Communication Avoiding: The Past Decade and the New Challenges

L. Grigori and collaborators

Alpines Inria Paris and LJLL, Sorbonne University

February 27, 2019

Motivation of our work

Short overview of results from CA dense linear algebra TSQR factorization

Preconditioned Krylov subspace methods

Enlarged Krylov methods Robust multilevel additive Schwarz preconditioner

Unified perspective on low rank matrix approximation Generalized LU decomposition

Prospects for the future: tensors in high dimensions Hierarchical low rank tensor approximation

Conclusions

The communication wall: compelling numbers

Time/flop 59% annual improvement up to 200412008 Intel Nehalem 3.2GHz×4 cores (51.2 GFlops/socket)1x2017 Intel Skylake XP 2.1GHz×28 cores (1.8 TFlops/socket)35x in 9 years

DRAM latency:5.5% annual improvement up to 20041DDR2 (2007)120 ns1x1xDDR4 (2014)45 ns2.6x in 7 yearsStacked memorysimilar to DDR4

Network latency: 15% annual improvement up to 2004¹

Interconnect (example one machine today): 0.25 μs to 3.7 μs MPI latency

Sources:

- 1. Getting up to speed, The future of supercomputing 2004, data from 1995-2004
- 2. G. Bosilca (UTK), S. Knepper (Intel), J. Shalf (LBL)

Can we have both scalable and robust methods ?

Difficult ... but crucial ...

since complex and large scale applications very often challenge existing methods

Focus on increasing scalability by reducing/minimizing coummunication while preserving robustness in linear algebra

- Dense linear algebra: ensuring backward stability
- Iterative solvers and preconditioners: bounding the condition number of preconditioned matrix
- Matrix approximation: attaining a prescribed accuracy

Can we have both scalable and robust methods ?

Difficult ... but crucial ...

since complex and large scale applications very often challenge existing methods

Focus on increasing scalability by reducing/minimizing coummunication while preserving robustness in linear algebra

- Dense linear algebra: ensuring backward stability
- Iterative solvers and preconditioners: bounding the condition number of preconditioned matrix
- Matrix approximation: attaining a prescribed accuracy

Communication Complexity of Dense Linear Algebra

Matrix multiply, using $2n^3$ flops (sequential or parallel)

- Hong-Kung (1981), Irony/Tishkin/Toledo (2004)
- Lower bound on Bandwidth = $\Omega(\# flops/M^{1/2})$
- Lower bound on Latency = $\Omega(\# flops/M^{3/2})$

Same lower bounds apply to LU using reduction

Demmel, LG, Hoemmen, Langou, tech report 2008, SISC 2012

$$\begin{pmatrix} I & -B \\ A & I \\ & I \end{pmatrix} = \begin{pmatrix} I & I \\ A & I \\ & I \end{pmatrix} \begin{pmatrix} I & -B \\ I & AB \\ & I \end{pmatrix}$$

And to almost all direct linear algebra

[Ballard, Demmel, Holtz, Schwartz, 09]

2D Parallel algorithms and communication bounds

If memory per processor $= n^2/P$, the lower bounds on communication are

#words_moved $\geq \Omega(n^2/\sqrt{P}), \ \#$ messages $\geq \Omega(\sqrt{P})$

Most classical algorithms (ScaLAPACK) attain lower bounds on #words_moved but do not attain lower bounds on #messages

	ScaLAPACK	CA algorithms		
LU				
		[LG, Demmel, Xiang, 08]		
		[Khabou, Demmel, LG, Gu, 12]		
QR				
		[Demmel, LG, Hoemmen, Langou, 08]		
		[Ballard, Demmel, LG, Jacquelin, Nguyen, Solomonik, 14		
RRQR				
		[Demmel, LG, Gu, Xiang 13]		
	al references shown,	ScaLAPACK and communication avoiding algorithms		

2D Parallel algorithms and communication bounds

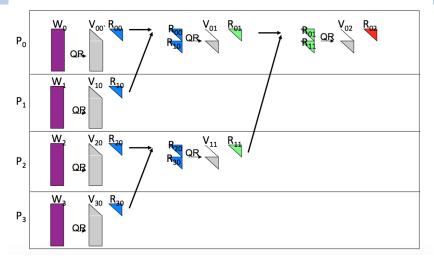
If memory per processor $= n^2/P$, the lower bounds on communication are

#words_moved $\geq \Omega(n^2/\sqrt{P}), \ \#$ messages $\geq \Omega(\sqrt{P})$

Most classical algorithms (ScaLAPACK) attain lower bounds on #words_moved but do not attain lower bounds on #messages

	ScaLAPACK	CA algorithms			
LU	partial pivoting	tournament pivoting			
		[LG, Demmel, Xiang, 08]			
		[Khabou, Demmel, LG, Gu, 12]			
QR	column based	reduction based			
	Householder	Householder			
		[Demmel, LG, Hoemmen, Langou, 08]			
		[Ballard, Demmel, LG, Jacquelin, Nguyen, Solomonik, 14]			
RRQR	column pivoting	tournament pivoting			
		[Demmel, LG, Gu, Xiang 13]			
Only sever	Only several references shown, ScaLAPACK and communication avoiding algorithms				

TSQR: CA QR factorization of a tall skinny matrix

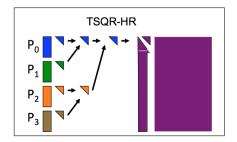


J. Demmel, LG, M. Hoemmen, J. Langou, 08

References: Golub, Plemmons, Sameh 88, Pothen, Raghavan, 89, Da Cunha, Becker,

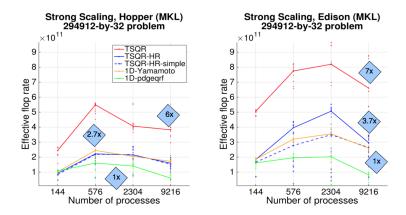
Patterson, 02

TSQR: CA QR factorization of a tall skinny matrix



J. Demmel, LG, M. Hoemmen, J. Langou, 08 Ballard, Demmel, LG, Jacquelin, Nguyen, Solomonik, 14

Strong scaling of TSQR



- Hopper: Cray XE6 (NERSC) 2 × 12-core AMD Magny-Cours (2.1 GHz)
- Edison: Cray CX30 (NERSC) 2 × 12-core Intel Ivy Bridge (2.4 GHz)
- Effective flop rate, computed by dividing $2mn^2 2n^3/3$ by measured runtime

Ballard, Demmel, LG, Jacquelin, Knight, Nguyen, and Solomonik, 2015

8 of 43

Plan

Motivation of our work

Short overview of results from CA dense linear algebra TSQR factorization

Preconditioned Krylov subspace methods

Enlarged Krylov methods Robust multilevel additive Schwarz preconditioner

Unified perspective on low rank matrix approximation Generalized LU decomposition

Prospects for the future: tensors in high dimensions Hierarchical low rank tensor approximation

Conclusions

Challenge in getting scalable and robust solvers

On large scale computers, Krylov solvers reach less than 2% of the peak performance.

