SPSD
- Ideally $\tilde{A}_{1 j}$ is local
- Consider domain 1, where A_{11} corresponds to interior DOFs, A_{22} the DOFs at the interface of 1 with all other domains, and A_{33} the rest of DOFs:

$$
A=\left(\begin{array}{lll}
A_{11} & A_{12} & \\
A_{21} & A_{22} & A_{23} \\
& A_{32} & A_{33}
\end{array}\right)
$$

- We note $S\left(A_{22}\right)$ the Schur complement with respect to A_{22},

$$
S\left(A_{22}\right)=A_{22}-A_{21} A_{11}^{-1} A_{12}-A_{23} A_{33}^{-1} A_{32} .
$$

Algebraic local SPSD splitting lemma

Let $A \in \mathbb{R}^{n \times n}$, an SPD matrix, and $\tilde{A}_{11} \in \mathbb{R}^{n \times n}$ be partitioned as follows

$$
A=\left(\begin{array}{lll}
A_{11} & A_{12} & \\
A_{21} & A_{22} & A_{23} \\
& A_{32} & A_{33}
\end{array}\right), \quad \tilde{A}_{11}=\left(\begin{array}{lll}
A_{11} & A_{12} & \\
A_{21} & \bar{A}_{22} & \\
& & 0
\end{array}\right)
$$

where $A_{i i} \in \mathbb{R}^{m_{i} \times m_{i}}$ is non trivial matrix for $i \in\{1,2,3\}$. If $\bar{A}_{22} \in \mathbb{R}^{m_{2} \times m_{2}}$ is a symmetric matrix verifying the following inequalities

$$
u^{T} A_{21} A_{11}^{-1} A_{12} u \leq u^{T} \bar{A}_{22} u \leq u^{T}\left(A_{22}-A_{23} A_{33}^{-1} A_{32}\right) u, \quad \forall u \in \mathbb{R}^{m_{2}},
$$

then $A-\tilde{A}_{11}$ is SPSD, that is the following inequality holds

$$
0 \leq u^{T} \tilde{A}_{11} u \leq u^{T} A u, \quad \forall u \in \mathbb{R}^{n}
$$

- Remember: $S\left(A_{22}\right)=A_{22}-A_{23} A_{33}^{-1} A_{32}-A_{21} A_{11}^{-1} A_{12}$.
- The left and right inequalities are optimal

Multilevel Additive Schwarz MMAS

with H. Al Daas, P. Jolivet, P. H. Tournier

for level $i=1$ and each domain $j=1: N_{1}$ in parallel $\left(A=A_{1}\right)$ do
$A_{1 j}=R_{1 j} A_{1} R_{1 j}^{T}$ (local matrix associated to domain j)
$\tilde{A}_{1 j}$ is Neumann matrix of domain j (local SPSD splitting)
Solve Gen EVP, set $Z_{1 j}=\operatorname{span}\left\{u_{1 j k} \left\lvert\, \lambda_{1 j k}<\frac{1}{\tau}\right.\right\}$
Find $\left(u_{1 j k}, \lambda_{1 j k}\right) \in \mathbb{R}^{n_{1 j}} \times \mathbb{R}$

$$
R_{1 j} \tilde{A}_{1 j} R_{1 j}^{\top} u_{1 j k}=\lambda_{1 j k} D_{1 j} A_{1 j} D_{1 j} u_{1 j k} .
$$

Let $\mathcal{S}_{1}=\bigoplus_{j=1}^{N_{1}} D_{1 j} R_{1 j}^{\top} Z_{1 j}, V_{1}$ basis of $S_{1}, A_{2}=V_{1}^{\top} A_{1} V_{1}, A_{2} \in \mathbb{R}^{n_{2} \times n_{2}}$ end for
Preconditioner defined as: $M_{A_{1}, M A S}^{-1}=V_{1} A_{2}^{-1} V_{1}^{T}+\sum_{j=1}^{N_{1}} R_{1 j}^{\top} A_{1 j}^{-1} R_{1 j}$

