SIAG CSE - Best Paper Prize 2018

Tobin Isaac, Noemi Petra, Georg Stadler, and Omar Ghattas

Scalable and efficient algorithms for the propagation of uncertainty from data through inference to prediction for large–scale problems, with application to flow of the Antarctic ice sheet

Journal of Computational Physics, published in 2015

"... a cornerstone paper in CS&E that demonstrates a scalable algorithmic framework for geophysical model inversion and uncertainty quantification on extreme-scale icesheet modeling exploiting supercomputing architectures."

Propagating Uncertainty from Data to Prediction with a Model of the Antarctic Ice Sheet

Toby Isaac¹ · Noémi Petra² · Georg Stadler³ · Omar Ghattas⁴

¹School of Computational Science and Engineering, Georgia Tech ²School of Natural Sciences, UC Merced ³Courant Institute, NYU ⁴Oden Institute, UT Austin

February 27, 2019 · SIAM CSE · Spokane

Great Coauthors and Mentors!

Motivation

Solving the Forward Problem

Inversion for Parameter Fields

▲□▶ ▲□▶ ▲ 三▶ ▲ 三 ● ● ● 3/38

Our paper does not make actionable predictions or projections.

It is a methodology paper.

▲□▶▲□▶▲≣▶▲≣▶ ≣ のへで 4/38

Antarctica

visibleearth.nasa.gov

- Quantities of interest (Qols): q drive decisions, e.g.
 - Air temperature

Sea level

Ocean salinity

- Albedo
- Measurements of states: w
- Unobtainable
 - Future

Infeasible

Regime changes invalidate trends
 $\boldsymbol{q}_{\mathrm{obs}} \not\rightarrow \boldsymbol{q}_{\mathrm{pred}}$

Larsen B Ice Shelf. 2002

- Quantities of interest (Qols): a drive decisions, e.g.
 - Air temperature

Sea level

Ocean salinity

- Albedo
- Measurements of states: w
- Unobtainable
 - Future

Infeasible

Regime changes invalidate trends $\boldsymbol{q}_{\text{obs}} \not\rightarrow \boldsymbol{q}_{\text{pred}}$

Larsen B Ice Shelf, 2002

earthobservatory.nasa.gov

- Quantities of interest (Qols): q drive decisions, e.g.
 - Air temperature
 - Ocean salinity

- Sea level
- Albedo
- Measurements of states: w
- Unobtainable
 - Future

Infeasible

<ロト < 団ト < 臣ト < 臣ト 臣 の < で 5/38

Regime changes invalidate trends $\boldsymbol{q}_{\text{obs}} \not\rightarrow \boldsymbol{q}_{\text{pred}}$

Larsen B Ice Shelf, 2002

- Quantities of interest (Qols): q drive decisions, e.g.
 - Air temperature
 - Ocean salinity

- Sea level
- Albedo
- Measurements of states: w
- Unobtainable
 - Future

Infeasible

<ロト < 部ト < 三ト < 三ト 三 の < で 5/38

Regime changes invalidate trends
 $\boldsymbol{q}_{\text{obs}} \not\rightarrow \boldsymbol{q}_{\text{pred}}$

Models Inform Us When Data Can't

PDEs are often the best models of states Stokes: Balance of Momentum and Mass

$$-\nabla \cdot \boldsymbol{\sigma} = \rho \boldsymbol{g}, \quad [\boldsymbol{\sigma} = \mu(T, \boldsymbol{u})(\nabla \boldsymbol{u} + \nabla \boldsymbol{u}^{T}) - \boldsymbol{I}p]$$
$$\nabla \cdot \boldsymbol{u} = 0, \qquad \qquad +\text{b.c.s}$$

Symbolized as

 $A(\mathbf{w}) = \mathbf{0}$

<ロト < 団 > < 臣 > < 臣 > 臣 の < で 6/38

How do we choose A so **w** matches reality?

Models Inform Us When Data Can't

PDEs are often the best models of states

Stokes: Balance of Momentum and Mass (Nonlinear)

$$-\nabla \cdot \boldsymbol{\sigma} = \rho \boldsymbol{g}, \quad [\boldsymbol{\sigma} = \mu(T, \boldsymbol{u})(\nabla \boldsymbol{u} + \nabla \boldsymbol{u}^T) - \boldsymbol{I}\boldsymbol{p}]$$
$$\nabla \cdot \boldsymbol{u} = 0, \qquad \qquad +\text{b.c.s}$$

Symbolized as

 $A(\mathbf{w}) = \mathbf{0}$

<ロト < 団 > < 臣 > < 臣 > 臣 の < で 6/38

How do we choose A so **w** matches reality?