- Typically, each iteration of a Krylov solver requires
 - □ Sparse matrix vector product
 - \rightarrow point-to-point communication
 - Dot products for orthogonalization
 - \rightarrow global communication
- When solving complex linear systems most of the highly parallel preconditioners lack robustness
 - wrt jumps in coefficients / partitioning into irregular subdomains, e.g. one level DDM methods (Additive Schwarz, RAS)
 - A few small eigenvalues hinder the convergence of iterative methods

Focus on increasing scalability by reducing coummunication/increasing arithmetic intensity while dealing with small eigenvalues

Enlarged Krylov methods [LG, Moufawad, Nataf, 14]

- Partition the matrix into N domains
- Split the residual r₀ into t vectors corresponding to the N domains,

Generate *t* new basis vectors, obtain an **enlarged** Krylov subspace

$$\mathcal{K}_{t,k}(A, r_0) = \operatorname{span}\{R_0^e, AR_0^e, A^2R_0^e, ..., A^{k-1}R_0^e\}$$

 $\mathcal{K}_k(A, r_0) \subset \mathcal{K}_{t,k}(A, r_0)$

Search for the solution of the system Ax = b in $\mathcal{K}_{t,k}(A, r_0)$

Enlarged Krylov subspace methods based on CG

Defined by the subspace $\mathcal{K}_{t,k}$ and the following two conditions:

- 1. Subspace condition: $x_k \in x_0 + \mathcal{K}_{t,k}$
- 2. Orthogonality condition: $r_k \perp \mathcal{K}_{t,k}$
- At each iteration, the new approximate solution x_k is found by minimizing $\phi(x) = \frac{1}{2}(x^tAx) b^tx$ over $x_0 + \mathcal{K}_{t,k}$:

$$\phi(x_k) = \min\{\phi(x), \forall x \in x_0 + \mathcal{K}_{t,k}(A, r_0)\}$$

Can be seen as a particular case of a block Krylov method
 AX = S(b), such that S(b)ones(t, 1) = b; R₀^e = AX₀ − S(b)
 Orthogonality condition involves the block residual R_k ⊥ K_{t,k}

Enlarged Krylov subspace methods based on CG

Defined by the subspace $\mathcal{K}_{t,k}$ and the following two conditions:

- 1. Subspace condition: $x_k \in x_0 + \mathcal{K}_{t,k}$
- 2. Orthogonality condition: $r_k \perp \mathcal{K}_{t,k}$
- At each iteration, the new approximate solution x_k is found by minimizing φ(x) = ¹/₂(x^tAx) b^tx over x₀ + K_{t,k}:

$$\phi(x_k) = \min\{\phi(x), \forall x \in x_0 + \mathcal{K}_{t,k}(A, r_0)\}$$

Can be seen as a particular case of a block Krylov method
 AX = S(b), such that S(b)ones(t, 1) = b; R₀^e = AX₀ − S(b)
 Orthogonality condition involves the block residual R_k ⊥ K_{t,k}

Convergence analysis

Given

• A is an SPD matrix, x^* is the solution of Ax = b

■
$$||x^* - \overline{x}_k||_A$$
 is the k^{th} error of CG, $e_0 = x^* - x_0$

• $||x^* - x_k||_A$ is the k^{th} error of ECG

Result

CG

$$\begin{split} ||x^* - \overline{x}_k||_A &\leq 2||e_0||_A \left(rac{\sqrt{\kappa} - 1}{\sqrt{\kappa} + 1}
ight) \\ ext{ where } \kappa &= rac{\lambda_{max}(A)}{\lambda_{min}(A)} \end{split}$$

$$||x^* - x_k||_A \leq 2||\hat{\mathbf{e}}_0||_A \left(rac{\sqrt{\kappa_t}-1}{\sqrt{\kappa_t}+1}
ight)$$

ECG

where
$$\kappa_t = \frac{\lambda_{max}(A)}{\lambda_t(A)}$$
, $\hat{e}_0 \equiv E_0(\Phi_1^\top E_0)^{-1} \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$, Φ_1
denotes the *t* eigenvectors associated to the smallest eigenvalues, and E_0 is the initial enlarged error.

From here on, results on enlarged CG obtained with O. Tissot

Classical CG vs. Enlarged CG derived from Block CG

Algorithm 1 Classical CG 1: $p_1 = r_0(r_0^{\top} Ar_0)^{-1/2}$ 2: while $||r_{k-1}||_2 > \varepsilon ||b||_2$ do 3: $\alpha_k = p_k^{\top} r_{k-1}$ 4: $x_k = x_{k-1} + p_k \alpha_k$ 5: $r_k = r_{k-1} - Ap_k \alpha_k$ 6: $z_{k+1} = r_k - p_k (p_k^{\top} Ar_k)$ 7: $p_{k+1} = z_{k+1} (z_{k+1}^{\top} Az_{k+1})^{-1/2}$ 8: end while

Cost per iteration

flops = $O(\frac{n}{P}) \leftarrow \text{BLAS 1 \& 2}$ # words = O(1)# messages = O(1) from SpMV + $O(\log P)$ from dot prod + norm

Algorithm 2 ECG

1: $P_1 = R_0^e (R_0^{e \top} A R_0^e)^{-1/2}$
2: while $ \sum_{i=1}^{\top} R_k^{(i)} _2 < \varepsilon b _2$ do
3: $\alpha_k = P_k^\top R_{k-1}$ $\triangleright t \times t$ matrix
4: $X_k = X_{k-1} + P_k \alpha_k$
5: $R_k = R_{k-1} - AP_k \alpha_k$
6: $Z_{k+1} = AP_k - P_k(P_k^\top AAP_k) -$
$P_{k-1}(P_{k-1}^{ op}AAP_k)$
7: $P_{k+1} = Z_{k+1} (Z_{k+1}^{\top} A Z_{k+1})^{-1/2}$
8: end while
9: $x = \sum_{i=1}^{T} X_k^{(i)}$

Cost per iteration

flops = $O(\frac{nt^2}{P}) \leftarrow$ BLAS 3 # words = $O(t^2) \leftarrow$ Fit in the buffer # messages = O(1) from SpMV + O(logP) from A-ortho

Test cases

- 3 of 5 largest SPD matrices of Tim Davis' collection
- Heterogeneous linear elasticity problem discretized with FreeFem++ using \mathbb{P}_1 FE

 $\begin{aligned} \operatorname{div}(\sigma(u)) + f &= 0 & \text{on } \Omega, \\ u &= u_D & \text{on } \partial\Omega_D, \\ \sigma(u) \cdot n &= g & \text{on } \partial\Omega_N, \end{aligned}$

- $u \in \mathbb{R}^d$ is the unknown displacement field, f is some body force.
- Young's modulus *E* and Poisson's ratio ν , $(E_1, \nu_1) = (2 \cdot 10^{11}, 0.25)$, and $(E_2, \nu_2) = (10^7, 0.45)$.