Multilevel Additive Schwarz MMAS

for level $i=2$ to $\log _{d} N_{i}$ do
for each domain $j=1: N_{i}$ in parallel do
$\tilde{A}_{i j}=\sum_{k=(j-1) d+1}^{j d} V_{i-1}^{T} \tilde{A}_{i-1, k} V_{i-1}$ (local SPSD splitting)
$A_{i j}=R_{i j} A_{i} R_{i j}^{T}$ (local matrix associated to domain j)
Solve Gen EVP, $Z_{i j}=\operatorname{span}\left\{u_{i j k} \left\lvert\, \lambda_{i j k}<\frac{1}{\tau}\right.\right\}$
Find $\left(u_{i j k}, \lambda_{i j k}\right) \in \mathbb{R}^{n_{i j}} \times \mathbb{R}$

$$
M_{A_{i}, M A S}^{-1}=V_{i} A_{i+1}^{-1} V_{i}^{T}+\sum_{j=1}^{N_{i}} R_{i j}^{\top} A_{i j}^{-1} R_{i j}
$$

$$
R_{i j} \tilde{A}_{i j} R_{i j}^{\top \top} u_{i j k}=\lambda_{i j k} D_{i j} A_{i j} D_{i j} u_{i j k}
$$

Let $\mathcal{S}_{i}=\bigoplus_{j=1}^{N_{i}} D_{i j} R_{i j}^{\top} z_{i j}, V_{i}$ basis of $S_{i}, A_{i+1}=V_{i}^{\top} A_{i} V_{i}, A_{i+1} \in \mathbb{R}^{n_{i+1} \times n_{i+1}}$
end for end for

Robustness and efficiency of multilevel AS

Theorem (Al Daas, LG, Jolivet, Tournier)

Given the multilevel preconditioner defined at each level $i=1: \log _{d} N_{1}$ as

$$
M_{A_{i}, M A S}^{-1}=V_{i} A_{i+1}^{-1} V_{i}^{T}+\sum_{j=1}^{N_{i}} R_{i j}^{\top} A_{i j}^{-1} R_{i j}
$$

then $M_{M A S}^{-1}=M_{A_{1}, M A S}^{-1}$ and,

$$
\kappa\left(M_{A_{i}, M A S}^{-1} A_{i}\right) \leq\left(k_{i c}+1\right)\left(2+\left(2 k_{i c}+1\right) k_{i} \tau\right),
$$

where $k_{\text {ic }}=$ number of distinct colours to colour the graph of A, $k_{i}=$ max number of domains that share a common vertex.

Communication efficiency
Construction of $M_{\text {MAS }}^{-1}$ preconditioner requires $O\left(\log _{d} N_{1}\right)$ messages.
Application of $M_{\text {MAS }}^{-1}$ preconditioner requires $O\left(\left(\log _{2} N_{1}\right)^{\log _{d} N_{1}}\right)$ messages
per iteration

Robustness and efficiency of multilevel AS

Theorem (AI Daas, LG, Jolivet, Tournier)

Given the multilevel preconditioner defined at each level $i=1: \log _{d} N_{1}$ as

$$
M_{A_{i}, M A S}^{-1}=V_{i} A_{i+1}^{-1} V_{i}^{T}+\sum_{j=1}^{N_{i}} R_{i j}^{\top} A_{i j}^{-1} R_{i j}
$$

then $M_{M A S}^{-1}=M_{A_{1}, M A S}^{-1}$ and,

$$
\kappa\left(M_{A_{i}, M A S}^{-1} A_{i}\right) \leq\left(k_{i c}+1\right)\left(2+\left(2 k_{i c}+1\right) k_{i} \tau\right),
$$

where $k_{\text {ic }}=$ number of distinct colours to colour the graph of A, $k_{i}=$ max number of domains that share a common vertex.

Communication efficiency

- Construction of $M_{M A S}^{-1}$ preconditioner requires $O\left(\log _{d} N_{1}\right)$ messages.
- Application of $M_{\text {MAS }}^{-1}$ preconditioner requires $O\left(\left(\log _{2} N_{1}\right)^{\log _{d} N_{1}}\right)$ messages per iteration.