Models Inform Us When Data Can't

PDEs are often the best models of states Stokes: Balance of Momentum and Mass

$$-\nabla \cdot \boldsymbol{\sigma} = \rho \boldsymbol{g}, \quad [\boldsymbol{\sigma} = \mu(T, \boldsymbol{u})(\nabla \boldsymbol{u} + \nabla \boldsymbol{u}^{T}) - \boldsymbol{I}\boldsymbol{p}]$$
$$\nabla \cdot \boldsymbol{u} = \boldsymbol{0}, \qquad \qquad +\text{b.c.s}$$

Symbolized as

 $A(\mathbf{w}) = \mathbf{0}$

<ロト < 団 > < 臣 > < 臣 > 臣 の < で 6/38

How do we choose A so **w** matches reality?

Observations/Data: *d*_{obs}, e.g.

- Ice cores / boreholes
- Radar / stratigraphy
- GRACE gravity field measurements
- Interferometric synthetic aperture radar (InSAR) / lidar
- Data is also a measurement of the state w:

 $d(w) \approx d_{obs}$

Observations/Data: *d*_{obs}, e.g.

- Ice cores / boreholes
- Radar / stratigraphy
- GRACE gravity field measurements
- Interferometric synthetic aperture radar (InSAR) / lidar
- Data is also a measurement of the state w:

 $d(w) \approx d_{obs}$

Observations/Data: *d*_{obs}, e.g.

- Ice cores / boreholes
- Radar / stratigraphy
- GRACE gravity field measurements
- Interferometric synthetic aperture radar (InSAR) / lidar
- Data is also a measurement of the state w:

 $d(w) \approx d_{obs}$

Observations/Data: *d*_{obs}, e.g.

- Ice cores / boreholes
- Radar / stratigraphy
- GRACE gravity field measurements
- Interferometric synthetic aperture radar (InSAR) / lidar
- Data is also a measurement of the state w:

 $d(w) \approx d_{obs}$

- Our dataset $d_{obs} \in \mathbb{R}^{N_d}$ is the MEaSUREs surface velocity data for Antarctica (Rignot, Mouginot, and Scheuchl 2011).
- $d: X \to \mathbb{R}^{N_d}$ traces the velocity on the surface.

<ロト < @ ト < 臣 ト < 臣 > 臣 の < で 8/38

Parameter Fields

⁽Creyts and Schoof 2009, Figure 3)

Uncertain parameters m

 $A(\mathbf{w}; \mathbf{m}) = \mathbf{o}$ $\mathbf{q}_{\text{pred}} = \mathbf{q}(\mathbf{w}; \mathbf{m})$

Often parameter fields, e.g.

- Initial conditions
- Material properties
- Boundary conditions
- Number of parameters in computation increases with model resolution

Parameter Fields

Subglacial Systems а h RR C. C_c ΗŢ R

(Creyts and Schoof 2009, Figure 3)

$T_{{\scriptscriptstyle \|}}(\boldsymbol{\sigma}\boldsymbol{n} + \boldsymbol{\beta}(\boldsymbol{m}(\boldsymbol{x}))\boldsymbol{u})|_{\boldsymbol{\Gamma}_{\text{base}}} = \boldsymbol{o}$

<ロ><日><日><日><日><日><日><日><日><日><日><日><日><10</td>

Inversion for Prediction

Observations to Predictions

- State w Dbs. d_{obs}
 - Qols **q** 📃 🕨 Param. field **m**
 - Meas. **d**
- Param field
- Model A ("forward")

What are the sources of error and uncertainty?

- Noisy **d**
- Ill-posedness of inversion
- Model/discretization error

10/38

Modeling the Ice Sheet

A finite element model built on the p4est AMR library (Burstedde, Wilcox, and Ghattas 2011).

Solving the Forward Problem

Armijo-**Newton**-Eisenstat-Walker-**Krylov**-Saad-Schur Method

- Armijo-Newton: quadratic convergence near solution, globalized for stability
- Eisenstat-Walker: Adaptive tolerance for *inexact* linear solver based on nonlinear convergence history
- **Krylov-Saad**: FGMRES(*k*) solver allows variable preconditioning
- Schur: Use block upper-triangular preconditioner for Stokes operator:

$$A = \begin{pmatrix} F & B^* \\ B & O \end{pmatrix}, \quad P = \begin{pmatrix} \tilde{F} & B^* \\ O & \tilde{S} \end{pmatrix},$$

Solving the Forward Problem

- F: smoothed-aggregation algebraic multigrid (PETSc GAMG with custom plugin aggregator for high-anistropy)
- $\tilde{S} = -\mu^{-1}\hat{M}$: lumped mass matrix.

