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Bayesian inference — an oversimplified example
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VG (x)] = v(x)~!

velocity field
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Bayesian inference — an oversimplified example
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Bayesian inference — an oversimplified example
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Bayesian inference model

likelihood
——

Tpos(V]d) &< La (V) mpe (V) = me(d — G(V))mpe (V)
— S——

posterior prior

Decisions under uncertainty

méin / L(v, 0)Tpos(v|d)dv
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Goal: characterize m,s(v|d), i.e.

® construct approximations
/ FO) oo (v]d)dv = / F( ) pon(vId)dv & 3 (v )
=1
e control the error between ,,s(v|d) and 7pes(V|d)

Difficulties:
ov c RY where d > 1

® The model G(v) is non-linear

e Evaluation of the model G(v) is expensive
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Outline

Transport maps
Deep lazy maps

Results
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Transport maps — Pullbacks [PB] and Pushforwards [PF]

p

® Distribution v, with density p : RY — Rx
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Transport maps — Pullbacks [PB] and Pushforwards [PF]

p

® Distribution v, with density p : RY — Rx

® Distribution v, with density 7 : RY — R>g
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Transport maps — Pullbacks [PB] and Pushforwards [PF]

p

® Distribution v, with density p : RY — Rx
® Distribution v, with density 7 : RY — R>g
® For T : R4 — R? we define

PF Tip=po T HVT™Y

PB Tt =moT|VT|
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Transport maps — Pullbacks [PB] and Pushforwards [PF]

p
® Distribution v, with density p : R — Rx

® Distribution v, with density 7 : R¢ — R>g

® For T : RY — R? we define

PF Tip=poT HVT

PB  Tir=nmoT|VT) Typ }Tﬁ”
® We want 7" such that

PF Typ=m

PB Tir=p T
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Transport maps — Pullbacks [PB] and Pushforwards [PF]

® Distribution v, with density p : R? — R>g
® Distribution v, with density 7 : R? — R>
® For T : R? — R? we define

PF Tip=poT HVT™!

PB T'r =7 oT|VT|
® We want 7" such that

PF For X ~v,, T(X) ~ v,

PB ForY ~v,, T71(Y) ~ v,
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Transport maps — Pullbacks [PB] and Pushforwards [PF]

® Distribution v, with density p : RY — Rx
® Distribution v, with density 7 : RY — R>g
® For T : R4 — R? we define

PF Tip=poT HVT

PB Tt =moT|VT|
® We want T such that

PF For X ~v,, T(X) ~ v,

PB ForY ~v,, T7}Y) ~ v,
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Transport maps — Pullbacks [PB] and Pushforwards [PF]

® Distribution v, with density p : R? — Rx

® Distribution v, with density 7 : RY — R>g

® For T : RY — R? we define T
PF Tip=po T HVT|
PB Timr =7 oT|VT)| >

® We want T such that p
PF For X ~v,, T(X) ~ v,
PB ForY ~v,, T7'Y) ~ v,

Knothe-Rosenblatt rearrangement T(Z)(zl, Z2)

V v,, v, Lebesgue absolutely continuous
3 a triangular monotone map s.t. Tjp =7 T (2,
ye
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Triangular monotone maps

triangular monotone

T. = {T (RY o RY: [T(x)]) = T® (21, ..., a) and 9y, T® > 0}

triangular monotone
7\

—
77 = {T:RdﬁRd T = TW (..., 2z) and 9, T® >0}
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p
Knothe-Rosenblatt rearrangement
V v,, v, Lebesgue absolutely continuous

3 a triangular monotone map s.t. Tjp =7 >

How to find the map T € 7~
such that Tip = 7?7

Daniele Bigoni — Layers of low-rank couplings for large-scale Bayesian inference



Minimize KL-divergence to find optimal map

T* = argmin Dy, (Tyv,||vr) = argminE, [log %]
TeETS TETS T%m
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Minimize KL-divergence to find optimal map

T* = argmin Dy, (Tyv,||vr) = argminE, [log %]
TeETS TETS T%m

+ Gradient-based unconstrained optimization if gradients are available
+ We can explore 7 in parallel

+ We can generate i.i.d. samples from Tﬁ*up = v, in parallel
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Minimize KL-divergence to find optimal map

T* = argmin Dy, (Tyv,||vr) = argminE, [log %]
TeETS TETS T%m

+ Gradient-based unconstrained optimization if gradients are available
+ We can explore 7 in parallel

+ We can generate i.i.d. samples from Tﬁ*up = v, in parallel

We are working on 7' C 75, so
how can we evaluate the quality of the approximation?
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Convergence criterion — Variance diagnostic