Parallel performance for linear elasticity

- Machine: IRENE (Genci), Intel Skylake 8168, $2,7 \mathrm{GHz}, 24$ cores each
- Stopping criterion: 10^{-5} (10^{-2} for 3rd level)
- Young's modulus E and Poisson's ratio ν take two values, $\left(E_{1}, \nu_{1}\right)=\left(2 \cdot 10^{11}, 0.35\right)$, and $\left(E_{2}, \nu_{2}\right)=\left(10^{7}, 0.45\right)$

Linear elasticity, 121×10^{6} unknowns, PETSc versus GenEO HPDDM

	PETSc GAMG			HPDDM				
\# P	PCSetUp	KSPSolve	Total	Deflation subspace	Domain factor	Coarse matrix	Solve	Total
1,024	39.9	85.7	125.7	185.8	26.8	3.0	62.0	277.7
2,048	42.1	21.2	63.3	76.1	8.5	4.2	28.5	117.3
4,096	95.1	182.8	277.9	32.0	3.6	8.5	18.1	62.4

More details in P. Jolivet's talk, MS 199, this morning

Parallel performance for linear elasticity

- Machine: IRENE (Genci), Intel Skylake 8168, $2,7 \mathrm{GHz}, 24$ cores each
- Stopping criterion: 10^{-5} (10^{-2} for 3rd level)
- Young's modulus E and Poisson's ratio ν take two values, $\left(E_{1}, \nu_{1}\right)=\left(2 \cdot 10^{11}, 0.35\right)$, and $\left(E_{2}, \nu_{2}\right)=\left(10^{7}, 0.45\right)$

Linear elasticity, $616 \cdot 10^{6}$ unknowns, GenEO versus GenEO multilevel

\# P	Deflation subspace	Domain factor	Coarse matrix	Solve	Total	\# iter
	GenEO					
8192	113.3	11.9	27.5	52.0	152.8	53
	GenEO multilevel					
8192	113.3	11.9	13.2	52.0	138.5	53

A_{2} of dimension $328 \cdot 10^{3} \times 328 \cdot 10^{3}, A_{3}$ of dimension 5120×5120.
More details in P. Jolivet's talk, MS 199, this morning

Plan

Motivation of our work

Short overview of results from CA dense linear algebra TSQR factorization

Preconditioned Krylov subspace methods Enlarged Krylov methods Robust multilevel additive Schwarz preconditioner

Unified perspective on low rank matrix approximation Generalized LU decomposition

Prospects for the future: tensors in high dimensions Hierarchical low rank tensor approximation

Conclusions

Low rank matrix approximation

- Problem: given $m \times n$ matrix A, compute rank-k approximation $Z W^{\top}$, where Z is $m \times k$ and W^{T} is $k \times n$.

- Best rank-k approximation $A_{k}=U_{k} \Sigma_{k} V_{k}$ is rank-k truncated SVD of A [Eckart and Young, 1936]

$$
\begin{aligned}
\min _{\operatorname{rank}\left(\tilde{A}_{k}\right) \leq k}\left\|A-\tilde{A}_{k}\right\|_{2} & =\left\|A-A_{k}\right\|_{2}=\sigma_{k+1}(A) \\
\min _{\operatorname{rank}\left(\tilde{(\tilde{k}}_{k}\right) \leq k}\left\|A-\tilde{A}_{k}\right\|_{F} & =\left\|A-A_{k}\right\|_{F}=\sqrt{\sum_{j=k+1}^{n} \sigma_{j}^{2}(A)}
\end{aligned}
$$

Low rank matrix approximation: trade-offs

Flops

$$
\begin{aligned}
& \text { Truncated CA-SVD } \\
& \text { CA (strong) QR with } \\
& \text { column pivoting } \\
& \text { LU with column/row } \\
& \text { tournament pivoting } \\
& \text { Truncated SVD } \\
& \text { Lanczos Algorithm } \\
& \underbrace{\substack{\text { Lanczos Algorithm } \\
\begin{array}{ll}
\text { CA (strong) QR with } \\
\text { column pivoting }
\end{array} \\
\begin{array}{ll}
\text { LU with column/row } \\
\text { tournament pivoting }
\end{array} \\
\text { (strong) QR with } \\
\text { column pivoting } \\
\text { LU with column, } \\
\text { rook pivoting }}}_{\text {Truncated CA-SVD }}
\end{aligned}
$$

