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Outline

Motivation: infer basal friction field in an ice sheet model and characterize
the associated uncertainties.
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Observed surface flow velocity from InSAR (Rignot et. al, 2011)
Antarctic ice sheet inversion for the basal friction parameter field

from InSAR surface velocities

Bayesian formulation of an inverse problem.

The role and importance of the Hessian (of the likelihood) in Bayesian
inference.

Hierarchical off-diagonal low-rank (HODLR) approximation of the Hessian.

Numerical example: inference of membrane log stiffness field in a Poisson
model problem.
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Bayesian approach to inverse problems

Inverse problem: given (possibly noisy) data d and (a possibly uncertain) model
f , infer parameters m that characterize the model, i.e.,

f(m) + e = d

Interpret m, d as random variables; solution of inverse problem is the “posterior”
probability density function πpost(m) for m:

πpost(m)

Remarks:
Bayesian framework quantifies uncertainty in the inverse solution, given
uncertainty in the prior, the data, and the model.

Prior incorporates known information and in infinite dimensions chosen to act
as a regularization.

Bayesian solution is a probability density function in as many dimensions as
the number of parameters.

Tucker Hartland (UCM) HODLR Approximation for Hessians February 27, 2019 3 / 23



Exploring the posterior

If the prior is Gaussian with mean mpr and covariance Γprior, and we assume
additive Gaussian noise in the measurements, i.e., e ∼ N (0,Γnoise), then using
Bayes theorem we obtain the posterior pdf:

πpost(m) ∝ exp
(
− 1

2 ‖ f(m)− d ‖2
Γ−1

noise

− 1
2 ‖m−mpr ‖2Γ−1

prior

)
The “maximum a posteriori” point is

mMAP
def
= arg max

m
πpost(m)

= arg min
m

1

2
‖f(m)− d‖2Γ−1

noise
+

1

2
‖m−mpr‖2Γ−1

prior

⇒ deterministic inverse problem with appropriate weighted norms!

Details in: J. Kaipio and E. Somersalo, Statistical and Computational Inverse Problems, 2005
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The Hessian (of the negative log posterior) plays a critical
role in inverse problems

Its spectral properties characterize the degree of ill-posedness.

The Hessian drives Newton-type optimization algorithms for solving the
inverse problem.

The inverse of the Hessian locally characterizes the uncertainty in the
solution of the inverse problem (under the Gaussian assumption, it is precisely
the posterior covariance matrix).

Goal: rapidly perform linear algebraic operations, i.e., manipulation of the
Hessian (and its inverse and inverse square root) actions needed by sampling
or CG solvers, hence seek approaches to approximate the Hessian(-applies).

These approximations will then be used as pre-conditioners, and to build
MCMC proposals based on local Gaussian approximations.
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Scalability of the inverse solver
Inexact Newton-CG method applied to an ice sheet inverse problem

#sdof #pdof #N #CG avgCG #Stokes
95,796 10,371 42 2718 65 7031

233,834 25,295 39 2342 60 6440
848,850 91,787 39 2577 66 6856

3,372,707 364,649 39 2211 57 6193
22,570,303 1,456,225 40 1923 48 5376

#sdof: number of degrees of freedom for the state variables;

#pdof: number of degrees of freedom for the inversion parameter field;

#N: number of Newton iterations;

#CG, avgCG: total and average (per Newton iteration) number of CG iterations;

#Stokes: total number of linear(ized) Stokes solves (from forward, adjoint, and
incremental forward and adjoint problems)

Details in the SIAG CSE19 Best Paper: T. Isaac, N. Petra, G. Stadler, and O. Ghattas. Scalable and
efficient algorithms for the propagation of uncertainty from data through inference to prediction for
large-scale problems, with application to flow of the Antarctic ice sheet, Journal of Computational
Physics, 296, 348-368 (2015).
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MCMC sampling: stochastic Newton
Performance results / Convergence diagnostics

MPSRF IAT ESS MSJ ARR #Stokes time (s)
SN 1.348 600 875 64 2 8400 420

MPSRF: multivariate potential
scale reduction factor

IAT: integrated autocorrelation
time

ESS: effecitive sample size

MSJ: mean squared jump distance

ARR: average rejection rate

#Stokes: # of Stokes solves per
independent sample

time: time per independent
sample

Statistics: 21 parallel chains (each 25k); # samples: 525k; dof: 139; rank
Hessian: 15

Proposal density:

q(mk,m) ∝ exp

(
−1

2

〈
m−

(
mk −H−1gk

)
,H

(
m−

(
mk −H−1gk

))〉
M

)
Details in: N. Petra, J. Martin, G. Stadler, O. Ghattas. A computational framework for
infinite-dimensional Bayesian inverse problems: Part II. Stochastic Newton MCMC with application to
ice sheet inverse problems, SIAM Journal on Scientific Computing, 2014
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The role of the Hessian in Stochastic Newton proposal
sampling and deterministic inversion

To efficiently sample from the Stochastic Newton proposal density we need
computationally effective means to,

apply H−1 to vectors in order to compute the mean, mk −H−1gk;

apply H−1/2 the square root of the covariance operator H−1, to vectors.