T* = arg min Dky,(Tyv,||vr) = argminE, [log LN} +log [ 7
TeT: TeT: T
> >

Optimal T* € 7> and [7=1 = E, [logﬁ} =0

But, optimal T* € Tlor [T#1 = E, [log (ff)k] #0
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Convergence criterion — Variance diagnostic

T* = arg min Dky,(Tyv,||vr) = argminE, [log LN} +log [ 7
TeT: TeT: T
> >

Optimal T* € 7> and [7=1 = Ep[logﬁ}zo

But, optimal T* € Tlor [T#1 = E, [log (ff)k] #0

Dxi(Typllve) =~ §V[log4=] as T — T* ]
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Pros & cons

T* = argmin Dk, (Typ||7) = argminE, [log %}
TeTS TeTS Thm

+ Gradient-based unconstrained optimization if gradients are available
+ We can explore 7 in parallel
+ We can generate i.i.d. samples from Tfv, = vy in parallel

+ We can assess convergence!
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Pros & cons

T* = argmin Dk, (Typ||7) = argminE, [log %}
TeTS TeTS Thm

+ Gradient-based unconstrained optimization if gradients are available
+ We can explore 7 in parallel

+ We can generate i.i.d. samples from Tfv, = vy in parallel

+ We can assess convergence!

+ The map can be used as a preconditioner for other unbiased methods

Thr(x)
p(x)

m(x)
Typ(x)

[ 100mix = [ 1607 ZTipxiax = [ 10767 i
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Pros & cons

T* = argmin Dkr,(Typ||7) = argminE, [log %}
TeT> TeT> Thm

+ Gradient-based unconstrained optimization if gradients are available
+ We can explore 7 in parallel

+ We can generate i.i.d. samples from Tﬁ*l/p = v, in parallel

+ We can assess convergence!

+ The map can be used as a preconditioner for other unbiased methods

— We need to approximate d functions of up to d variables!
T (1)
T(Q) (xl, 1’2)

T (xy,...,2q)
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Pros & cons

T* = argmin Dk, (Typ||7) = argminE, [log %}
TeTS TeTS Thm

+ Gradient-based unconstrained optimization if gradients are available
+ We can explore 7 in parallel

+ We can generate i.i.d. samples from Tfv, = vy in parallel

+ We can assess convergence!

+ The map can be used as a preconditioner for other unbiased methods

— We need to approximate d functions of up to d variables!

Sources of low-dimensional structure

® Smoothness [Chen, MS238] ® Conditional independence [Baptista, MS327]

® Marginal independence ® | ow-rank structure
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Deep Lazy maps

Incrementally construct improving maps
by working on residuals distributions.
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What is a lazy map?

Few (k < d) complex components and many “lazy” linear components:

T (z7)

T (21, 29)
T(X) = T(/ﬂ) (:L.la . 7171{7)
ap+1 + b1k

aq + bary

This map is effective if p and 7 agree! along d — k coordinates.

'but for a linear re-scaling
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Assume there exists a rotation matrix Q such that

/WOQ(ﬁlzk,kaﬂ:d) A& = /P(&:k,wkﬂzd) d€y.x,

Then there exist a “low-rank map”

such that

Tip = Q'n
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Finding a good rotation Q

For any distribution v, with finite second moment, let

(Hy),; = /&-t(w) Oje(x) n(x) de , v = log(m/p).
If rank(H,)) = k and v, = N/(0,1I), then

there exist a rotation Q and a rank-k map T’
such that Typ = Qir
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Certified approximation 7* and optimal rotation Q [Zahm2018]

Let the columns of U € R?** be the eigenvectors corresponding to
the largest k eigenvalues {\;}¥ ;| of H, and let

(@) = f(UT2)p(a) ,
for f given by the conditional expectation
) =E[s(X)/pX)UTX =2, X~p.
Then,

Dt (7| 7) < Mep1 4.+ Aa and  Q=[UJU]
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In practical problems...

(H,),, = / de(@) Oye(@)n(@) dw,  © = log(r/p).

® H,, will need to be approximated using some quadrature
® H,, will only be approximately low-rank

® The spectrum of H,, will depend on the sampling distribution v,

(the optimal distribution would be v, itself)
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In practical problems...

(Hy),;; = /Git(m) ojt(x) n(x) do v = log(m/p).