Name	Size	Nonzeros	Problem	
Hook_1498 Flan_1565 Queen_4147	1,498,023 1,564,794 4,147,110	59,374,451 117,406,044 316,548,962	Structural problem Structural problem Structural problem	
Ela_4	4,615,683	165,388,197	Linear elasticity	

Enlarged CG: dynamic reduction of search directions

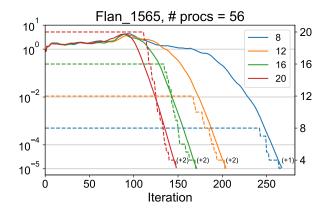


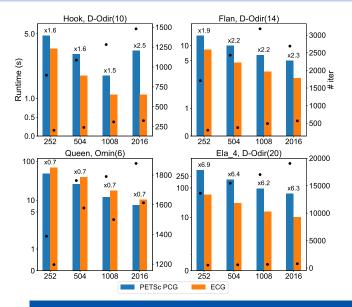
Figure : solid line: normalized residual (scale on the left), dashed line: number of search directions (scale on the right)

 \rightarrow Reduction occurs when the convergence has started

Strong scalability

- Run on Kebnekaise, Umeå University (Sweden) cluster, 432 nodes with Broadwell processors (28 cores per node)
- Compiled with Intel Suite 18
- PETSc 3.7.6 (linked with the MKL)
- Pure MPI (no threading)
- Stopping criterion tolerance is set to 10⁻⁵ (PETSc default value)
- Block diagonal preconditioner, number blocks equals number of MPI processes
 - $\hfill\square$ Cholesky factorization on the block with MKL-PARDISO solver

Strong scalability



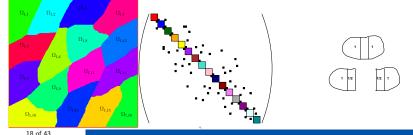
Additive Schwarz methods

Solve $M^{-1}Ax = M^{-1}b$, where $A \in \mathbb{R}^{n \times n}$ is SPD Original idea from Schwarz algorithm at the continuous level (Schwarz 1870)

 Symmetric formulation, Additive Schwarz (1989)

$$M_{AS,1}^{-1} := \sum_{j=1}^{N_1} R_{1j}^T A_{1j}^{-1} R_{1j}$$

- DOFs partitioned into N₁ domains of dimensions n₁₁, n₁₂,... n_{1,N1}
- $R_{1j} \in \mathbb{R}^{n_{1j} \times n}$: restriction operator
- $A_{1j} \in \mathbb{R}^{n_{1j} \times n_{1j}}$: matrix associated to domain j, $A_{1j} = R_{1j}AR_{1j}^T$
- (D_{1j})_{j=1:N1}: algebraic partition of unity



Upper bound for the eigenvalues of $M_{AS_1}^{-1}A$

Let k_c be number of distinct colours to colour the subdomains of A. The following holds (e.g. Chan and Mathew 1994)

 $\lambda_{max}(M_{AS,1}^{-1}A) \leq k_c$

\rightarrow Two level preconditioners are required

- Early references: [Nicolaides 87], [Morgan 92], [Chapman, Saad 92], [Kharchenko, Yeremin 92], [Burrage, Ehrel, and Pohl, 93]
- Our work uses the theoretical framework of the Fictitious space lemma (Nepomnyaschikh 1991).

Construction of the coarse space for 2nd level

Consider the generalized eigenvalue problem for each domain j, for given τ :

Find
$$(u_{1jk}, \lambda_{1jk}) \in \mathbb{R}^{n_{i,1}} \times \mathbb{R}, \lambda_{1jk} \leq 1/\tau$$

such that $R_{1j}\tilde{A}_{1j}R_{1j}^{T}u_{1jk} = \lambda_{1jk}D_{1j}A_{1j}D_{1j}u_{1jk}$

where \tilde{A}_{1j} is a local SPSD splitting of A suitably permuted, V_1 basis of S_1 ,

$$\mathcal{S}_1 := \bigoplus_{j=1}^{N_1} D_{1j} R_{1j}^{\top} Z_{1j}, \ \ Z_{1j} = \text{span} \{ u_{1jk} \mid \lambda_{1jk} < 1/ au \}$$

$$M_{AS,2}^{-1} := V_1 \left(V_1^T A V_1 \right)^{-1} V_1^T + \sum_{j=1}^{N_1} R_{1j}^T A_{1j}^{-1} R_{1j}$$

Theorem (H. Al Daas, LG, 2018)

$$\kappa\left(M_{AS,2_{ALSP}}^{-1}A\right) \leq (k_c+1)\left(2+(2k_c+1)k_m\tau\right)$$

where k_c is the number of distinct colors required to color the graph of A, $k_m \leq N_1$, where N_1 is the number of subdomains

20 of 43

Construction of the coarse space for 2nd level

Consider the generalized eigenvalue problem for each domain j, for given τ :

Find
$$(u_{1jk}, \lambda_{1jk}) \in \mathbb{R}^{n_{i,1}} \times \mathbb{R}, \lambda_{1jk} \le 1/\tau$$

such that $R_{1j}\tilde{A}_{1j}R_{1j}^{T}u_{1jk} = \lambda_{1jk}D_{1j}A_{1j}D_{1j}u_{1jk}$

where \tilde{A}_{1j} is a local SPSD splitting of A suitably permuted, V_1 basis of S_1 ,

$$\mathcal{S}_1 := \bigoplus_{j=1}^{N_1} D_{1j} R_{1j}^{\top} Z_{1j}, \ \ Z_{1j} = \text{span} \{ u_{1jk} \mid \lambda_{1jk} < 1/ au \}$$

$$M_{AS,2}^{-1} := V_1 \left(V_1^T A V_1 \right)^{-1} V_1^T + \sum_{j=1}^{N_1} R_{1j}^T A_{1j}^{-1} R_{1j}$$

- Generalization of Geneo theory fulfilled by standard FE and bilinear forms [Spillane, Dolean, Hauret, Nataf, Pechstein, Scheichl'13]
- $k_m = \max$ number of domains that share a common vertex
- \tilde{A}_{1j} is the Neumann matrix of domain *j*, D_{1j} is nonsingular.

