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Motivation

Solving the Forward Problem

Inversion for Parameter Fields



Our paper does not make actionable predictions or
projections.

It is @ methodology paper.
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What Quantitative Changes Should We Expect?

» Quantities of interest (Qols): q

Antarctica drive decisions, e.g.

> Air temperature > Sea level
» Ocean salinity > Albedo

» Measurements of states: w
» Unobtainable

» Future » Infeasible

» Regime changes invalidate trends
9obs 7L> qpred
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Models Inform Us When Data Can’t

» PDEs are often the best models of states

Stokes: Balance of Momentum and Mass
-V -0 =pg. [6=u(T,u)(Vu+Vu') - Ip]
V-u=o, +b.c.s

» Symbolized as
Aw) =0

How do we choose A so w matches reality?
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Scientists Gather Lots of Data
Data

| 2
>
>

>

» Observations/Data: d,, e.g.

Ice cores / boreholes

Radar / stratigraphy

GRACE gravity field
measurements
Interferometric synthetic
aperture radar (InSAR) / lidar

» Data is also a measurement of
the state w:

d(W) ~ dobs

suggests the model is valid.
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Scientists Gather Lots of Data

Data » Observations/Data: d,, e.g.
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measurements

> Interferometric synthetic
aperture radar (InSAR) / lidar
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Scientists Gather Lots of Data

Data » Observations/Data: d,, e.g.

> Ice cores / boreholes

> Radar / stratigraphy

> GRACE gravity field
measurements

> Interferometric synthetic
aperture radar (InSAR) / lidar

41°00" [

40°30"

» Data is also a measurement of
the state w:

40°00"

d(W) ~ dobs

suggests the model is valid.

(NASA/JPL-Caltech)


http://photojournal.jpl.nasa.gov/catalog/PIA00557

» Our dataset d,, € RV is the MEaSUREs surface
velocity data for Antarctica (Rignot, Mouginot, and
Scheuchl 2011).

» d: X — RN traces the velocity on the surface.



Parameter Fields

Subglacial Systems

b

C.

1 cZ
g
(Creyts and Schoof 2009, Figure 3)

» Uncertain parameters m
A(w;m)=o0

pred = q(w; m)
» Often parameter fields, e.g.
» Initial conditions
> Material properties
»> Boundary conditions
» Number of parameters in

computation increases with
model resolution

(=]
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Parameter Fields

Subglacial Systems
a b

Ty(on + BmGx)w)l,,., = 0

(Creyts and Schoof 2009, Figure 3)
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Inversion for Prediction
Summary

q(w; m)
Alw; m) = Ol qm

d('”)l — = well-posed

dm
> Statew » Obs. dyps
> Qolsq » Param. field m
» Meas.d » Model A
(“forward”)

Observations to Predictions

m ;)
R q(w;m
) J qpred

1

' I’f »-»=ill-posed
\>\
dobs

What are the sources of error and
uncertainty?

> Noisy d

> Ill-posedness of inversion

» Model/discretization error



Modeling the Ice Sheet

100

] | \\HIH‘!'O [

A finite element model built on the psest AMR library (Burstedde,
Wilcox, and Ghattas 2011).



Solving the Forward Problem

Armijo-Newton-Eisenstat-Walker-Krylov-Saad-Schur
Method
> Armijo-Newton: quadratic convergence near solution, globalized
for stability

> Eisenstat-Walker: Adaptive tolerance for inexact linear solver
based on nonlinear convergence history

» Krylov-Saad: FGMRES(R) solver allows variable preconditioning
» Schur: Use block upper-triangular preconditioner for Stokes

operator:
Ao (FE) p_ F B*
B of” " lo §)°



Solving the Forward Problem

> F: smoothed-aggregation algebraic multigrid (PETSc GAMG with
custom plugin aggregator for high-anistropy)

> S = —u"M: lumped mass matrix.



Solving the Forward Problem
All of these choices seek to achieve optimal performance:

time to solution ~ N/P.

solve

setup

#dof | #cores | #Newton | #Krylov| time (s) / | time (s) / (imlov)
eff (%) eff (%) oisson
128 8 149 504.8 / 100 493.5 / 100 12
p1| 38M 256 8 153 259.6 / 97| 260.4 /95 12
512 8 157 134.3 /94| 156.0 / 80 12
1024 8 147 70.1 /90 97.2 /63 12
1024 9 240 796.6 / 100 735.0 / 100 12
P2 |270M 2048 9 245 414.3 /96| 424.6 / 87 12
8192 9 243 130.7 / 76| 229.0/ 40 13
16,384 13 314 771.5 / 100| 1424.5/ 15
P3| 2.1B | 65,536 13 367 504.2 / 38| 1697.1/ 15
131,072 11 340 232.9 /42| 2033.1/~* 16




The Bayesian Inference Framework

1. Adopt a likelihood of dgps 2. Adopt a prior distribution

given m, of the parameter field
Tiike(dobs| m) ﬂprior(m)
» Simplest form » First principles
> “Expert knowledge”
dobs o< N (dm, Cobs) > Expedience
> Cops Characterizes noise m oc N'(Myyior, Cprior)

and model error



Corior Samples
Antarctic Sliding Parameter
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The Bayesian Inference Framework

Bayes' Law

The posterior pdf of the parameter given the observations is
”prior(m)”like(dobs| m)

/M ﬂprior(m)ﬂlike(dobs| m) dm .