To efficiently solve the deterministic inverse problem by means of a Newton-CG
method we need an estimate of the Hessian that will serve as a preconditioner.

Algorithm 1 Inexact Newton-CG

while Not sufficiently near a minimizer do
Solve(Hp = −g)
...
m(k+1) = m(k) + αp

end while
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Low rank approximation of the Hessian of the likelihood
Under the assumption of Gaussian noise and linearized parameter-to-observable map (i.e.,
Gaussian posterior)

Invoke low-rank approximation given by the inverse of the Hessian:

Γpost = H−1 =
(
F TΓ−1

noiseF + Γ−1
prior

)−1

≈ Γ1/2
prior (V rΛrV

T
r + I)−1Γ1/2

prior

V r and Λr are the eigenvectors/values of F TΓ−1
noiseFvi = λiΓ

−1
priorvi.

F is the Jacobian matrix of the parameter to observable map f(m).

Spectrum of the prior-preconditioned likelihood Hessian for the Arolla glacier
(139 parameters, left) and Antarctica (1.19M parameters, right).
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409,545 parameters

1,190,403 parameters
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Exploiting structure
Taking advantage of the parameter to observable mapping

sensitivities, ∂u
∂mj

sensitivities, ∂m
∂ui

measurements, d

parameter, m(x)

We expect (hope) for narrow sensitivities.

⇒ We hope (for a suitable ordering of the discrete degrees of freedom) that
the Hessian H, will be concentrated on the diagonal.
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Exploiting structure
Taking advantage of the parameter to observable mapping

We expect (hope) for narrow sensitivities.

⇒ We hope that H is concentrated on the
diagonal.

We wish to maintain only useful information
in H.

⇒ We expect useful information concentrated
in certain blocks of H.

Apply techniques of hierarchical (H) matrices:
Specifically hierarchical off-diagonal low-rank
(HODLR) matrices.
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H-matrices
Hierarchical off-diagonal low-rank (HODLR) matrices

HHODLR =

[
A

(1)
1 B

(1)
1

B
(1)
2 A

(1)
2

]
• Low rank block

=


A

(2)
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(2)
1

B
(2)
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2
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1
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=



A
(3)
1 B

(3)
1

B
(3)
2 A

(3)
2

B
(2)
1

B
(2)
2

A
(3)
3 B

(3)
3

B
(3)
4 A

(3)
4

B
(1)
1

B
(1)
2

A
(3)
5 B

(3)
5

B
(3)
6 A

(3)
6

B
(2)
3

B
(2)
4

A
(3)
7 B

(3)
7

B
(3)
8 A

(3)
8


Details in: J. Ballani, D. Kressner. Matrices with Hierarchical Low-Rank Structures, Exploiting Hidden
Structure in Matrix Computations: Algorithms and Applications, 2016
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H-matrices
Hierarchical compression, direct solve

Desired characteristics of the preconditioner for the Newton-CG system:

1 accurately approximates the Hessian,

2 the application of the inverse to vectors is computationally inexpensive.

Compression:

Apply H to random vectors with specified blocks of zeros, in order to sample
the column spaces of the off-diagonal blocks.

The samples are likely aligned with dominant modes, thus allowing the
generation of low rank approximations of the off-diagonal blocks.

Details in: P.G. Martinsson, Compressing Rank-Structured Matrices Via Randomized Sampling, SIAM
Journal on Scientific Computing, 2016

Direct Solve:

At O
(
N log2N

)
cost one obtains a factorization of a HODLR matrix.

Employing the factorization one has a O (N logN) means of applying

(HHODLR)
−1 to vectors.

Details in: S. Ambikasaran, E. Darve, An O(N log N) Fast Direct Solver for Partial Hierarchically
Semi-Separable Matrices, Springer Journal of Scientific Computing, 2013
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Example problem
Log stiffness coefficient field inversion in an elliptic PDE

Goal: determine the field m(x) such that the solution u(x), of the elliptic PDE is
closest to the observation data, uobs(x).

min
m

J [m] :=
1

2

∫
Ω

(u(x)− uobs(x))
2

dx︸ ︷︷ ︸
Misfit

+
γ

2

∫
Ω

(∇m ·∇m) dx︸ ︷︷ ︸
Regularization

Where u(x) is uniquely defined by m(x), as the solution of the following PDE:

−∇ · (exp (m) ∇u) = f(x), x in Ω

u(x) = 0, x on Γ

u(x), state, solution of PDE for a given m(x),

uobs(x), observation data,

m(x), log stiffness parameter field,

γ ≥ 0, regularization parameter,

f(x), source term,

Γ, boundary of spatial domain Ω.
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Estimating the minimizer of a deterministic PDE
constrained optimization problem

Method of Solution

1 Derive 1st and 2nd order derivative information via adjoints.

2 Setup an inexact Newton-CG system.

Algorithm 2 Inexact Newton-CG

while Not sufficiently near a minimizer do
Solve(Hp = −g)
...
m(k+1) = m(k) + αp

end while

Computational Cost: an application of the Hessian, H to a vector requires two
PDE solves.
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Example problem in one dimension
Ordering the degrees of freedom

x

1 2 3 4 5 6 7 8

Ordering in 1d naturally respects locality :

If points xi,xj ∈ Ω are close to each other then |i− j| is relatively small.

