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Motivation

Solving the Forward Problem

Inversion for Parameter Fields
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Our paper does not make actionable predictions or
projections.

It is a methodology paper.
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What Quantitative Changes Should We Expect?

Antarctica

visibleearth.nasa.gov

I Quantities of interest (QoIs): q
drive decisions, e.g.

I Air temperature
I Ocean salinity

I Sea level
I Albedo

I Measurements of states: w
I Unobtainable

I Future I Infeasible

I Regime changes invalidate trends
qobs 6→ qpred

http://visibleearth.nasa.gov
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Models Inform Us When Data Can’t
I PDEs are often the best models of states

Stokes: Balance of Momentum and Mass

(Nonlinear)

−+ · σ = ρg, [σ = µ(T, u)(+u + +uT) − Ip]
+ · u = 0, +b.c.s

I Symbolized as
A(w) = 0

How do we choose A so w matches reality?
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Scientists Gather Lots of Data
Data

earthobservatory.nasa.gov

I Observations/Data: dobs, e.g.
I Ice cores / boreholes
I Radar / stratigraphy
I GRACE gravity �eld

measurements
I Interferometric synthetic

aperture radar (InSAR) / lidar

I Data is also a measurement of
the state w:

d(w) ≈ dobs

suggests the model is valid.

http://earthobservatory.nasa.gov/Features/Paleoclimatology_IceCores/
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Scientists Gather Lots of Data
Data

(NASA/JPL-Caltech)

I Observations/Data: dobs, e.g.
I Ice cores / boreholes
I Radar / stratigraphy
I GRACE gravity �eld

measurements
I Interferometric synthetic

aperture radar (InSAR) / lidar

I Data is also a measurement of
the state w:

d(w) ≈ dobs

suggests the model is valid.

http://photojournal.jpl.nasa.gov/catalog/PIA00557
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I Our dataset dobs ∈ ÒNd is the MEaSUREs surface
velocity data for Antarctica (Rignot, Mouginot, and
Scheuchl 2011).

I d : X → ÒNd traces the velocity on the surface.
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Parameter Fields

Subglacial Systems

(Creyts and Schoof 2009, Figure 3)

I Uncertain parameters m

A(w;m) = 0
qpred = q(w;m)

I Often parameter �elds, e.g.
I Initial conditions
I Material properties
I Boundary conditions

I Number of parameters in
computation increases with
model resolution



9/38

Parameter Fields

Subglacial Systems

(Creyts and Schoof 2009, Figure 3)

T‖(σn + β (m(x))u)|Γbase = 0
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Inversion for Prediction
Summary

m

w

dm

qmA(w;m) = 0

d(w)

q(w;m)

= well-posed

I State w
I QoIs q
I Meas. d

I Obs. dobs
I Param. �eld m
I Model A

(“forward”)

Observations to Predictions
m

w

dobs

qpred
q(w;m)

= ill-posed

What are the sources of error and
uncertainty?

I Noisy d
I Ill-posedness of inversion
I Model/discretization error
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Modeling the Ice Sheet

A �nite element model built on the p4est AMR library (Burstedde,
Wilcox, and Ghattas 2011).
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Solving the Forward Problem
Armijo-Newton-Eisenstat-Walker-Krylov-Saad-Schur
Method
I Armijo-Newton: quadratic convergence near solution, globalized

for stability
I Eisenstat-Walker: Adaptive tolerance for inexact linear solver

based on nonlinear convergence history
I Krylov-Saad: FGMRES(k) solver allows variable preconditioning
I Schur: Use block upper-triangular preconditioner for Stokes

operator:

A =
(
F B∗

B 0

)
, P =

(
F̃ B∗

0 S̃

)
,
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Solving the Forward Problem

I F̃: smoothed-aggregation algebraic multigrid (PETSc GAMG with
custom plugin aggregator for high-anistropy)

I S̃ = −µ−1M̂: lumped mass matrix.
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Solving the Forward Problem
All of these choices seek to achieve optimal performance:
time to solution ∼ N/P.
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The Bayesian Inference Framework

1. Adopt a likelihood of dobs
given m,

πlike(dobs | m)

I Simplest form

dobs ∝ N(dm, Cobs)

I Cobs characterizes noise
and model error

2. Adopt a prior distribution
of the parameter �eld

πprior(m)

I First principles
I “Expert knowledge”
I Expedience

m ∝ N(mprior, Cprior)
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Cprior Samples
Antarctic Sliding Parameter
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The Bayesian Inference Framework
Bayes’ Law
The posterior pdf of the parameter given the observations is

πpost(m|dobs) =
πprior(m)πlike(dobs | m)∫

M
πprior(m)πlike(dobs | m) dm

.

I E.g.,

Å[qpred |dobs] =

∫
M
qmπprior(m)πlike(dobs | m) dm∫
M

πprior(m)πlike(dobs | m) dm

I Expectations require integration overM (high-dimensional) . . .
I . . .w.r.t. πpost(m|dobs) (implicitly-de�ned, no direct sampling).
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Markov Chain Methods

2D Rosenbrock Distribution
I Generate a chain of

samples {mi} using
proposal distributions {Pi}
that can be sampled
directly:

1
N

N∑
i=1

qmi
→ Å[qm] a.s.