20 of 43

Local SPSD splitting of A wrt a subdomain

- For each domain *j*, a local SPSD splitting is a decomposition $A = \tilde{A}_{1j} + C$, where \tilde{A}_{1j} and *C* are SPSD
- Ideally \tilde{A}_{1j} is local
- Consider domain 1, where A₁₁ corresponds to interior DOFs, A₂₂ the DOFs at the interface of 1 with all other domains, and A₃₃ the rest of DOFs:

$$A = egin{pmatrix} A_{11} & A_{12} & \ A_{21} & A_{22} & A_{23} \ & A_{32} & A_{33} \end{pmatrix}$$

• We note $S(A_{22})$ the Schur complement with respect to A_{22} ,

$$S(A_{22}) = A_{22} - A_{21}A_{11}^{-1}A_{12} - A_{23}A_{33}^{-1}A_{32}.$$

Algebraic local SPSD splitting lemma

Let $A \in \mathbb{R}^{n imes n}$, an SPD matrix, and $\widetilde{A}_{11} \in \mathbb{R}^{n imes n}$ be partitioned as follows

$$A = \begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} & A_{23} \\ & A_{32} & A_{33} \end{pmatrix}, \quad \tilde{A}_{11} = \begin{pmatrix} A_{11} & A_{12} \\ A_{21} & \bar{A}_{22} \\ & & 0 \end{pmatrix}$$

where $A_{ii} \in \mathbb{R}^{m_i \times m_i}$ is non trivial matrix for $i \in \{1, 2, 3\}$. If $\bar{A}_{22} \in \mathbb{R}^{m_2 \times m_2}$ is a symmetric matrix verifying the following inequalities

$$u^{T}A_{21}A_{11}^{-1}A_{12}u \leq u^{T}\bar{A}_{22}u \leq u^{T}\left(A_{22}-A_{23}A_{33}^{-1}A_{32}\right)u, \quad \forall u \in \mathbb{R}^{m_{2}},$$

then $A - \tilde{A}_{11}$ is SPSD, that is the following inequality holds

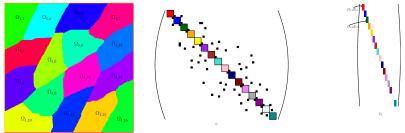
 $0 \leq u^T \tilde{A}_{11} u \leq u^T A u, \quad \forall u \in \mathbb{R}^n.$

• Remember: $S(A_{22}) = A_{22} - A_{23}A_{33}^{-1}A_{32} - A_{21}A_{11}^{-1}A_{12}$.

The left and right inequalities are optimal

Multilevel Additive Schwarz M_{MAS}

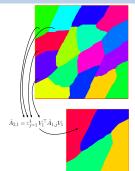
with H. Al Daas, P. Jolivet, P. H. Tournier

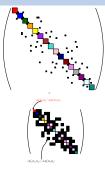


for level i = 1 and each domain $j = 1 : N_1$ in parallel $(A = A_1)$ do $A_{1j} = R_{1j}A_1R_{1j}^T$ (local matrix associated to domain j) \tilde{A}_{1j} is Neumann matrix of domain j (local SPSD splitting) Solve Gen EVP, set $Z_{1j} = \text{span} \{u_{1jk} \mid \lambda_{1jk} < \frac{1}{\tau}\}$ Find $(u_{1jk}, \lambda_{1jk}) \in \mathbb{R}^{n_{1j}} \times \mathbb{R}$ $R_{1j}\tilde{A}_{1j}R_{1j}^T u_{1jk} = \lambda_{1jk}D_{1j}A_{1j}D_{1j}u_{1jk}$. Let $S_1 = \bigoplus_{j=1}^{N_1} D_{1j}R_{1j}^T Z_{1j}$, V_1 basis of S_1 , $A_2 = V_1^T A_1 V_1$, $A_2 \in \mathbb{R}^{n_2 \times n_2}$ end for Preconditioner defined as: $M_{A_1,MAS}^{-1} = V_1 A_2^{-1} V_1^T + \sum_{i=1}^{N_1} R_{1i}^T A_{1i}^{-1} R_{1j}$

23 of 43

Multilevel Additive Schwarz M_{MAS}





for level i = 2 to $\log_d N_i$ do for each domain $j = 1 : N_i$ in parallel do $\tilde{A}_{ij} = \sum_{k=(j-1)d+1}^{jd} V_{i-1}^T \tilde{A}_{i-1,k} V_{i-1}$ (local SPSD splitting) $A_{ij} = R_{ij}A_i R_{ij}^T$ (local matrix associated to domain j) Solve Gen EVP, $Z_{ij} = \text{span} \{ u_{ijk} \mid \lambda_{ijk} < \frac{1}{\tau} \}$ Find $(u_{ijk}, \lambda_{ijk}) \in \mathbb{R}^{n_{ij}} \times \mathbb{R}$ $M_{A_i,MAS}^{-1} = V_i A_{i+1}^{-1} V_i^T + \sum_{j=1}^{N_i} R_{ij}^T A_{ij}^{-1} R_{ij}$ $R_{ij} \tilde{A}_{ij} R_{ij}^T u_{ijk} = \lambda_{ijk} D_{ij} A_{ij} D_{ij} u_{ijk}$ Let $S_i = \bigoplus_{j=1}^{N_i} D_{ij} R_{ij}^T Z_{ij}$, V_i basis of S_i , $A_{i+1} = V_i^T A_i V_i$, $A_{i+1} \in \mathbb{R}^{n_{i+1} \times n_{i+1}}$ end for end for

Robustness and efficiency of multilevel AS

Theorem (Al Daas, LG, Jolivet, Tournier)

Given the multilevel preconditioner defined at each level i = 1: $\log_d N_1$ as

$$M_{A_i,MAS}^{-1} = V_i A_{i+1}^{-1} V_i^T + \sum_{j=1}^{N_i} R_{ij}^\top A_{ij}^{-1} R_{ij}$$

then
$$M_{MAS}^{-1} = M_{A_1,MAS}^{-1}$$
 and,
 $\kappa(M_{A_i,MAS}^{-1}A_i) \le (k_{ic}+1)(2+(2k_{ic}+1)k_i\tau),$

where k_{ic} = number of distinct colours to colour the graph of A, k_i = max number of domains that share a common vertex.

Communication efficiency

• Construction of M_{MAS}^{-1} preconditioner requires $O(\log_d N_1)$ messages.

Application of M_{MAS}^{-1} preconditioner requires $O((\log_2 N_1)^{\log_d N_1})$ messages per iteration.