ﬂpost(mldobs) =

> E.8,
fM qmﬂprior(m)ﬂlike(dobs| m) dm

//\/( ﬂprior(m)ﬂlike(dobs| M) dm

[E[qpred |d0bs] =

> Expectations require integration over M (high-dimensional) ...

> .. W.rt. post(m|dops) (implicitly-defined, no direct sampling).



Markov Chain Methods

» Generate a chain of
2D Rosenbrock Distribution samples {m;} using
‘ | proposal distributions {P;}
that can be sampled
directly:

N

1

N Z am, — [E[qm] a.s.
i=1

» The speed of convergence
== N E ; depends on the similarity
of Tpost and {P;}.
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i=1

» The speed of convergence
== N E ; depends on the similarity
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Laplace’s Approximation

Rpost(M) := N (Myap, H(Muap)™") » A quadratic fit at the
maximum a posteriori
likelihood (MAP) point myap

» Also provides one-shot Qol
estimates
H(mypp)”
J(m) ElGm] ~ Qm,,
Var(q) ~
ep(-Jm) | ) ~log(Tpu(m)) D@y, H(Muap) ' DGy,
Tpost > Requires the Hessian
Tlpost
H(m) := D> (m).




Laplace’s Approximation to One-Shot Projection

Laplace’s approximation is the basis for a one-shot
estimate of Qol uncertainty:

qpost ~ N(q(mMAP, WMAP), qucpostqu*).



Gaussian Assumptions and Optimization

» Given Gaussian prior and likelihood,

ﬂpost(mldobs) & exp{— %(”dobs - dm||2—1 + ”m - mprior”(z_“T )}

obs prior
N~ —_— -
J (m)
> J(m)is atypical objective function in PDE-constrained
optimization.
> |l - ”CJQS misfit term (covariance smaller in slow-flow regions)

> |- ”C;ior regularization term (Bi-Laplacian)



Review: Algorithm and Components

Estimating Statistics of mpest(m|dops)

1. Find MAP point my,p (Inexact Newton-Krylov method)

2. “Compute” Cpost = H(muap) ™" (?)

3. Draw sample chain from N (mwap, Cpost), cOMpute
statistics on chain



Review: Algorithm and Components

Method Requirements

1.

Evaluate J (m)

2. Compute gradient D7 (m)

3. Matrix-vector product H(m)m
4.

5. Sample from Cpost = H(Mwap)™

Precondition H(m)™



Review: Algorithm and Components

Method Requirements 1-3: Use Adjoint Equations
1. Evaluate 9 (m) [Solve A(w; m) = O]
2. Compute gradient D7 (m) [Solve A} systems]
3. Matrix-vector product Him)m  [Solve Ay, A;, systems]
4. Precondition H(m)™
5. Sample from Cpost = H(Mwap)™



Adjoint Equations

Aw(w; m)*z = r — D Jnisst(m) in strong form

Balance of linear momentum, conservation of mass

=V - [ (T,u) (Vv + V') —Iq] = ry,
V.-v=o.

» Calculus of variations (no full-program automatic
differentiation required)



Preconditioning H(m)™
» Each entry in H(m) requires two PDE solves: |[m|? entries.
> Never compute and store: only Hessian-vector products.

» H(m) must be a compact perturbation of C;ior (Stuart 2010)

CoriorH(muap) Eigenvalue Spectra, Coarse and Fine Mesh

" -40§,545 parémeters
=—1,190,403 parameters

eigenvalue

10 —

0 1000 2000 3000 4000
number

um



Preconditioning H(m)™

Cprior @s @ preconditioner provides mesh-independence of
number of iterations:

#sdof #pdof | #N | #CG | avgCG | #Stokes
95,796 10,371 | 42 | 2718 65 7031
233,834 25,295 | 39 | 2342 60 6440
848,850 91,787 | 39 | 2577 66 6856
3,372,707 364,649 | 39 | 2211 57 6193
22,570,303 | 1,456,225 | 40 | 1923 48 5376




Review: Algorithm and Components

Method Requirements

1. Evaluate I (m) [Solve A(w; m) = 0]
2. Compute gradient D.J (m) [Solve Ay systems]
3. Matrix-vector product Him)m  [Solve A, A, systems]
4. Precondition H(m)™