Solving the Forward Problem

All of these choices seek to achieve optimal performance: time to solution $\sim N/P$.

	#dof	#cores	#Newton	#Krylov	solve time (s) / eff (%)	setup time (s) / eff (%)	#Krylov (Poisson)
P1	38M	128	8	149	504.8 / 100	493.5 / 100	12
		256	8	153	259.6 / 97	260.4 / 95	12
		512	8	157	134.3 / 94	156.0 / 80	12
		1024	8	147	70.1 / 90	97.2 / 63	12
P2	270M	1024	9	240	796.6 / 100	735.0 / 100	12
		2048	9	245	414.3 / 96	424.6 / 87	12
		8192	9	243	130.7 / 76	229.0 / 40	13
P3	2.1B	16,384	13	314	771.5 / 100	1424.5 / *	15
		65,536	13	367	504.2 / 38	1697.1 / *	15
		131,072	11	340	232.9 / 42	2033.1 / *	16

The Bayesian Inference Framework

 Adopt a likelihood of d_{obs} given m,

$\pi_{\rm like}(\pmb{d}_{\rm obs} | \; \pmb{m})$

Simplest form

 $\boldsymbol{d}_{obs} \propto \mathcal{N}(\boldsymbol{d}_{\boldsymbol{m}}, \boldsymbol{C}_{obs})$

 C_{obs} characterizes noise and model error 2. Adopt a prior distribution of the parameter field

- First principles
- "Expert knowledge"
- Expedience

 $\textbf{\textit{m}} \propto \mathcal{N}(\textbf{\textit{m}}_{\text{prior}},\textbf{\textit{C}}_{\text{prior}})$

◆□▶ ◆□▶ ◆ 三▶ ◆ 三 ● ● ● ● 15/38

16/38

The Bayesian Inference Framework Bayes' Law The posterior pdf of the parameter given the observations is

$$\pi_{\text{post}}(\boldsymbol{m}|\boldsymbol{d}_{\text{obs}}) = \frac{\pi_{\text{prior}}(\boldsymbol{m})\pi_{\text{like}}(\boldsymbol{d}_{\text{obs}}|\boldsymbol{m})}{\int_{\mathcal{M}}\pi_{\text{prior}}(\boldsymbol{m})\pi_{\text{like}}(\boldsymbol{d}_{\text{obs}}|\boldsymbol{m})\,d\boldsymbol{m}}$$

• E.g.,

$$\mathbb{E}[\boldsymbol{q}_{\text{pred}}|\boldsymbol{d}_{\text{obs}}] = \frac{\int_{\mathcal{M}} \boldsymbol{q}_{\boldsymbol{m}} \pi_{\text{prior}}(\boldsymbol{m}) \pi_{\text{like}}(\boldsymbol{d}_{\text{obs}}|\boldsymbol{m}) d\boldsymbol{m}}{\int_{\mathcal{M}} \pi_{\text{prior}}(\boldsymbol{m}) \pi_{\text{like}}(\boldsymbol{d}_{\text{obs}}|\boldsymbol{m}) d\boldsymbol{m}}$$

Expectations require integration over *M* (high-dimensional) ...
 ...w.r.t. π_{post}(**m**|**d**_{obs}) (implicitly-defined, no direct sampling).

Markov Chain Methods

 Generate a chain of samples {*m*_i} using proposal distributions {*P*_i} that can be sampled directly:

$$\frac{1}{N}\sum_{i=1}^{N}\boldsymbol{q}_{\boldsymbol{m}_{i}} \to \mathbb{E}[\boldsymbol{q}_{\boldsymbol{m}}] \text{ a.s.}$$

• The speed of convergence depends on the similarity of π_{post} and $\{P_i\}$.

Markov Chain Methods

 Generate a chain of samples {*m*_i} using proposal distributions {*P*_i} that can be sampled directly:

$$\frac{1}{N}\sum_{i=1}^{N}\boldsymbol{q}_{\boldsymbol{m}_{i}} \to \mathbb{E}[\boldsymbol{q}_{\boldsymbol{m}}] \text{ a.s.}$$

• The speed of convergence depends on the similarity of π_{post} and $\{P_i\}$.