Robustness and efficiency of multilevel AS

Theorem (AI Daas, LG, Jolivet, Tournier)

Given the multilevel preconditioner defined at each level i = 1: $\log_d N_1$ as

$$M_{A_i,MAS}^{-1} = V_i A_{i+1}^{-1} V_i^T + \sum_{j=1}^{N_i} R_{ij}^\top A_{ij}^{-1} R_{ij}$$

then
$$M_{MAS}^{-1} = M_{A_1,MAS}^{-1}$$
 and,
 $\kappa(M_{A_i,MAS}^{-1}A_i) \le (k_{ic}+1)(2+(2k_{ic}+1)k_i\tau),$

where k_{ic} = number of distinct colours to colour the graph of A, k_i = max number of domains that share a common vertex.

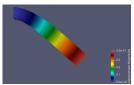
Communication efficiency

- Construction of M_{MAS}^{-1} preconditioner requires $O(\log_d N_1)$ messages.
- Application of M_{MAS}^{-1} preconditioner requires $O((\log_2 N_1)^{\log_d N_1})$ messages per iteration.

25 of 43

Parallel performance for linear elasticity

- Machine: IRENE (Genci), Intel Skylake 8168, 2,7 GHz, 24 cores each
- Stopping criterion: 10⁻⁵ (10⁻² for 3rd level)
- Voung's modulus *E* and Poisson's ratio ν take two values, $(E_1, \nu_1) = (2 \cdot 10^{11}, 0.35)$, and $(E_2, \nu_2) = (10^7, 0.45)$



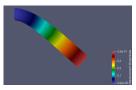
Linear elasticity, 121×10⁶ unknowns, PETSc versus GenEO HPDDM

PETSc GAMG				HPDDM				
# P	PCSetUp	KSPSolve	Total	Deflation subspace	Domain factor	Coarse matrix	Solve	Total
1,024	39.9	85.7	125.7	185.8	26.8	3.0	62.0	277.7
2,048	42.1	21.2	63.3	76.1	8.5	4.2	28.5	117.3
4,096	95.1	182.8	277.9	32.0	3.6	8.5	18.1	62.4

More details in P. Jolivet's talk, MS 199, this morning

Parallel performance for linear elasticity

- Machine: IRENE (Genci), Intel Skylake 8168, 2,7 GHz, 24 cores each
- Stopping criterion: 10^{-5} (10^{-2} for 3rd level)
- Young's modulus *E* and Poisson's ratio *ν* take two values, (*E*₁, *ν*₁) = (2 · 10¹¹, 0.35), and (*E*₂, *ν*₂) = (10⁷, 0.45)



Linear elasticity, 616 · 10⁶ unknowns, GenEO versus GenEO multilevel

# P	Deflation subspace	Domain factor	Coarse matrix	Solve	Total	# iter		
	GenEO							
8192	113.3	11.9	27.5	52.0	152.8	53		
	GenEO multilevel							
8192	113.3	11.9	13.2	52.0	138.5	53		

 A_2 of dimension $328\cdot 10^3\times 328\cdot 10^3$, A_3 of dimension 5120×5120 . More details in P. Jolivet's talk, MS 199, this morning

Plan

Motivation of our work

Short overview of results from CA dense linear algebra TSQR factorization

Preconditioned Krylov subspace methods

Enlarged Krylov methods Robust multilevel additive Schwarz preconditioner

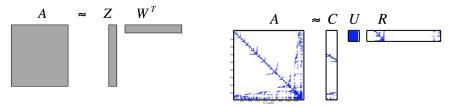
Unified perspective on low rank matrix approximation Generalized LU decomposition

Prospects for the future: tensors in high dimensions Hierarchical low rank tensor approximation

Conclusions

Low rank matrix approximation

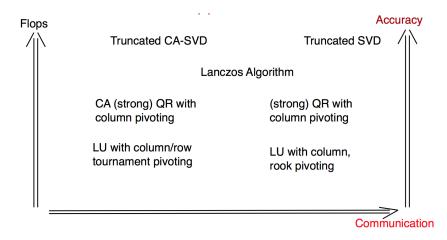
Problem: given $m \times n$ matrix A, compute rank-k approximation ZW^T , where Z is $m \times k$ and W^T is $k \times n$.



 Best rank-k approximation A_k = U_kΣ_kV_k is rank-k truncated SVD of A [Eckart and Young, 1936]

$$\min_{\substack{rank(\tilde{A}_k) \le k}} ||A - \tilde{A}_k||_2 = ||A - A_k||_2 = \sigma_{k+1}(A)$$
$$\min_{rank(\tilde{A}_k) \le k} ||A - \tilde{A}_k||_F = ||A - A_k||_F = \sqrt{\sum_{j=k+1}^n \sigma_j^2(A)}$$

Low rank matrix approximation: trade-offs



Communication optimal if computing a rank-k approximation on P processors requires

messages = $\Omega(\log P)$.

Deterministic rank-k matrix approximation

Given
$$A \in \mathbb{R}^{m \times n}$$
, $U = \begin{pmatrix} U_1 \\ U_2 \end{pmatrix} \in \mathbb{R}^{m,m}$, $V = \begin{pmatrix} V_1 & V_2 \end{pmatrix} \in \mathbb{R}^{n,n}$, U, V
invertible, $U_1 \in \mathbb{R}^{l' \times m}$, $V_1 \in \mathbb{R}^{n \times l}$, $k \leq l \leq l'$.

$$\begin{aligned} UAV &= \bar{A} = \begin{pmatrix} \bar{A}_{11} & \bar{A}_{12} \\ \bar{A}_{21} & \bar{A}_{22} \end{pmatrix} \\ &= \begin{pmatrix} I \\ \bar{A}_{21}\bar{A}_{11}^+ & I \end{pmatrix} \begin{pmatrix} \bar{A}_{11} & \bar{A}_{12} \\ & S(\bar{A}_{11}) \end{pmatrix} = U \begin{pmatrix} Q_1 & Q_2 \end{pmatrix} \begin{pmatrix} R_{11} & R_{12} \\ & R_{22} \end{pmatrix}, \end{aligned}$$

where $\bar{A}_{11} \in \mathbb{R}^{I',I}$, $\bar{A}_{11}^+ \bar{A}_{11} = I$, $S(\bar{A}_{11}) = \bar{A}_{22} - \bar{A}_{21} \bar{A}_{11}^+ \bar{A}_{12}$.