I The speed of convergence
depends on the similarity
of πpost and {Pi}.
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Laplace’s Approximation
π̂post(m) := N(mMAP, H(mMAP)

−1)

J(m)

“H(mMAP)
′′

exp(−J(m)) ⇓ ⇑ − log(πpost(m))

πpost

π̂post

I A quadratic �t at the
maximum a posteriori
likelihood (MAP) point mMAP

I Also provides one-shot QoI
estimates

Å[qm] ≈ qmMAP

Var(q) ≈
DqmMAP

H(mMAP)
−1Dq∗mMAP

I Requires the Hessian

H(m) := D2J(m).
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Laplace’s Approximation to One-Shot Projection

Laplace’s approximation is the basis for a one-shot
estimate of QoI uncertainty:

qpost ∼ N(q(mMAP,wMAP), DmqCpostDmq∗).
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Gaussian Assumptions and Optimization

I Given Gaussian prior and likelihood,

πpost(m|dobs) ∝ exp{− 1
2(‖dobs − dm‖

2
C−1obs

+ ‖m − mprior‖
2
C−1prior
)︸ ︷︷ ︸

J(m)

}.

I J(m) is a typical objective function in PDE-constrained
optimization.
I ‖ · ‖C−1obs mis�t term (covariance smaller in slow-�ow regions)
I ‖ · ‖C−1prior regularization term (Bi-Laplacian)
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Review: Algorithm and Components

Estimating Statistics of πpost(m|dobs)

1. Find MAP point mMAP (Inexact Newton-Krylov method)

2. “Compute” Cpost = H(mMAP)
−1 (?)

3. Draw sample chain fromN(mMAP, Cpost), compute
statistics on chain
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Review: Algorithm and Components

Method Requirements

1–3: Use Adjoint Equations

1. Evaluate J(m)

[Solve A(w;m) = 0]

2. Compute gradient DJ(m)

[Solve A∗w systems]

3. Matrix-vector product H(m)m̂

[Solve Aw, A∗w systems]

4. Precondition H(m)−1

5. Sample from Cpost = H(mMAP)
−1
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Adjoint Equations

Aw(w;m)∗z = r − DJmis�t(m) in strong form

Balance of linear momentum, conservation of mass

−+ · [µ′(T, u) (+v + +vT) − Iq] = ru,

+ · v = 0.

I Calculus of variations (no full-program automatic
di�erentiation required)
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Preconditioning H(m)−1
I Each entry in H(m) requires two PDE solves: |m|2 entries.
I Never compute and store: only Hessian-vector products.

I H(m) must be a compact perturbation of C−1prior (Stuart 2010)

CpriorH(mMAP) Eigenvalue Spectra, Coarse and Fine Mesh
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Preconditioning H(m)−1

Cprior as a preconditioner provides mesh-independence of
number of iterations:
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Review: Algorithm and Components

Method Requirements

4: Use Cprior

1. Evaluate J(m) [Solve A(w;m) = 0]

2. Compute gradient DJ(m) [Solve A∗w systems]
3. Matrix-vector product H(m)m̂ [Solve Aw, A∗w systems]
4. Precondition H(m)−1

[Cprior ≈ H(m)−1]

5. Sample from Cpost = H(mMAP)
−1
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Sampling Cpost via Low-Rank Update

Prior Sample Modi�cation (Accurate within ε)

1. Partial, randomized, generalized EVD (Halko,
Martinsson, and Tropp 2011) with tolerance ε

Hmis�t ≈ VrΛrV∗r [V
∗
r CpriorVr = Ir,Wr = CpriorVr].

2. For each sample y, draw sample z from Cprior:

y = mMAP + (I − Wr(Ir − (Ir + Λr)
−1/2)V∗r )z.
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Sampling Cpost via Low-Rank Update
I Compactness: number of Hessian-vector products to
achieve accuracy ε is mesh-independent

I Cprior treated as “black-box”: no assumption about how
it is sampled, or whether we have a symmetric factor.
Compare to

Cprior = LL∗,
L∗Hmis�tL ≈ ṼrΛrṼ∗r [Ṽ

∗
r Ṽr = Ir],

y = mMAP + LṼr(I + Λ)−1/2z, z ∼ N(0, I).
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Vr vectors 1, 2, 100, 200, 500, 4000
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Review: Algorithm and Components

Method Requirements

5: low-rank update pair {Vr,Wr}

1. Evaluate J(m) [Solve A(w;m) = 0]

2. Compute gradient DJ(m) [Solve A∗w systems]
3. Matrix-vector product H(m)m̂ [Solve Aw, A∗w systems]
4. Precondition H(m)−1 [Cprior ≈ H(m)−1]
5. Sample from Cpost = H(mMAP)

−1

[Modify prior samples]
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Cprior Samples
Antarctic Sliding Parameter
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Cpost Samples
Antarctic Sliding Parameter
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Reduction in Variance
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q: Flux at Grounding Line

Left: gradient of q; right: joint maximizer of sensitivity and variance.



36/38

Conclusion

Theory says that for this problem, the cost of the entire
data-to-prediction framework, when measured in forward or
adjoint Stokes solves, is a constant independent of the
parameter or data dimension.

We come very close, while also using optimal methods to
keep the work per solve close to ∼ N/P.
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