Markov Chain Methods

 Generate a chain of samples {*m*_i} using proposal distributions {*P*_i} that can be sampled directly:

$$\frac{1}{N}\sum_{i=1}^{N}\boldsymbol{q}_{\boldsymbol{m}_{i}} \to \mathbb{E}[\boldsymbol{q}_{\boldsymbol{m}}] \text{ a.s.}$$

• The speed of convergence depends on the similarity of π_{post} and $\{P_i\}$.

- A quadratic fit at the maximum a posteriori likelihood (MAP) point *m*_{MAP}
- Also provides one-shot Qol estimates
 - $\mathbb{E}[\boldsymbol{q}_{\boldsymbol{m}}] \approx \boldsymbol{q}_{\boldsymbol{m}_{\text{MAP}}}$ $\operatorname{Var}(\boldsymbol{q}) \approx$ $D\boldsymbol{q}_{\boldsymbol{m}_{\text{MAP}}} H(\boldsymbol{m}_{\text{MAP}})^{-1} D\boldsymbol{q}_{\boldsymbol{m}_{\text{MAP}}}^{*}$
- Requires the Hessian

$$H(\boldsymbol{m}) := D^2 \mathcal{J}(\boldsymbol{m}).$$

Laplace's Approximation to One-Shot Projection

Laplace's approximation is the basis for a one-shot estimate of QoI uncertainty:

$$\boldsymbol{q}_{\text{post}} \sim \mathcal{N}(\boldsymbol{q}(\boldsymbol{m}_{\text{MAP}}, \boldsymbol{w}_{\text{MAP}}), D_{\boldsymbol{m}}\boldsymbol{q}C_{\text{post}}D_{\boldsymbol{m}}\boldsymbol{q}^{*}).$$

Gaussian Assumptions and Optimization

Given Gaussian prior and likelihood,

$$\pi_{\text{post}}(\boldsymbol{m}|\boldsymbol{d}_{\text{obs}}) \propto \exp\{-\frac{1}{2}(\|\boldsymbol{d}_{\text{obs}} - \boldsymbol{d}_{\boldsymbol{m}}\|_{\mathcal{C}_{\text{obs}}^{-1}}^{2} + \|\boldsymbol{m} - \boldsymbol{m}_{\text{prior}}\|_{\mathcal{C}_{\text{prior}}^{-1}}^{2})\}.$$

- J(m) is a typical objective function in PDE-constrained optimization.
 - $\|\cdot\|_{C^{-1}_{obs}}$ misfit term (covariance smaller in slow-flow regions)
 - $\|\cdot\|_{C^{-1}_{\text{prior}}}$ regularization term (Bi-Laplacian)

Estimating Statistics of $\pi_{post}(\boldsymbol{m}|\boldsymbol{d}_{obs})$

1. Find MAP point m_{MAP} (Inexact Newton-Krylov method)

◆□▶ ◆□▶ ◆ 三▶ ◆ 三 ● ● ● 22/38

- 2. "Compute" $C_{\text{post}} = H(\boldsymbol{m}_{\text{MAP}})^{-1}$ (?)
- 3. Draw sample chain from $\mathcal{N}(\mathbf{m}_{MAP}, C_{post})$, compute statistics on chain

Method Requirements

- 1. Evaluate $\mathcal{J}(\mathbf{m})$
- 2. Compute gradient $D\mathcal{J}(\boldsymbol{m})$
- 3. Matrix-vector product $H(\boldsymbol{m})\boldsymbol{\hat{m}}$
- **4.** Precondition $H(\mathbf{m})^{-1}$
- 5. Sample from $C_{\text{post}} = H(\boldsymbol{m}_{\text{MAP}})^{-1}$

Method Requirements

- 1–3: Use Adjoint Equations
- **1.** Evaluate $\mathcal{J}(\boldsymbol{m})$ [Solve $A(\boldsymbol{w}; \boldsymbol{m}) = \mathbf{0}$]
- 2. Compute gradient $D\mathcal{J}(\boldsymbol{m})$
- 3. Matrix-vector product $H(\boldsymbol{m})\boldsymbol{\hat{m}}$
- 4. Precondition $H(\mathbf{m})^{-1}$
- 5. Sample from $C_{\text{post}} = H(\boldsymbol{m}_{\text{MAP}})^{-1}$
- [Solve A_w, A_w systems]