Generalized LU computes the approximation

$$ilde{A}_k = U^{-1} egin{pmatrix} I \ ar{A}_{21}ar{A}_{11}^+ \end{pmatrix} egin{pmatrix} ar{A}_{11} & ar{A}_{12} \end{pmatrix} V^{-1}$$

QR computes the approximation

$$ilde{A}_k = Q_1 egin{pmatrix} R_{11} & R_{12} \end{pmatrix} V^{-1} = Q_1 Q_1^{\mathsf{T}} \mathsf{A}, ext{ where } Q_1 ext{ is orth basis for } (\mathsf{AV}_1)$$

Unified perspective: generalized LU factorization

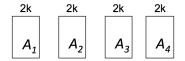
Given U_1, A, V_1, Q_1 orth. basis of (AV_1) , k = l = l', rank-k approximation,

$$\tilde{A}_k = AV_1(U_1AV_1)^{-1}U_1A$$

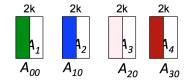
Deterministic algorithms V_1 column permutation and	Randomized algorithms [*] V_1 random matrix and
QR with column selection	Randomized QR
(a.k.a. strong rank revealing QR)	(a.k.a. randomized SVD)
$U_1 = Q_1^{ op}$, $ ilde{\mathcal{A}}_k = Q_1 Q_1^{ op} \mathcal{A}$	$U_1 = Q_1^{T}$, $ ilde{A}_k = Q_1 Q_1^{T} A_k$
$ R_{11}^{-1}R_{12} _{max}$ is bounded	
LU with column/row selection	Randomized LU with row selection
(a.k.a. rank revealing LU)	(a.k.a. SVD via Row extraction)
U_1 row permutation s.t. $U_1 Q_1 = egin{pmatrix} ar{Q}_{11} \ ar{Q}_{21} \end{pmatrix}$	U_1 row permutation s.t. $U_1 Q_1 = \begin{pmatrix} ar{Q}_{11} \\ ar{Q}_{21} \end{pmatrix}$
$ ar{Q}_{21}ar{Q}_{11}^{-1} _{max}$ is bounded	$ ar{Q}_{21}ar{Q}_{11}^{-1} _{max}$ bounded
	Randomized LU approximation
	U_1 random matrix
with J. Demmel, A. Rusciano * For a review, see Halko et al., SIAM Review 11	

31 of 43

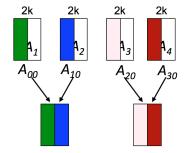
- Partition $A = (A_1, A_2, A_3, A_4)$.
- Select k cols from each column block, by using QR with column pivoting
- At each level i of the tree
 - At each node j do in parallel
 - Let A_{v,i-1}, A_{w,i-1} be the cols selected by the children of node j
 - Select k cols from (A_{v,i-1}, A_{w,i-1}), by using QR with column pivoting
- Return columns in A_{ji}



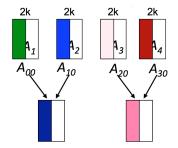
- Partition $A = (A_1, A_2, A_3, A_4)$.
- Select k cols from each column block, by using QR with column pivoting
- At each level i of the tree
 - At each node j do in parallel
 - Let A_{v,i-1}, A_{w,i-1} be the cols selected by the children of node j
 - Select k cols from (A_{v,i-1}, A_{w,i-1}), by using QR with column pivoting
- Return columns in A_{ji}



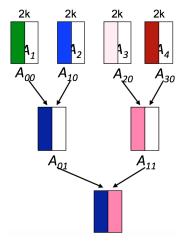
- Partition $A = (A_1, A_2, A_3, A_4)$.
- Select k cols from each column block, by using QR with column pivoting
- At each level i of the tree
 - □ At each node *j* do in parallel
 - Let A_{v,i-1}, A_{w,i-1} be the cols selected by the children of node j
 - Select k cols from (A_{v,i-1}, A_{w,i-1}), by using QR with column pivoting
- Return columns in A_{ji}



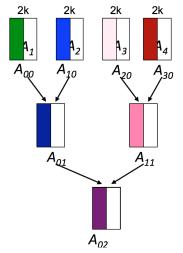
- Partition $A = (A_1, A_2, A_3, A_4)$.
- Select k cols from each column block, by using QR with column pivoting
- At each level i of the tree
 - □ At each node *j* do in parallel
 - Let A_{v,i-1}, A_{w,i-1} be the cols selected by the children of node j
 - Select k cols from (A_{v,i-1}, A_{w,i-1}), by using QR with column pivoting
- Return columns in A_{ji}



- Partition $A = (A_1, A_2, A_3, A_4)$.
- Select k cols from each column block, by using QR with column pivoting
- At each level i of the tree
 - At each node j do in parallel
 - Let A_{v,i-1}, A_{w,i-1} be the cols selected by the children of node j
 - Select k cols from (A_{v,i-1}, A_{w,i-1}), by using QR with column pivoting
- Return columns in A_{ji}



- Partition $A = (A_1, A_2, A_3, A_4)$.
- Select k cols from each column block, by using QR with column pivoting
- At each level *i* of the tree
 - At each node j do in parallel
 - Let A_{v,i-1}, A_{w,i-1} be the cols selected by the children of node j
 - Select k cols from (A_{v,i-1}, A_{w,i-1}), by using QR with column pivoting
- Return columns in A_{ji}



Deterministic guarantees for rank-k approximation

CA QR with column selection based on binary tree tournament pivoting:

$$1 \leq \frac{\sigma_i(A)}{\sigma_i(R_{11})}, \frac{\sigma_j(R_{22})}{\sigma_{k+j}(A)} \leq \sqrt{1 + F_{TP}^2(n-k)}, \quad F_{TP} \leq \frac{1}{\sqrt{2k}} \left(n/k\right)^{\log_2\left(\sqrt{2}fk\right)}$$

for any $1 \le i \le k$, and $1 \le j \le \min(m, n) - k$.

CA LU with column/row selection with binary tree tournament pivoting:

$$1 \leq \frac{\sigma_i(A)}{\sigma_i(\bar{A}_{11})}, \frac{\sigma_j(S(\bar{A}_{11}))}{\sigma_{k+j}(A)} \leq \sqrt{(1 + F_{TP}^2(n-k))} / \sigma_{min}(\bar{Q}_{11})$$
$$\leq \sqrt{(1 + F_{TP}^2(n-k))(1 + F_{TP}^2(m-k))},$$

 (Q_{21})

Deterministic guarantees for rank-k approximation

CA QR with column selection based on binary tree tournament pivoting:

$$1 \leq \frac{\sigma_i(A)}{\sigma_i(R_{11})}, \frac{\sigma_j(R_{22})}{\sigma_{k+j}(A)} \leq \sqrt{1 + F_{TP}^2(n-k)}, \quad F_{TP} \leq \frac{1}{\sqrt{2k}} \left(n/k\right)^{\log_2\left(\sqrt{2}fk\right)}$$

for any $1 \le i \le k$, and $1 \le j \le \min(m, n) - k$.