Accuracy

Communication optimal if computing a rank-k approximation on P processors requires

$$
\# \text { messages }=\Omega(\log P)
$$

Deterministic rank-k matrix approximation

Given $A \in \mathbb{R}^{m \times n}, U=\binom{U_{1}}{U_{2}} \in \mathbb{R}^{m, m}, V=\left(\begin{array}{ll}V_{1} & V_{2}\end{array}\right) \in \mathbb{R}^{n, n}, U, V$ invertible, $U_{1} \in \mathbb{R}^{I^{\prime} \times m}, V_{1} \in \mathbb{R}^{n \times I}, k \leq I \leq I^{\prime}$.

$$
\begin{aligned}
U A V & =\bar{A}=\left(\begin{array}{ll}
\bar{A}_{11} & \bar{A}_{12} \\
\bar{A}_{21} & \bar{A}_{22}
\end{array}\right) \\
& =\left(\begin{array}{cc}
I & \bar{A}_{21} \bar{A}_{11}^{+} \\
I
\end{array}\right)\left(\begin{array}{cc}
\bar{A}_{11} & \bar{A}_{12} \\
& S\left(\bar{A}_{11}\right)
\end{array}\right)=U\left(\begin{array}{ll}
Q_{1} & Q_{2}
\end{array}\right)\left(\begin{array}{ll}
R_{11} & R_{12} \\
& R_{22}
\end{array}\right),
\end{aligned}
$$

where $\bar{A}_{11} \in \mathbb{R}^{\prime^{\prime}, l}, \bar{A}_{11}^{+} \bar{A}_{11}=I, S\left(\bar{A}_{11}\right)=\bar{A}_{22}-\bar{A}_{21} \bar{A}_{11}^{+} \bar{A}_{12}$.

- Generalized LU computes the approximation

$$
\tilde{A}_{k}=U^{-1}\binom{l}{\bar{A}_{21} \bar{A}_{11}^{+}}\left(\begin{array}{ll}
\bar{A}_{11} & \bar{A}_{12}
\end{array}\right) V^{-1}
$$

- QR computes the approximation

$$
\tilde{A}_{k}=Q_{1}\left(\begin{array}{ll}
R_{11} & R_{12}
\end{array}\right) V^{-1}=Q_{1} Q_{1}^{T} A, \text { where } Q_{1} \text { is orth basis for }\left(A V_{1}\right)
$$

Unified perspective: generalized LU factorization

Given U_{1}, A, V_{1}, Q_{1} orth. basis of $\left(A V_{1}\right), k=I=I^{\prime}$, rank-k approximation,

$$
\tilde{A}_{k}=A V_{1}\left(U_{1} A V_{1}\right)^{-1} U_{1} A
$$

Deterministic algorithms
V_{1} column permutation and ...
QR with column selection
(a.k.a. strong rank revealing $Q R$) $U_{1}=Q_{1}^{T}, \tilde{A}_{k}=Q_{1} Q_{1}^{T} A$ $\left\|R_{11}^{-1} R_{12}\right\|_{\text {max }}$ is bounded
LU with column/row selection (a.k.a. rank revealing LU) U_{1} row permutation s.t. $U_{1} Q_{1}=\binom{\bar{Q}_{11}}{\bar{Q}_{21}}$
$\left\|\bar{Q}_{21} \bar{Q}_{11}^{-1}\right\|_{\text {max }}$ is bounded
with J. Demmel, A. Rusciano * For a review, see Halko et al., SIAM Review 11

Deterministic column selection: tournament pivoting

- Partition $A=\left(A_{1}, A_{2}, A_{3}, A_{4}\right)$.
- Select k cols from each column block, by using QR with column

2k	2k	2k	2k
A_{1}	A_{2}	A_{3}	A_{4}

- At each level i of the tree
\square At each node j do in parallel
- Let $A_{v, i-1}, A_{w, i-1}$ be the cols selected by the children of node j
- Select k cols from ($A_{v, i-1}, A_{w, i-1}$), by using QR with column pivoting
- Return columns in $A_{j i}$
[Demmel, LG, Gu, Xiang 13], [LG, Cayrols, Demmel 18]

Deterministic column selection: tournament pivoting

- Partition $A=\left(A_{1}, A_{2}, A_{3}, A_{4}\right)$.
- Select k cols from each column block, by using QR with column pivoting