If this was not true, then the Hessian would have large magnitude elements
far from the diagonal.

If i, j are such that |i− j| is relatively small then ||xi − xj || is small.

If this was not true, then the Hessian would have small magnitude elements
near the diagonal.
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HODLR preconditioning in one dimension

Matrix plot of the Hessian
CG iterations vs Newton iteration
256 dof, 3 levels of H-refinement, OD rank
k = 20

1 The structure of the Hessian indicates that it can be well approximated by a
HODLR compression.

2 The HODLR compressed Hessian serves as an effective preconditioner for the
Newton Conjugate-Gradient system.
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Example problem in two dimensions
Ordering the degrees of freedom by row

Ordering in 2d does not naturally respect locality.

x

y

1 2 3 4 5 6 7 8

9 10 11 12 13 14 15 16

17 18 19 20 21 22 23 24

25 26 27 28 29 30 31 32

33 34 35 36 37 38 39 40

41 42 43 44 45 46 47 48

49 50 51 52 53 54 55 56

57 58 59 60 61 62 63 64
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Hessian with a row ordered basis
Naive row ordering basis leads to Hessians unsuitable for hierarchical compression

Matrix plot of the Hessian

# of Conjugate-Gradient iterations
consistently equal to the problem size

When using a default ordering of the degrees of freedom in 2d:
1 the Hessian does not possess HODLR structure,
2 the HODLR compressed Hessian fails to effectively precondition the Newton

Conjugate-Gradient system.
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Example problem in two dimensions
Ordering the degrees of freedom according to a Hilbert curve

x

y

1

2 3

4 5 6

78

9 10

111213

1415

16

17 18

1920

21

22 23

24 25

26 27

28

2930

31 32 33 34

3536

37

38 39

40 41

42 43

44

4546

47 48

49

5051

525354

55 56

5758

59 60 61

62 63

64
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Hessian with a Hilbert curve ordered basis
Hilbert curve ordering leads to Hessians more suitable for hierarchical compression

Matrix plot of the Hessian CG iterations vs Newton iteration

When using a Hilbert curve ordering of the degrees of freedom in 2d:
1 the Hessian possesses HODLR structure,
2 the HODLR compressed Hessian effectively preconditions the Newton

Conjugate-Gradient system.
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HODLR compressed Hessian in two dimensions
Positive definiteness is not preserved!

For moderate levels of hierarchical refinement and/or moderately low
off-diagonal rank, the HODLR compressed Hessian fails to maintain
positive definiteness, thereby failing to adequately precondition the
Newton-CG system.

We hope to moderately extend recent work on generating symmetric positive
definite hierarchical semi-separable (HSS) approximations to HODLR
matrices.
Details in: X. Xing, E. Chow, Preserving Positive Definiteness in Hierarchically Semiseparable Matrix
Approximations, SIAM Journal on Matrix Analysis and Applications, 2018
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Summary

Conclusions:

Numerical evidence demonstrates that Hessian manipulations can be made
tractable by off-diagonal low-rank approximations.

So that the localized PDE sensitivities manifest as a diagonally concentrated
Hessian, it is necessary to reorder the degrees of freedom in a way that
respects locality.

Ongoing and future work:

Generate hierarchical approximations that are guaranteed to preserve positive
definiteness.

Apply all of the above to the full Stokes ice sheet problem.

Apply HODLR approximations of the Hessian to efficiently generate Gaussian
proposal distributions for MCMC sampling.

Look to apply general H-matrices to approximate H.
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Diagonal concentration of the Hessian
Manifestation of localized sensitivities

Let u(m) be the solution of the PDE for a given parameter field m. M , K the
mass and stiffness matrices arising from the discretization of the PDE.

J (u(m),m) =
1

2
(u− uobs)

>
(u− uobs) +

γ

2
m>Km

We take a discretize and then optimize (DTO) approach, to get a sense of the
structure of the Hessian in terms of the first and second order sensitivities.

Hi,j =
∂2

∂mi∂mj
J (u(m),m)
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Diagonal concentration of the Hessian
Manifestation of localized sensitivities

Hi,j = (u− uobs)
>
M

∂2u

∂mi∂mj
+

∂u

∂mi

>
M

∂u

∂mj
+ γKi,j

The only components of u which will be sensitive to variations of the
parameter m at node i are those components of u that are near node i.

If parameter dof nodes i and j are far from one another, then no component
of u will be sensitive to both variations.
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