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πpos(v|d)︸ ︷︷ ︸
posterior

∝
likelihood︷ ︸︸ ︷
Ld(v)πpr(v)︸ ︷︷ ︸

prior

= πε(d−G(v))πpr(v)

Decisions under uncertainty

min
δ

∫
L(v, δ)πpos(v|d)dv
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Goal: characterize πpos(v|d), i.e.
• construct approximations∫

f(v)πpos(v|d)dv ≈
∫
f(v)π̃pos(v|d)dv ≈

n∑
i=1

f(v(i))w(i)

• control the error between πpos(v|d) and π̃pos(v|d)

Difficulties:

• v ∈ Rd where d� 1

• The model G(v) is non-linear

• Evaluation of the model G(v) is expensive
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Outline

Transport maps

Deep lazy maps

Results
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Transport maps – Pullbacks [PB] and Pushforwards [PF]

• Distribution νρ with density ρ : Rd → R≥0

• Distribution νπ with density π : Rd → R≥0
• For T : Rd → Rd we define

PF T]ρ = ρ ◦ T−1|∇T−1|
PB T ]π = π ◦ T |∇T |

• We want T such that

PF For X ∼ νρ, T (X) ∼ νπ
PB For Y ∼ νπ, T−1(Y ) ∼ νρ

Knothe-Rosenblatt rearrangement

∀ νρ,νπ Lebesgue absolutely continuous
∃ a triangular monotone map s.t. T]ρ = π
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Transport maps – Pullbacks [PB] and Pushforwards [PF]

• Distribution νρ with density ρ : Rd → R≥0
• Distribution νπ with density π : Rd → R≥0
• For T : Rd → Rd we define

PF T]ρ = ρ ◦ T−1|∇T−1|
PB T ]π = π ◦ T |∇T |

• We want T such that

PF For X ∼ νρ, T (X) ∼ νπ
PB For Y ∼ νπ, T−1(Y ) ∼ νρ

Knothe-Rosenblatt rearrangement

∀ νρ,νπ Lebesgue absolutely continuous
∃ a triangular monotone map s.t. T]ρ = π

T

T (x) =


T (1)(x1)
T (2)(x1, x2)

...
T (d)(x1, . . . , xd)



Daniele Bigoni – Layers of low-rank couplings for large-scale Bayesian inference



Triangular monotone maps

T> =
{
T : Rd → Rd :

triangular︷ ︸︸ ︷
[T (x)]k = T (k)(x1, . . . , xk) and

monotone︷ ︸︸ ︷
∂xkT

(k) > 0
}

T n> =
{
T : Rd → Rd :

triangular︷ ︸︸ ︷
[T (x)]k = T (k)(x1, . . . , xk) and

monotone︷ ︸︸ ︷
∂xkT

(k) > 0
}
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Knothe-Rosenblatt rearrangement

∀ νρ,νπ Lebesgue absolutely continuous
∃ a triangular monotone map s.t. T]ρ = π

How to find the map T ∈ T>
such that T]ρ = π?
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Minimize KL-divergence to find optimal map

T ? = arg min
T∈T>

DKL(T]νρ‖νπ) = arg min
T∈T>

Eρ
[
log

ρ

T ]π

]

Gradient-based unconstrained optimization if gradients are available

We can explore π in parallel

We can generate i.i.d. samples from T ?] νρ = νπ in parallel
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Minimize KL-divergence to find optimal map

T ? = arg min
T∈T>

DKL(T]νρ‖νπ) = arg min
T∈T>

Eρ
[
log

ρ

T ]π

]

Gradient-based unconstrained optimization if gradients are available

We can explore π in parallel

We can generate i.i.d. samples from T ?] νρ = νπ in parallel

We are working on T n> ⊂ T>, so
how can we evaluate the quality of the approximation?
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Convergence criterion – Variance diagnostic

T ? = arg min
T∈T>

DKL(T]νρ‖νπ) = arg min
T∈T>

Eρ
[
log

ρ

T ]π̃

]
+ log

∫
π̃

Optimal T ? ∈ T> and
∫
π̃ = 1 ⇒ Eρ

[
log ρ

(T ?)]π̃

]
= 0

But, optimal T̃ ? ∈ T n> or
∫
π̃ 6= 1 ⇒ Eρ

[
log ρ

(T̃ ?)
]
π̃

]
6= 0

DKL(T]νρ‖νπ) ≈ 1
2V
[
log ρ

T ]π̃

]
as T → T ?
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Pros & cons

T ? = arg min
T∈T>

DKL(T]ρ‖π) = arg min
T∈T>

Eρ
[
log

ρ

T ]π

]

Gradient-based unconstrained optimization if gradients are available

We can explore π in parallel

We can generate i.i.d. samples from T ?] νρ = νπ in parallel

We can assess convergence!

The map can be used as a preconditioner for other unbiased methods

We need to approximate d functions of up to d variables!
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We can assess convergence!

The map can be used as a preconditioner for other unbiased methods

We need to approximate d functions of up to d variables!

∫
f(x)π(x)dx =

∫
f(x)

π(x)

T]ρ(x)
T]ρ(x)dx =

∫
f ◦ T (x)

T ]π(x)

ρ(x)
ρ(x)dx
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Pros & cons

T ? = arg min
T∈T>

DKL(T]ρ‖π) = arg min
T∈T>

Eρ
[
log

ρ

T ]π

]

Gradient-based unconstrained optimization if gradients are available

We can explore π in parallel

We can generate i.i.d. samples from T ?] νρ = νπ in parallel

We can assess convergence!

The map can be used as a preconditioner for other unbiased methods

We need to approximate d functions of up to d variables!