[Solve A^{*}_w systems]

Adjoint Equations

 $A_{\mathbf{w}}(\mathbf{w}; \mathbf{m})^* \mathbf{z} = \mathbf{r} - D\mathcal{J}_{misfit}(\mathbf{m})$ in strong form

Balance of linear momentum, conservation of mass

$$-\nabla \cdot [\boldsymbol{\mu}'(\boldsymbol{\tau}, \boldsymbol{u}) (\nabla \boldsymbol{v} + \nabla \boldsymbol{v}^{\boldsymbol{\tau}}) - \boldsymbol{I}\boldsymbol{q}] = \boldsymbol{r}_{\boldsymbol{u}},$$
$$\nabla \cdot \boldsymbol{v} = \boldsymbol{o}.$$

 Calculus of variations (no full-program automatic differentiation required)

Preconditioning $H(\mathbf{m})^{-1}$

- Each entry in $H(\mathbf{m})$ requires two PDE solves: $|\mathbf{m}|^2$ entries.
 - Never compute and store: only Hessian-vector products.
- $H(\mathbf{m})$ must be a compact perturbation of C_{prior}^{-1} (Stuart 2010)

Preconditioning $H(\mathbf{m})^{-1}$

C_{prior} as a preconditioner provides *mesh*-independence of number of iterations:

#sdof	#pdof	#N	#CG	avgCG	#Stokes
95,796	10,371	42	2718	65	7031
233,834	25,295	39	2342	60	6440
848,850	91,787	39	2577	66	6856
3,372,707	364,649	39	2211	57	6193
22,570,303	1,456,225	40	1923	48	5376

Method Requirements

- **1.** Evaluate $\mathcal{J}(\boldsymbol{m})$ [Solve $A(\boldsymbol{w}; \boldsymbol{m}) = \mathbf{0}$]
- 2. Compute gradient $D\mathcal{J}(\boldsymbol{m})$
- 3. Matrix-vector product $H(\boldsymbol{m})\boldsymbol{\hat{m}}$
- 4. Precondition $H(\mathbf{m})^{-1}$
- 5. Sample from $C_{\text{post}} = H(\boldsymbol{m}_{\text{MAP}})^{-1}$

[Solve $A(\mathbf{w}; \mathbf{m}) = \mathbf{o}$] [Solve $A^*_{\mathbf{w}}$ systems]

[Solve A_w, A^{*}_w systems]

Method Requirements

4: Use C_{prior}

- **1.** Evaluate $\mathcal{J}(\boldsymbol{m})$ [Solve $A(\boldsymbol{w}; \boldsymbol{m}) = \mathbf{0}$]
- 2. Compute gradient $D\mathcal{J}(\boldsymbol{m})$
- 3. Matrix-vector product $H(\mathbf{m})\mathbf{\hat{m}}$
- **4.** Precondition $H(\mathbf{m})^{-1}$
- 5. Sample from $C_{\text{post}} = H(\boldsymbol{m}_{\text{MAP}})^{-1}$

[Solve $A(\mathbf{w}; \mathbf{m}) = \mathbf{0}$] [Solve $A_{\mathbf{w}}^*$ systems] [Solve $A_{\mathbf{w}}, A_{\mathbf{w}}^*$ systems]

 $[C_{\text{prior}} \approx H(\boldsymbol{m})^{-1}]$

Sampling C_{post} via Low-Rank Update

Prior Sample Modification (Accurate within ϵ)

1. Partial, randomized, generalized EVD (Halko, Martinsson, and Tropp 2011) with tolerance ϵ

$$H_{\text{misfit}} \approx V_r \Lambda_r V_r^* \quad [V_r^* C_{\text{prior}} V_r = I_r, W_r = C_{\text{prior}} V_r].$$

2. For each sample y, draw sample z from C_{prior} :

$$\mathbf{y} = \mathbf{m}_{MAP} + (I - W_r(I_r - (I_r + \Lambda_r)^{-1/2})V_r^*)\mathbf{z}.$$

Sampling C_{post} via Low-Rank Update

Prior Sample Modification (Accurate within ϵ)

1. Partial, randomized, generalized EVD (Halko, Martinsson, and Tropp 2011) with tolerance ϵ

$$H_{\text{misfit}} \approx V_r \Lambda_r V_r^* \quad [V_r^* C_{\text{prior}} V_r = I_r, W_r = C_{\text{prior}} V_r].$$