® H,, will need to be approximated using some quadrature
® H,, will only be approximately low-rank

® The spectrum of H,, will depend on the sampling distribution v,

(the optimal distribution would be v, itself)

[ We will have to resort to lazy maps rather than low-rank maps ]
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1: procedure DEEPLOWRANKCONSTRUCTION(T, Kmax, €k, Emap, €e)
2: T < I,, where I, is the identity map
3: while V {log L ”} > cq do
4: Build quadrature (x;, w;)?*7 with respect to A/(0,T)
5: U,k + COMPUTESUBSPACE((CCZ,wz)?:kmax, Thr, ek)
6: Characterize the lazy map T such that
T*(UlU )
v [log OO
n
7: T+ To((UUL)-T)
8: end while
9: return T

10: end procedure
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1: procedure DEEPLOWRANKCONSTRUCTION(T, Kmax, €k, Emap, €e)
2: T < I,, where I, is the identity map
3: while V {log L ”} > cq do
4: Build quadrature (x;, w;)?*7 with respect to A/(0,T)
5: U,k + COMPUTESUBSPACE((CDZ,’wz)f:kmax, Thr, 5k)
6: Characterize the lazy map T such that
T*(UlU )
v [log OO
n
7: T+ To((UUL)-T)
8: end while
9: return T

10: end procedure

[ T progressively “Gaussianizes” 7. ]
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As the ¥ improves the subspace approximation improves...

1: procedure COMPUTESUBSPACE((z;, w;)™,, Th, €)

2: Assemble

m # # T
H, = (VX log ‘ITF(:IJZ)) (Vx log h(a:z)> w;

i1 p p

3: Solve the eigenvalue problem H,X = AX

4 Define U = [X.1,..., X x| for kst >0, A <e

5: return U, &k

6: end procedure
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Composition of layers (deep) of lazy transport maps
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In practice...
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Elliptic problem with unknown coefficients

—V - (k(x,w)Vu(x,w)) =0 in T'xQ

'qé@ u(x,w) =0 on x;=0
E£ u(x,w) =1 on x;=1
o

et 0

§U —Sa(x)=0 on x9 € {0,1}
S

w

k(x,w) = exp (g(x,w)), g(x,w)~N (O,Cg(x,x/))

Cy(x, x') = exp (—|x = X’|)
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Elliptic problem with unknown coefficients

—V - (k(x,w)Vu(x,w)) =0 in T'xQ

'qé@ u(x,w) =0 on x;=0
E£ u(x,w) =1 on x;=1
o

et 0

§U —Sa(x)=0 on x9 € {0,1}
S

w

k(x,w) = exp (g(x,w)), g(x,w)~N (O,Cg(x,x/))
Cy(x, x') = exp (—|x = X’|)

Bayesian inverse problem

likelihood
—~
Tpos(K|d) < La(k) mpr(k) = Te(d — G(K))mpe (k)
v Y
posterior prior
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Elliptic problem with unknown coefficients
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Elliptic problem with unknown coefficients

0.2 0.4 0.6 0.8 1.0 03

Posterior mean E [k (x)|d] Realizations of k ~ s
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Elliptic problem with unknown coefficients

p— ollel[e]e![e]le
= ollo|le]le]|/e]e
olle][e][e]|[e!e
ollo]le][e]|[e]e
g olle|[e][e]|e!e
! : : o/lo][e]e]le]e
Variance diagnostic V [log %ﬁ} Random conditionals of

Thr ~ N(0,1)
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Biochemical Oxygen Demand
We model the oxygen level at time ¢ by

X(t)=A(l —exp(—=Bt)) +e, e~N(0,0%),
A ~1ogN(0.9,0.3) and B ~1og N (0.16,0.3) ,

and we want to

Characterize the joint distribution (X (1),...,X(4), A, B) ~ vx.
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Elliptic problem with unknown coefficients

—o— V[T’n/p]
—— Bound KL

10%
Rank 3 Rank 3 Rank 4
102 Order 2 Order 2 Order 1
10t
10°
107

Variance diagnostic V [log %ﬂ}

Daniele Bigoni — Layers of low-rank couplings for large-scale Bayesian inference

S

© 0 O

©@ 0 O

© &6 0 06
OS]

© 4

o

Random conditionals of

T =~ N(0,1)




Key contributions

Algorithms for characterizing probability measures
via layers of low-dimensional deterministic couplings

Contact: Daniele Bigoni — dabi@mit.edu

Software: https://transportmaps.mit.edu

Zahm et al. “Certified dimension reduction in nonlinear Bayesian inverse problems” (arXiv)
Bigoni et al. “On the computation of monotone transports” (preprint)

Spantini et al. “Inference via low-dimensional couplings” (JMLR)

Marzouk et al. “Sampling via measure transport: an introduction” (Springer)

Parno et al. “Transport map accelerated Markov chain Monte Carlo” (JUQ)

El Moselhy et al. “Bayesian inference with optimal maps” (JCP)
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