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Outline

§ Brief Overview of Trilinos.
§ Some lessons learned (I think).
§ On-node parallelism.
§ Embedded Resilience.
§ Non-accelerated systems return.
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Trilinos Overview



What is Trilinos?
§ Object-oriented software framework for…
§ Solving big complex science & engineering problems.
§ Large collection of reusable scientific capabilities.
§ More like LEGO™ bricks than Matlab™.
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Optimal Kernels to Optimal Solutions:

w Geometry, Meshing 

w Discretizations, Load Balancing.

w Scalable Linear, Nonlinear, Eigen, 
Transient, Optimization, UQ solvers.

w Scalable I/O, GPU, Manycore

w 60+ Packages.

w Distributions:

w GitHub repo.

w Cray LIBSCI, Linux

w Thousands of Users.

w Worldwide distribution.

Laptops to

Leadership systems



Trilinos Highlights
§ Huge library of algorithms

§ Linear and nonlinear solvers, preconditioners, …
§ Optimization, transients, sensitivities, uncertainty, …

§ Solid support for multicore & hybrid CPU/GPU
§ Built into the new Tpetra linear algebra objects

§ Therefore into iterative solvers with zero effort!
§ Unified intranode programming model: Kokkos
§ Spreading into the whole stack:

§ Multigrid, sparse factorizations, element assembly…

§ Support for mixed and arbitrary precisions
§ Don’t have to rebuild Trilinos to use it

§ Support for flexible 2D sparse partitioning
§ Useful for graph analytics, other data science apps.



Trilinos linear solvers
§ Sparse linear algebra

(Kokkos/KokkosKernels/Tpetra)
§ Threaded construction, Sparse graphs, (block) 

sparse matrices, dense vectors, parallel solve 
kernels, parallel communication & redistribution

§ Iterative (Krylov) solvers (Belos)
§ CG, GMRES, TFQMR, recycling methods
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§ Sparse direct solvers (Amesos2)
§ Algebraic iterative methods (Ifpack2)

§ Jacobi, SOR, polynomial, incomplete factorizations, additive Schwarz

§ Shared-memory factorizations (ShyLU)
§ LU, ILU(k), ILUt, IC(k), iterative ILU(k)
§ Direct+iterative preconditioners

§ Segregated block solvers (Teko)
§ Algebraic multigrid (MueLu)

Kokkos
Kernels



MPI+X based subdomain solvers
Decouple the notion of one MPI rank as one subdomain: Subdomains can span 
multiple MPI ranks each with its own subdomain solver using X or MPI+X

Subpackages of ShyLU: Multiple Kokkos-based options for on-node parallelism 
Basker : LU or ILU (t) factorization
Tacho: Incomplete Cholesky - IC (k) 
Fast-ILU: Fast-ILU factorization for GPUs 

KokkosKernels: Coloring based Gauss-Seidel (M. Deveci), Triangular Solves (A. 
Bradley)

ShyLU and Subdomain Solvers : Overview

TachoBasker FAST-ILUKLU2

Amesos2 Ifpack2

ShyLU

KokkosKernels –
SGS, Tri-Solve (HTS)



Some Lessons Learned



Simultaneous heterogeneous execution is hard

§ HPCG on Trinity
§ 9380 Haswell, 9984 KNL compute 

nodes.
§ Haswell

§ Processor dimensions: 27x42x17
§ Local grid dimensions: 160x160x112

§ KNL 
§ Processor dimensions: 27x42x34
§ Local dimensions: 160x160x152

§ HPCG result: 546 TF/s (4th at ISC18).
§ Previous 180 TF/s for Haswell only.

§ Key Point: For sparse codes, it’s about the memory system.
§ For accelerated systems, simultaneous heterogeneous 

execution seems unwise: Keep all computation on the GPUs.

HPCG on SIERRA (Power9’s + 4 
Voltas):
• About 10% of performance is 

from Power9’s
• Summit 6 GPUs: Power9’s less 

important.
• Both: 

• Code complexity challenging.
• Runtime system complexity 

(MPI).
• Work partitioning.
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Porting to accelerated systems
2-phase strategy: TaihuLight

Initial port:
• Vanilla MPI, 1 rank per MPE
• 23.2 GF/s /core
• 4 vector FMA
• 2 pipes
• 16 Flops/cycle FMA
• Peak: 2/65 of node peak

Subsequent optimization:
• Offload any work to CPEs
• 11.6 GF/s /core
• 4 vector FMA
• 1 pipe
• 8 Flops/cycle FMA



CAM-SE to TaihuLight: 2017 Gordon Bell Finalist

§ CAM-SE: Spectral Element Atmospheric dynamical core
§ Reported:

§ 754,129 SLOC.
§ 152,336 SLOC modified for TaihuLight (20%).
§ 57,709 SLOC added (8%).
§ 12+ team members.