- At each level i of the tree
\square At each node j do in parallel
- Let $A_{v, i-1}, A_{w, i-1}$ be the cols selected by the children of node j
- Select k cols from ($A_{v, i-1}, A_{w, i-1}$), by using QR with column pivoting
- Return columns in $A_{j i}$
[Demmel, LG, Gu, Xiang 13], [LG, Cayrols, Demmel 18]

Deterministic column selection: tournament pivoting

- Partition $A=\left(A_{1}, A_{2}, A_{3}, A_{4}\right)$.
- Select k cols from each column block, by using QR with column pivoting
- At each level i of the tree
\square At each node j do in parallel
- Let $A_{v, i-1}, A_{w, i-1}$ be the cols selected by the children of node j

- Select k cols from ($A_{v, i-1}, A_{w, i-1}$), by using QR with column pivoting
- Return columns in $A_{j i}$
[Demmel, LG, Gu, Xiang 13], [LG, Cayrols, Demmel 18]

Deterministic column selection: tournament pivoting

- Partition $A=\left(A_{1}, A_{2}, A_{3}, A_{4}\right)$.
- Select k cols from each column block, by using QR with column pivoting
- At each level i of the tree
\square At each node j do in parallel
- Let $A_{v, i-1}, A_{w, i-1}$ be the cols selected by the children of node j

- Select k cols from ($A_{v, i-1}, A_{w, i-1}$), by using QR with column pivoting
- Return columns in $A_{j i}$
[Demmel, LG, Gu, Xiang 13], [LG, Cayrols, Demmel 18]

Deterministic column selection: tournament pivoting

- Partition $A=\left(A_{1}, A_{2}, A_{3}, A_{4}\right)$.
- Select k cols from each column block, by using QR with column pivoting
- At each level i of the tree
\square At each node j do in parallel
- Let $A_{v, i-1}, A_{w, i-1}$ be the cols selected by the children of node j
- Select k cols from ($A_{v, i-1}, A_{w, i-1}$), by using QR with column pivoting
- Return columns in $A_{j i}$

[Demmel, LG, Gu, Xiang 13], [LG, Cayrols, Demmel 18]

Deterministic column selection: tournament pivoting

- Partition $A=\left(A_{1}, A_{2}, A_{3}, A_{4}\right)$.
- Select k cols from each column block, by using QR with column pivoting
- At each level i of the tree
\square At each node j do in parallel
- Let $A_{v, i-1}, A_{w, i-1}$ be the cols selected by the children of node j
- Select k cols from ($A_{v, i-1}, A_{w, i-1}$), by using QR with column pivoting
- Return columns in $A_{j i}$

[Demmel, LG, Gu, Xiang 13], [LG, Cayrols, Demmel 18]

Deterministic guarantees for rank-k approximation

- CA QR with column selection based on binary tree tournament pivoting:

$$
1 \leq \frac{\sigma_{i}(A)}{\sigma_{i}\left(R_{11}\right)}, \frac{\sigma_{j}\left(R_{22}\right)}{\sigma_{k+j}(A)} \leq \sqrt{1+F_{T P}^{2}(n-k)}, \quad F_{T P} \leq \frac{1}{\sqrt{2 k}}(n / k)^{\log _{2}(\sqrt{2} f k)}
$$

for any $1 \leq i \leq k$, and $1 \leq j \leq \min (m, n)-k$.
CA LU with column/row selection with binary tree tournament pivoting:

Deterministic guarantees for rank-k approximation

- CA QR with column selection based on binary tree tournament pivoting:

$$
1 \leq \frac{\sigma_{i}(A)}{\sigma_{i}\left(R_{11}\right)}, \frac{\sigma_{j}\left(R_{22}\right)}{\sigma_{k+j}(A)} \leq \sqrt{1+F_{T P}^{2}(n-k)}, \quad F_{T P} \leq \frac{1}{\sqrt{2 k}}(n / k)^{\log _{2}(\sqrt{2} f k)}
$$

for any $1 \leq i \leq k$, and $1 \leq j \leq \min (m, n)-k$.