5. Sample from Cpost = H(Mupap) ™



Review: Algorithm and Components

Method Requirements 4: Use Cprior
1. Evaluate I (m) [Solve A(w; m) = 0]
. Compute gradient D9 (m) [Solve Ay systems]

2
3. Matrix-vector product Him)m  [Solve A, A, systems]
4. Precondition H(m)™ [Corior & H(m)™"]
5

. Sample from Cpost = H(Mupp) ™"



Sampling Cpost Via Low-Rank Update
Prior Sample Modification (Accurate within €)

1. Partial, randomized, generalized EVD (Halko,
Martinsson, and Tropp 2011) with tolerance €

Hmisfit = Vr/\rv;k [V:Cpriorvr = I, W, = Cpriorvr]-
2. For each sample y, draw sample z from Cpyior:

y = mype + (1 = Wl = (I + A) T2z,



Sampling Cpost Via Low-Rank Update
Prior Sample Modification (Accurate within €)

1. Partial, randomized, generalized EVD (Halko,
Martinsson, and Tropp 2011) with tolerance €

Hmisfit = Vr/\rv;k [Vjcpriorvr = I, W, = CpriorVr]-
2. For each sample y, draw sample z from Cpyior:

y = mype + (1 = Wl = (I + A) T2z,



Sampling Cpost Via Low-Rank Update
» Compactness: number of Hessian-vector products to
achieve accuracy € is mesh-independent

> Cprior treated as “black-box": no assumption about how
it is sampled, or whether we have a symmetric factor.
Compare to

Cprior — LL*a
L*Hm|sﬁtl_ ~ \'7'”/\,'\'7;.!< [\7:\7" = Ir],
YV = Mpyap + LV,(I + /\)_1/22, Zz ~ N(O, I)



V, vectors 1, 2, 100, 200, 500, 4000

B %
L. Y. L, |
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Review: Algorithm and Components

Method Requirements

1. Evaluate J(m) [Solve A(w; m) = 0]
2. Compute gradient D.J (m) [Solve A, systems]
3. Matrix-vector product Him)m  [Solve Ay, A, systems]
4. Precondition H(m)™ [Corior & H(m)™"]
5

. Sample from Cpost = H(Myap)™



Review: Algorithm and Components

Method Requirements 5: low-rank update pair {V,, W,}
1. Evaluate J(m) [Solve A(w; m) = 0]
2. Compute gradient D.J (m) [Solve A, systems]
3. Matrix-vector product Him)m  [Solve Ay, A, systems]
4. Precondition H(m)™ [Corior & H(m)™"]
5. Sample from Cpost = H(mwap)™' [Modify prior samples]



Corior Samples
Antarctic Sliding Parameter
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Cpost Samples
Antarctic Sliding Parameter
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Reduction in Variance

~ std. dev. of 8

-1

0050

DA 34/38



g: Flux at Grounding Line

0.757 g0 451
10 L

-40

-20 ”
app%0 -120

.,- -
= W o>

- i

Left: gradient of g; right: joint maximizer of sensitivity and variance.
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Conclusion

Theory says that for this problem, the cost of the entire
data-to-prediction framework, when measured in forward or
adjoint Stokes solves, is a constant independent of the
parameter or data dimension.

We come very close, while also using optimal methods to
keep the work per solve close to ~ N/P.



Acknowledgments

» U.S. Air Force Office of Scientific Research
Computational Mathematics [FA9550- 12-1-0484]

» U.S. Department of Energy Office of Science Advanced
Scientific Computing Research [DE-FG02-09ER25914,
DE-FC02-13ER26128, and DE-SC0010518]

» U.S. National Science Foundation Cyber-Enabled
Discovery and Innovation [CMS-1028889, OPP-0941678]

» Oak Ridge Leadership Facility at ORNL
[DE-ACO5-000R22725]

» Texas Advanced Computing Center & XSEDE



References |

E) EE

Burstedde, Wilcox, and Ghattas (2011). “p4est: Scalable Algorithms for Parallel Adaptive Mesh Refinement on Forests of Octrees”.
DOl

Creyts and Schoof (2009). “Drainage through subglacial water sheets”. poi:

Halko, Martinsson, and Tropp (2011). “Finding structure with randomness: Probabilistic algorithms for constructing approximate
matrix decompositions”. poi:

Rignot, Mouginot, and Scheuchl (2011). “MEaSUREs InSAR-based Antarctica ice velocity map”.

Stuart (2010). “Inverse problems: A Bayesian perspective”. Dol


https://doi.org/10.1137/100791634
https://doi.org/10.1029/2008JF00121
https://doi.org/10.1137/090771806
https://doi.org/10.1017/S0962492910000061