CA LU with column/row selection with binary tree tournament pivoting:

$$1 \leq \frac{\sigma_i(A)}{\sigma_i(\bar{A}_{11})}, \frac{\sigma_j(S(\bar{A}_{11}))}{\sigma_{k+j}(A)} \leq \sqrt{(1 + F_{TP}^2(n-k))} / \sigma_{min}(\bar{Q}_{11})$$
$$\leq \sqrt{(1 + F_{TP}^2(n-k))(1 + F_{TP}^2(m-k))},$$
for any $1 \leq i \leq k$, and $1 \leq j \leq \min(m, n) - k$, $U_1Q_1 = \begin{pmatrix} \bar{Q}_{11} \\ \bar{Q}_{21} \end{pmatrix}.$

Probabilistic guarantees

- Combine deterministic guarantees with sketching ensembles satisfying Johnson-Lindenstrauss properties → better bounds
- Consider U₁ ∈ ℝ^{'/×m}, V₁ ∈ ℝ^{n×I} are Subsampled Randomized Hadamard Transforms (SRHT), I' > I.

□ Compute \tilde{A}_k through generalized LU costs $O(mn \log_2 l')$ flops

Let $U_1 \in \mathbb{R}^{l' \times m}$ and $V_1 \in \mathbb{R}^{n \times l}$ be drawn from SRHT ensembles, $l = 10\epsilon^{-1}(\sqrt{k} + \sqrt{8\log(n/\delta)})^2\log(k/\delta), \ l \ge log^2(n/\delta),$ $l' = 10\epsilon^{-1}(\sqrt{l} + \sqrt{8\log(m/\delta)})^2\log(k/\delta), \ l' \ge log^2(m/\delta).$ With probability $1 - 5\delta$, the **generalized LU** approximation \tilde{A}_k satisfies $\|A - \tilde{A}_k\|_2^2 = O(1)\sigma_{k+1}^2(A) + O(\frac{\log(n/\delta)}{l} + \frac{\log(m/\delta)}{l'})(\sigma_{k+1}^2(A) + \dots \sigma_n^2(A))$

Probabilistic guarantees

- Combine deterministic guarantees with sketching ensembles satisfying Johnson-Lindenstrauss properties → better bounds
- Consider U₁ ∈ ℝ^{l'×m}, V₁ ∈ ℝ^{n×l} are Subsampled Randomized Hadamard Transforms (SRHT), l' > l.

□ Compute \tilde{A}_k through generalized LU costs $O(mn \log_2 l')$ flops

Let
$$U_1 \in \mathbb{R}^{l' \times m}$$
 and $V_1 \in \mathbb{R}^{n \times l}$ be drawn from SRHT ensembles,
 $l = 10\epsilon^{-1}(\sqrt{k} + \sqrt{8\log(n/\delta)})^2\log(k/\delta), \ l \ge \log^2(n/\delta),$
 $l' = 10\epsilon^{-1}(\sqrt{l} + \sqrt{8\log(m/\delta)})^2\log(k/\delta), \ l' \ge \log^2(m/\delta).$
With probability $1 - 5\delta$, the **generalized LU** approximation \tilde{A}_k satisfies
 $\|A - \tilde{A}_k\|_2^2 = O(1)\sigma_{k+1}^2(A) + O(\frac{\log(n/\delta)}{l} + \frac{\log(m/\delta)}{l'})(\sigma_{k+1}^2(A) + \dots \sigma_n^2(A))$

Growth factor in Gaussian elimination

$$\rho(A) := \frac{\max_{k} ||S_{k}||_{\max}}{||A||_{\max}}, \text{ where } A \in \mathbb{R}^{m \times n},$$
$$S_{k} \text{ is Schur complement obtained at iteration } k$$

Deterministic algorithms

- LU with partial pivoting $\rho(A) \leq 2^n$
- CA LU with column/row selection with binary tree tournament pivoting:

$$||S_k(\bar{A}_{11})||_{max} \leq \min((1+F_{TP}\sqrt{k})||A||_{max}, F_{TP}\sqrt{1+F_{TP}^2(m-k)}\sigma_k(A))$$

Randomized algorithms

U, V Haar distributed matrices,

$$\mathbb{E}[\log(\rho(UAV))] = O(\log(n))$$

Plan

Motivation of our work

Short overview of results from CA dense linear algebra TSQR factorization

Preconditioned Krylov subspace methods

Enlarged Krylov methods Robust multilevel additive Schwarz preconditioner

Unified perspective on low rank matrix approximation Generalized LU decomposition

Prospects for the future: tensors in high dimensions Hierarchical low rank tensor approximation

Conclusions

Prospects for the future: tensors

Many open questions - only a few recalled

Communication bounds few existing results

- Symmetric tensor contractions [Solomonik et al, 18]
- Bound for volume of communication for matricized tensor times Khatri-Rao product [Ballard et al, 17]

Approximation algorithms

- Algorithms as ALS, DMRG, intrinsically sequential in the number of modes
- Dynamically adapt the rank to a given error
- Approximation of high rank tensors
 - but low rank in large parts, e.g. due to stationarity in the model the tensor describes

For an overview, see Kolda and Bader, SIAM Review 2009

Hierarchical low rank tensor approximation

- Decompose $\mathcal{A} \in \mathbb{R}^{n_1 \times \dots n_d}$ in subtensors $\mathcal{A}_{1j} \in \mathbb{R}^{n_1/2 \times \dots n_d/2}$, $j = 1 : 2^d$.
- Decompose recursively each subtensor A_{1j} until depth L

```
Input: \mathcal{A}, 2^{Ld} subtensors \mathcal{A}_{ij}, i = 1 : L, tree T with 2^{Ld} leaves and height L

Output: \tilde{\mathcal{A}} in hierarchical format

Ensure: ||\mathcal{A} - \tilde{\mathcal{A}}||_F < \varepsilon

for each level i from L to 1 do

for each node j with merge allowed do

Compute \tilde{\mathcal{A}}_{ij} s.t. ||\mathcal{A}_{ij} - \tilde{\mathcal{A}}_{ij}||_F < \varepsilon/2^{di}

if storage(\tilde{\mathcal{A}}_{ij}) < storage (children approx.) in T

then

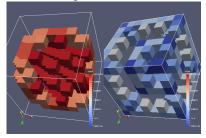
keep \mathcal{A}_{ij} approximation in \tilde{\mathcal{A}}
```

keep A_{ij} approximation in Aelse keep children approx. in \tilde{A} merge of ancestors not allowed endif endfor

endfor

```
with V. Ehrlacher and D. Lombardi
```

Coulomb potential, 512³, $V(x, y, z) = \frac{1}{|x-y|} + \frac{1}{|y-z|} + \frac{1}{|x-z|}$ hierarchical format requires 7% of storing \mathcal{A} for $\varepsilon = 10^{-5}$