- CA LU with column/row selection with binary tree tournament pivoting:

$$
\begin{aligned}
& \begin{aligned}
1 \leq \frac{\sigma_{i}(A)}{\sigma_{i}\left(\bar{A}_{11}\right)}, \frac{\sigma_{j}\left(S\left(\bar{A}_{11}\right)\right)}{\sigma_{k+j}(A)} & \leq \sqrt{\left(1+F_{T P}^{2}(n-k)\right)} / \sigma_{\min }\left(\bar{Q}_{11}\right) \\
& \leq \sqrt{\left(1+F_{T P}^{2}(n-k)\right)\left(1+F_{T P}^{2}(m-k)\right)} \\
\text { for any } 1 \leq i \leq k \text {, and } 1 \leq j & \leq \min (m, n)-k, U_{1} Q_{1}=\binom{\bar{Q}_{11}}{\bar{Q}_{21}} .
\end{aligned} .
\end{aligned}
$$

Probabilistic guarantees

- Combine deterministic guarantees with sketching ensembles satisfying Johnson-Lindenstrauss properties \rightarrow better bounds

Probabilistic guarantees

- Combine deterministic guarantees with sketching ensembles satisfying Johnson-Lindenstrauss properties \rightarrow better bounds
- Consider $U_{1} \in \mathbb{R}^{\prime^{\prime} \times m}, V_{1} \in \mathbb{R}^{n \times I}$ are Subsampled Randomized Hadamard Transforms (SRHT), $I^{\prime}>l$.
\square Compute \tilde{A}_{k} through generalized LU costs $O\left(m n \log _{2} I^{\prime}\right)$ flops

Let $U_{1} \in \mathbb{R}^{\prime \prime \times m}$ and $V_{1} \in \mathbb{R}^{n \times 1}$ be drawn from SRHT ensembles, $I=10 \epsilon^{-1}(\sqrt{k}+\sqrt{8 \log (n / \delta)})^{2} \log (k / \delta), I \geq \log ^{2}(n / \delta)$, $I^{\prime}=10 \epsilon^{-1}(\sqrt{I}+\sqrt{8 \log (m / \delta)})^{2} \log (k / \delta), I^{\prime} \geq \log ^{2}(m / \delta)$.
With probability $1-5 \delta$, the generalized LU approximation \tilde{A}_{k} satisfies

$$
\left\|A-\tilde{A}_{k}\right\|_{2}^{2}=O(1) \sigma_{k+1}^{2}(A)+O\left(\frac{\log (n / \delta)}{l}+\frac{\log (m / \delta)}{l^{\prime}}\right)\left(\sigma_{k+1}^{2}(A)+\ldots \sigma_{n}^{2}(A)\right)
$$

Growth factor in Gaussian elimination

$$
\rho(A):=\frac{\max _{k}\left\|S_{k}\right\|_{\max }}{\|A\|_{\max }}, \text { where } A \in \mathbb{R}^{m \times n},
$$

S_{k} is Schur complement obtained at iteration k

Deterministic algorithms

- LU with partial pivoting $\rho(A) \leq 2^{n}$
- CA LU with column/row selection with binary tree tournament pivoting:

$$
\left\|S_{k}\left(\bar{A}_{11}\right)\right\|_{\max } \leq \min \left(\left(1+F_{T P} \sqrt{k}\right)\|A\|_{\max }, F_{T P} \sqrt{1+F_{T P}^{2}(m-k)} \sigma_{k}(A)\right)
$$

Randomized algorithms
U, V Haar distributed matrices,

$$
\mathbb{E}[\log (\rho(U A V))]=O(\log (n))
$$

Plan

Motivation of our work

Short overview of results from CA dense linear algebra TSQR factorization

Preconditioned Krylov subspace methods Enlarged Krylov methods Robust multilevel additive Schwarz preconditioner

Unified perspective on low rank matrix approximation Generalized LU decomposition

Prospects for the future: tensors in high dimensions Hierarchical low rank tensor approximation

Conclusions

Prospects for the future: tensors

Many open questions - only a few recalled
Communication bounds few existing results

- Symmetric tensor contractions [Solomonik et al, 18]
- Bound for volume of communication for matricized tensor times Khatri-Rao product [Ballard et al, 17]