Sources of low-dimensional structure

• Smoothness [Chen, MS238]

• Marginal independence

• Conditional independence [Baptista, MS327]

• Low-rank structure
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Deep Lazy maps

Incrementally construct improving maps

by working on residuals distributions.

Daniele Bigoni – Layers of low-rank couplings for large-scale Bayesian inference



What is a lazy map?

Few (k � d) complex components and many “lazy” linear components:

T (x) =



T (1)(x1)

T (2)(x1, x2)
...

T (k)(x1, . . . , xk)
ak+1 + bk+1xk+1

...
ad + bdxd



This map is effective if ρ and π agree1 along d− k coordinates.

1but for a linear re-scaling
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Assume there exists a rotation matrix Q such that∫
π ◦Q(ξ1:k,xk+1:d) dξ1:k =

∫
ρ(ξ1:k,xk+1:d) dξ1:k,

Then there exist a “low-rank map”

T (x) =



T (1)(x1)

T (2)(x1, x2)
...

T (k)(x1, . . . , xk)
xk+1

...
xd


such that

T]ρ = Q]π
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Finding a good rotation Q

For any distribution νη with finite second moment, let

(Hη)ij =

∫
∂ir(x) ∂jr(x) η(x) dx , r := log(π/ρ).

If rank(Hη) = k and νρ = N (0, I), then

there exist a rotation Q and a rank-k map T

such that T]ρ = Q]π
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Certified approximation π? and optimal rotation Q [Zahm2018]

Let the columns of U ∈ Rd×k be the eigenvectors corresponding to
the largest k eigenvalues {λi}ki=1 of Hη and let

π?(x) := f(U>x)ρ(x) ,

for f given by the conditional expectation

f(z) := E
[
π(X)/ρ(X)

∣∣∣U>X = z
]
, X ∼ ρ .

Then,

DKL (π‖π?) ≤ λk+1 + . . .+ λd and Q = [U|U⊥]
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In practical problems...

(Hη)ij =

∫
∂ir(x) ∂jr(x) η(x) dx , r := log(π/ρ).

• Hη will need to be approximated using some quadrature

• Hη will only be approximately low-rank

• The spectrum of Hη will depend on the sampling distribution νη

(the optimal distribution would be νπ itself)

We will have to resort to lazy maps rather than low-rank maps
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1: procedure DeepLowRankConstruction(π, kmax, εk, εmap, ε•)
2: T← In, where In is the identity map

3: while V
[
log T ]π

η

]
> ε• do

4: Build quadrature (xi,wi)
2kmax
i=1 with respect to N (0, I)

5: U, k ← ComputeSubspace((xi,wi)
2 kmax
i=1 , T]π, εk)

6: Characterize the lazy map T such that

V
[
log

T ](U|U⊥)]π

η

]
< εmap

7: T← T ◦ ((U|U⊥) · T )
8: end while
9: return T

10: end procedure

T progressively “Gaussianizes” π.
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As the T improves the subspace approximation improves...

1: procedure ComputeSubspace((xi,wi)
m
i=1, T]π, ε)

2: Assemble

Hρ =

m∑
i=1

(
∇x log

T]π

ρ
(xi)

)(
∇x log

T]π

ρ
(xi)

)T
wi

3: Solve the eigenvalue problem HρX = ΛX
4: Define U = [X:,1, . . . ,X:,k] for k s.t.

∑n
i=k+1 λi < ε

5: return U, k
6: end procedure

Daniele Bigoni – Layers of low-rank couplings for large-scale Bayesian inference



Composition of layers (deep) of lazy transport maps

InputsLazy mapOutputs Rotation Rotation Lazy mapRotation
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In practice...
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Elliptic problem with unknown coefficients
F

o
rw

ar
d

m
o

d
el

G
:
κ
7→
u


−∇ · (κ(x, ω)∇u(x, ω)) = 0 in Γ× Ω

u(x, ω) = 0 on x1 = 0

u(x, ω) = 1 on x1 = 1

−∂u
∂n(x) = 0 on x2 ∈ {0, 1}

κ(x, ω) = exp (g(x, ω)) , g(x, ω) ∼ N
(
0, Cg(x,x

′)
)

Cg(x,x
′) = exp

(
−|x− x′|

)

Bayesian inverse problem

πpos(κ|d)︸ ︷︷ ︸
posterior

∝
likelihood︷ ︸︸ ︷
Ld(κ)πpr(κ)︸ ︷︷ ︸

prior

= πε(d−G(κ))πpr(κ)
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Elliptic problem with unknown coefficients
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Elliptic problem with unknown coefficients
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Elliptic problem with unknown coefficients
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Biochemical Oxygen Demand

We model the oxygen level at time t by

X(t) = A(1− exp(−Bt)) + ε , ε ∼ N (0, σ2) ,

A ∼ logN (0.9, 0.3) and B ∼ logN (0.16, 0.3) ,

and we want to

Characterize the joint distribution (X(1), . . . , X(4), A,B) ∼ νπ.
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Elliptic problem with unknown coefficients
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Key contributions

Algorithms for characterizing probability measures
via layers of low-dimensional deterministic couplings

Contact: Daniele Bigoni – dabi@mit.edu

Software: https://transportmaps.mit.edu

Zahm et al. “Certified dimension reduction in nonlinear Bayesian inverse problems” (arXiv)
Bigoni et al. “On the computation of monotone transports” (preprint)
Spantini et al. “Inference via low-dimensional couplings” (JMLR)
Marzouk et al. “Sampling via measure transport: an introduction” (Springer)
Parno et al. “Transport map accelerated Markov chain Monte Carlo” (JUQ)
El Moselhy et al. “Bayesian inference with optimal maps” (JCP)
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