2. For each sample y, draw sample z from C_{prior} :

$$\mathbf{y} = \mathbf{m}_{MAP} + (I - W_r(I_r - (I_r + \Lambda_r)^{-1/2})V_r^*)\mathbf{z}.$$

Sampling C_{post} via Low-Rank Update

- Compactness: number of Hessian-vector products to achieve accuracy *e* is mesh-independent
- C_{prior} treated as "black-box": no assumption about how it is sampled, or whether we have a symmetric factor. Compare to

$$C_{\text{prior}} = LL^*,$$

$$L^* H_{\text{misfit}} L \approx \tilde{V}_r \Lambda_r \tilde{V}_r^* \quad [\tilde{V}_r^* \tilde{V}_r = I_r],$$

$$\boldsymbol{y} = \boldsymbol{m}_{\text{MAP}} + L \tilde{V}_r (I + \Lambda)^{-1/2} \boldsymbol{z}, \quad \boldsymbol{z} \sim \mathcal{N}(0, I).$$

V_r vectors 1, 2, 100, 200, 500, 4000

Method Requirements

- 1. Evaluate $\mathcal{J}(\boldsymbol{m})$ [Solve $A(\boldsymbol{w}; \boldsymbol{m}) = \mathbf{0}$]
- 2. Compute gradient $D\mathcal{J}(\boldsymbol{m})$
- 3. Matrix-vector product $H(\boldsymbol{m})\boldsymbol{\hat{m}}$
- 4. Precondition $H(\mathbf{m})^{-1}$
- 5. Sample from $C_{\text{post}} = H(\boldsymbol{m}_{\text{MAP}})^{-1}$

[Solve $A(\mathbf{w}; \mathbf{m}) = \mathbf{0}$] [Solve $A_{\mathbf{w}}^*$ systems] [Solve $A_{\mathbf{w}}, A_{\mathbf{w}}^*$ systems] $[C_{\text{prior}} \approx H(\mathbf{m})^{-1}]$

Method Requirements 5: low-rank update pair $\{V_r, W_r\}$ **1.** Evaluate $\mathcal{J}(\boldsymbol{m})$ [Solve $A(\boldsymbol{w}; \boldsymbol{m}) = \boldsymbol{o}$] [Solve A^{*}_w systems] **2.** Compute gradient $D\mathcal{J}(\boldsymbol{m})$ 3. Matrix-vector product $H(\mathbf{m})\hat{\mathbf{m}}$ [Solve A_w , A_w^* systems] $[C_{\text{prior}} \approx H(\boldsymbol{m})^{-1}]$ 4. Precondition $H(\mathbf{m})^{-1}$ 5. Sample from $C_{\text{post}} = H(\boldsymbol{m}_{\text{MAP}})^{-1}$ [Modify prior samples]

32/38

33/38

Reduction in Variance

q: Flux at Grounding Line

Left: gradient of **q**; right: joint maximizer of sensitivity and variance.

Conclusion

Theory says that for this problem, the cost of the entire data-to-prediction framework, when measured in forward or adjoint Stokes solves, is a constant independent of the parameter or data dimension.

We come very close, while also using optimal methods to keep the work per solve close to $\sim N/P$.

Acknowledgments

- U.S. Air Force Office of Scientific Research
 Computational Mathematics [FA9550- 12-1-0484]
- U.S. Department of Energy Office of Science Advanced Scientific Computing Research [DE-FG02-09ER25914, DE-FC02-13ER26128, and DE-SC0010518]
- U.S. National Science Foundation Cyber-Enabled
 Discovery and Innovation [CMS-1028889, OPP-0941678]
- Oak Ridge Leadership Facility at ORNL [DE-AC05-000R22725]

References I

- Burstedde, Wilcox, and Ghattas (2011). "p4est: Scalable Algorithms for Parallel Adaptive Mesh Refinement on Forests of Octrees". DOI: 10.1137/100791634.
- Creyts and Schoof (2009). "Drainage through subglacial water sheets". DOI: 10.1029/2008JF00121.
- Halko, Martinsson, and Tropp (2011). "Finding structure with randomness: Probabilistic algorithms for constructing approximate matrix decompositions". DOI: 10.1137/090771806.
- Rignot, Mouginot, and Scheuchl (2011). "MEaSURES InSAR-based Antarctica ice velocity map".
 - Stuart (2010). "Inverse problems: A Bayesian perspective". DOI: 10.1017/S0962492910000061.