Approximation algorithms

- Algorithms as ALS, DMRG, intrinsically sequential in the number of modes
- Dynamically adapt the rank to a given error
- Approximation of high rank tensors
\square but low rank in large parts, e.g. due to stationarity in the model the tensor describes

For an overview, see Kolda and Bader, SIAM Review 2009

Hierarchical low rank tensor approximation

- Decompose $\mathcal{A} \in \mathbb{R}^{n_{1} \times \ldots n_{d}}$ in subtensors $\mathcal{A}_{1 j} \in \mathbb{R}^{n_{1} / 2 \times \ldots n_{d} / 2}, j=1: 2^{d}$.
- Decompose recursively each subtensor $\mathcal{A}_{1 j}$ until depth L

Input: $\mathcal{A}, 2^{L d}$ subtensors $\mathcal{A}_{i j}, i=1: L$, tree T with $2^{L d}$ leaves and height L
Output: $\tilde{\mathcal{A}}$ in hierarchical format
Ensure: $\|\mathcal{A}-\tilde{\mathcal{A}}\|_{F}<\varepsilon$
for each level i from L to 1 do
for each node j with merge allowed do
Compute $\tilde{\mathcal{A}}_{i j}$ s.t. $\left\|\mathcal{A}_{i j}-\tilde{\mathcal{A}}_{i j}\right\|_{F}<\varepsilon / 2^{d i}$ if storage $\left(\tilde{\mathcal{A}}_{i j}\right)<$ storage (children approx.) in T then
keep $\mathcal{A}_{i j}$ approximation in $\tilde{\mathcal{A}}$ else keep children approx. in $\tilde{\mathcal{A}}$ merge of ancestors not allowed endif endfor endfor

Coulomb potential, 512^{3}, $V(x, y, z)=\frac{1}{|x-y|}+\frac{1}{|y-z|}+\frac{1}{|x-z|}$ hierarchical format requires 7% of storing \mathcal{A} for $\varepsilon=10^{-5}$

with V. Ehrlacher and D. Lombardi

Hierarchical low rank tensor approximation

- Decompose $\mathcal{A} \in \mathbb{R}^{n_{1} \times \ldots n_{d}}$ in subtensors $\mathcal{A}_{1 j} \in \mathbb{R}^{n_{1} / 2 \times \ldots n_{d} / 2}, j=1: 2^{d}$.
- Decompose recursively each subtensor $\mathcal{A}_{1 j}$ until depth L

Input: $\mathcal{A}, 2^{L d}$ subtensors $\mathcal{A}_{i j}, i=1: L$, tree T with $2^{L d}$ leaves and height L
Output: $\tilde{\mathcal{A}}$ in hierarchical format
Ensure: $\|\mathcal{A}-\tilde{\mathcal{A}}\|_{F}<\varepsilon$
for each level i from L to 1 do
for each node j with merge allowed do
Compute $\tilde{\mathcal{A}}_{i j}$ s.t. $\left\|\mathcal{A}_{i j}-\tilde{\mathcal{A}}_{i j}\right\|_{F}<\varepsilon / 2^{d i}$ if storage $\left(\tilde{\mathcal{A}}_{i j}\right)<$ storage (children approx.) in T then
keep $\mathcal{A}_{i j}$ approximation in $\tilde{\mathcal{A}}$ else keep children approx. in $\tilde{\mathcal{A}}$ merge of ancestors not allowed endif endfor endfor

Coulomb potential, 512^{3}, $V(x, y, z)=\frac{1}{|x-y|}+\frac{1}{|y-z|}+\frac{1}{|x-z|}$ hierarchical format requires 7% of storing \mathcal{A} for $\varepsilon=10^{-5}$

with V. Ehrlacher and D. Lombardi

Hierarchical low rank tensor approximation

- Decompose $\mathcal{A} \in \mathbb{R}^{n_{1} \times \ldots n_{d}}$ in subtensors $\mathcal{A}_{1 j} \in \mathbb{R}^{n_{1} / 2 \times \ldots n_{d} / 2}, j=1: 2^{d}$.
- Decompose recursively each subtensor $\mathcal{A}_{1 j}$ until depth L