Hierarchical low rank tensor approximation

- Decompose $\mathcal{A} \in \mathbb{R}^{n_1 \times \dots n_d}$ in subtensors $\mathcal{A}_{1j} \in \mathbb{R}^{n_1/2 \times \dots n_d/2}$, $j = 1 : 2^d$.
- Decompose recursively each subtensor A_{1j} until depth L

```
Input: \mathcal{A}, 2^{Ld} subtensors \mathcal{A}_{ij}, i = 1 : L, tree T with 2^{Ld} leaves and height L

Output: \tilde{\mathcal{A}} in hierarchical format

Ensure: ||\mathcal{A} - \tilde{\mathcal{A}}||_F < \varepsilon

for each level i from L to 1 do

for each node j with merge allowed do

compute \tilde{\mathcal{A}}_{ij} s.t. ||\mathcal{A}_{ij} - \tilde{\mathcal{A}}_{ij}||_F < \varepsilon/2^{di}

if storage(\tilde{\mathcal{A}}_{ij}) < storage (children approx.) in T

then

keep \mathcal{A}_{ij} approximation in \tilde{\mathcal{A}}
```

else keep children approx. in $\tilde{\mathcal{A}}$ merge of ancestors not allowed endif endfor

endfor

```
with V. Ehrlacher and D. Lombardi
```

Coulomb potential, 512³, $V(x, y, z) = \frac{1}{|x-y|} + \frac{1}{|y-z|} + \frac{1}{|x-z|}$ hierarchical format requires 7% of storing \mathcal{A} for $\varepsilon = 10^{-5}$



Hierarchical low rank tensor approximation

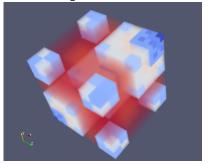
- Decompose $\mathcal{A} \in \mathbb{R}^{n_1 \times \dots n_d}$ in subtensors $\mathcal{A}_{1j} \in \mathbb{R}^{n_1/2 \times \dots n_d/2}$, $j = 1 : 2^d$.
- Decompose recursively each subtensor A_{1j} until depth L

Input: \mathcal{A} , 2^{Ld} subtensors \mathcal{A}_{ij} , i = 1 : L, tree \mathcal{T} with 2^{Ld} leaves and height \mathcal{L} **Output:** $\tilde{\mathcal{A}}$ in hierarchical format **Ensure:** $||\mathcal{A} - \tilde{\mathcal{A}}||_{\mathcal{F}} < \varepsilon$ for each level i from \mathcal{L} to 1 do for each node j with merge allowed do Compute $\tilde{\mathcal{A}}_{ij}$ s.t. $||\mathcal{A}_{ij} - \tilde{\mathcal{A}}_{ij}||_{\mathcal{F}} < \varepsilon/2^{di}$ if storage $(\tilde{\mathcal{A}}_{ij}) <$ storage (children approx.) in \mathcal{T} then keep \mathcal{A}_{ij} approximation in $\tilde{\mathcal{A}}$ else keep children approx. in $\tilde{\mathcal{A}}$

merge of ancestors not allowed endif endfor

endfor

Coulomb potential, 512³, $V(x, y, z) = \frac{1}{|x-y|} + \frac{1}{|y-z|} + \frac{1}{|x-z|}$ hierarchical format requires 7% of storing \mathcal{A} for $\varepsilon = 10^{-5}$



Compressing the solution of Vlasov-Poisson equation

• Hierarchical tensors in the spirit of hierarchical matrices (Hackbusch et al), but no information on the represented function required. Speed, velocity, time $512\times256\times160$, compression factor of 350 for $\varepsilon = 10^{-3}$.

Compressing the solution of Vlasov-Poisson equation

• Hierarchical tensors in the spirit of hierarchical matrices (Hackbusch et al), but no information on the represented function required. Speed, velocity, time $512\times256\times160$, compression factor of 350 for $\varepsilon = 10^{-3}$.

Plan

Motivation of our work

Short overview of results from CA dense linear algebra TSQR factorization

Preconditioned Krylov subspace methods

Enlarged Krylov methods Robust multilevel additive Schwarz preconditioner

Unified perspective on low rank matrix approximation Generalized LU decomposition

Prospects for the future: tensors in high dimensions Hierarchical low rank tensor approximation

Conclusions

Conclusions

Most of the methods discussed available in libraries:

- Dense CA linear algebra
 - progressively in LAPACK/ScaLAPACK and some vendor libraries
- Iterative methods:

preAlps library https://github.com/NLAFET/preAlps:

- Enlarged CG: Reverse Communication Interface
- Enlarged GMRES will be available as well
- Multilevel Additive Schwarz
 - will be available in HPDDM as multilevel Geneo (P. Jolivet)

Acknowledgements

- NLAFET H2020 european project, ANR
- Total

Prospects for the future

Multilevel Additive Schwarz

- from theory to practice, find an efficient local algebraic splitting that allows to solve the Gen. EVP locally on each processor
- Tensors in high dimensions
 - ERC Synergy project Extreme-scale Mathematically-based Computational Chemistry project (EMC2), with E. Cances, Y. Maday, and J.-P. Piquemal.

Collaborators: G. Ballard, S. Cayrols, H. Al Daas, J. Demmel, M. Hoemmen, P. Jolivet, N. Knight, S. Moufawad, F. Nataf, D. Nguyen, J. Langou, E. Solomonik, A. Rusciano, P. H. Tournier, O. Tissot.

References (1

Ashby, S. F., Manteuffel, T. A., and Saylor, P. E. (1990).

A taxonomy for conjugate gradient methods. SIAM Journal on Numerical Analysis, 27(6):1542–1568.

Eckart, C. and Young, G. (1936).

The approximation of one matrix by another of lower rank. *Psychometrika*, 1:211–218.

Grigori, L., Moufawad, S., and Nataf, F. (2016).

Enlarged Krylov Subspace Conjugate Gradient Methods for Reducing Communication. *SIAM Journal on Scientific Computing*, 37(2):744–773. Also as INRIA TR 8266.

Hestenes, M. R. and Stiefel, E. (1952).

Methods of conjugate gradients for solving linear systems. Journal of research of the National Bureau of Standards., 49:409–436.

OLeary, D. P. (1980).

The block conjugate gradient algorithm and related methods. *Linear Algebra and Its Applications*, 29:293–322.