Input: $\mathcal{A}, 2^{L d}$ subtensors $\mathcal{A}_{i j}, i=1: L$, tree T with $2^{L d}$ leaves and height L
Output: $\tilde{\mathcal{A}}$ in hierarchical format
Ensure: $\|\mathcal{A}-\tilde{\mathcal{A}}\|_{F}<\varepsilon$
for each level i from L to 1 do
for each node j with merge allowed do
Compute $\tilde{\mathcal{A}}_{i j}$ s.t. $\left\|\mathcal{A}_{i j}-\tilde{\mathcal{A}}_{i j}\right\|_{F}<\varepsilon / 2^{d i}$
if storage $\left(\tilde{\mathcal{A}}_{i j}\right)<$ storage (children approx.) in T then
keep $\mathcal{A}_{i j}$ approximation in $\tilde{\mathcal{A}}$ else keep children approx. in $\tilde{\mathcal{A}}$ merge of ancestors not allowed endif endfor endfor

Coulomb potential, 512^{3},

$$
V(x, y, z)=\frac{1}{|x-y|}+\frac{1}{|y-z|}+\frac{1}{|x-z|}
$$ hierarchical format requires 7% of storing \mathcal{A} for $\varepsilon=10^{-5}$

Compressing the solution of Vlasov-Poisson equation

- Hierarchical tensors in the spirit of hierarchical matrices (Hackbusch et al), but no information on the represented function required. Speed, velocity, time $512 \times 256 \times 160$, compression factor of 350 for $\varepsilon=10^{-3}$.

Compressing the solution of Vlasov-Poisson equation

- Hierarchical tensors in the spirit of hierarchical matrices (Hackbusch et al), but no information on the represented function required. Speed, velocity, time $512 \times 256 \times 160$, compression factor of 350 for $\varepsilon=10^{-3}$.

Plan

Motivation of our work

Short overview of results from CA dense linear algebra
TSQR factorization

Preconditioned Krylov subspace methods
Enlarged Krylov methods
Robust multilevel additive Schwarz preconditioner
Unified perspective on low rank matrix approximation Generalized LU decomposition

Prospects for the future: tensors in high dimensions Hierarchical low rank tensor approximation

Conclusions

Conclusions

Most of the methods discussed available in libraries:

- Dense CA linear algebra
\square progressively in LAPACK/ScaLAPACK and some vendor libraries
- Iterative methods:
preAlps library https://github.com/NLAFET/preAlps:
\square Enlarged CG: Reverse Communication Interface
\square Enlarged GMRES will be available as well
- Multilevel Additive Schwarz
will be available in HPDDM as multilevel Geneo (P. Jolivet)

Acknowledgements

- NLAFET H2020 european project, ANR
- Total

Prospects for the future

- Multilevel Additive Schwarz
\square from theory to practice, find an efficient local algebraic splitting that allows to solve the Gen. EVP locally on each processor
- Tensors in high dimensions
\square ERC Synergy project Extreme-scale Mathematically-based Computational Chemistry project (EMC2), with E. Cances, Y. Maday, and J.-P. Piquemal.

Collaborators: G. Ballard, S. Cayrols, H. Al Daas, J. Demmel, M. Hoemmen, P. Jolivet, N. Knight, S. Moufawad, F. Nataf, D. Nguyen, J. Langou, E. Solomonik, A. Rusciano, P. H. Tournier, O. Tissot.

References (1)

Ashby, S. F., Manteuffel, T. A., and Saylor, P. E. (1990).
A taxonomy for conjugate gradient methods.
SIAM Journal on Numerical Analysis, 27(6):1542-1568.
Eckart, C. and Young, G. (1936).
The approximation of one matrix by another of lower rank.
Psychometrika, 1:211-218.
Grigori, L., Moufawad, S., and Nataf, F. (2016).
Enlarged Krylov Subspace Conjugate Gradient Methods for Reducing Communication. SIAM Journal on Scientific Computing, 37(2):744-773.
Also as INRIA TR 8266.
Hestenes, M. R. and Stiefel, E. (1952).
Methods of conjugate gradients for solving linear systems.
Journal of research of the National Bureau of Standards., 49:409-436.
OLeary, D. P. (1980).
The block conjugate gradient algorithm and related methods.
Linear Algebra and Its Applications, 29:293-322.