§ Challenges:
§ Reusability of code seems low: Much of the optimization is specific to 

Sunway CPE processor.
§ Translation effort difficult to accomplish while still delivery science 

results: Disruptive.
§ Other notable example: Uintah (see Dec 2017 ASCAC talk)

§ Separation of runtime concerns seems to really help, but app-specific.



Some Observations from these Efforts
§ Even the simplest simultaneous heterogeneous execution is 

difficult.
§ Best option seems to keep all significant computation on accelerator.
§ More generally: Heterogeneous execution is fine, if it’s not simultaneous.

§ MPI-backbone approach is very attractive.
§ Initial app port to host backbone, hotspot optimization.
§ Investment in portable programming expressions seems essential.
§ Separation of functionality expression and work/data mapping seems 

essential.



Pattern for parallel dynamic allocation

§ Pattern:
1. Count / estimate allocation size; may use Kokkos parallel_scan

2. Allocate; use Kokkos::View for best data layout & first touch

3. Fill: parallel_reduce over error codes; if you run out of space, keep 
going, count how much more you need, & return to (2)

4. Compute (e.g., solve the linear system) using filled data structures

§ Compare to Fill, Setup, Solve sparse linear algebra use pattern

§ Semantics change: Running out of memory not an error!
§ Always return: Either no side effects, or correct result

§ Callers must expect failure & protect against infinite loops

§ Generalizes to other kinds of failures, even fault tolerance

§ Thread-scalable execution of mundane code is 
”straightforward” but hard work.
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On-node data & execution



Sparse LA Challenges vs Dense
§ Dynamic tasking:

§ Fine grain work migration is not effective.
§ Cost of data migration is too high.
§ Best to make sure data are mapped to make most efficient use of 

bandwidth.
§ Coarse grain can work:

§ Encapsulate memory allocation, initialization and computation.
§ Assures co-location of work and data.

§ Indirect addressing:
§ Gather/scatter.
§ Atomic writes vs. coloring.

§ Data structure polymorphism:
§ ”Sparse” encompasses many kinds of problems.
§ Architecture details impact data structure choices.

§ Response: Encapsulate data/work in polymorphic layer 16



Must support multiple architectures

§ Systems to support

§ Trinity (Intel Haswell & KNL)

§ Sierra: NVIDIA GPUs + IBM 

multicore CPUs

§ Astra: Arm manycore

§ Plus “everything else”

§ 3 different architectures

§ Multicore CPUs (big cores)

§ Manycore CPUs (small cores)

§ GPUs (highly parallel)

§ MPI only, & MPI + threads

§ Threads don’t always pay on 

non-GPU architectures today

§ Porting to threads must not 

slow down the MPI-only case 17



Kokkos: Performance, Portability, & Productivity

18

DDR#

HBM#

DDR#

HBM#

DDR#DDR#

DDR#

HBM#HBM#

Kokkos#

LAMMPS# Sierra# Albany#Trilinos#



19

Kokkos Programming Model

• Machine model: 
• N execution space + M memory spaces 
• NxM matrix for memory access performance/possibility
• Asynchronous execution allowed

• Implementation approach
• A C++ template library
• C++11 now required
• Target different back-ends for different hardware architecture
• Abstract hardware details and execution mapping details away

• Distribution
• Open Source library
• Available on GitHub 

• Long Term Vision
• Move features into the C++ standard

Goal: One Code gives good performance on every platform
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Abstraction Concepts

Execution Pattern: parallel_for, parallel_reduce, parallel_scan, task, …

Execution Policy : how (and where) a user function is executed
E.g., data parallel range : concurrently call function(i) for i = [0..N)
User’s function is a C++ functor or C++11 lambda

Execution Space : where functions execute
Encapsulates hardware resources; e.g., cores, GPU, vector units, ...

Memory Space : where data resides
Ø AND what execution space can access that data
Also differentiated by access performance; e.g., latency & bandwidth

Memory Layout : how data structures are ordered in memory
Ø provide mapping from logical to physical index space

Memory Traits : how data shall be accessed
Ø allow specialisation for different usage scenarios (read only, random, atomic, …) 
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Execution Pattern
#include <Kokkos_Core.hpp>
#include <cstdio>

int main(int argc, char* argv[]) {
// Initialize Kokkos analogous to MPI_Init()
// Takes arguments which set hardware resources (number of threads, GPU Id)
Kokkos::initialize(argc, argv);

// A parallel_for executes the body in parallel over the index space, here a simple range 0<=i<10
// It takes an execution policy (here an implicit range as an int) and a functor or lambda
// The lambda operator has one argument, and index_type (here a simple int for a range)
Kokkos::parallel_for(10,[=](int i){
printf(”Hello %i\n",i); 

});

// A parallel_reduce executes the body in parallel over the index space, here a simple range 0<=i<10 and 
// performs a reduction over the values given to the second argument 
// It takes an execution policy (here an implicit range as an int); a functor or lambda; and a return value
double sum = 0;
Kokkos::parallel_reduce(10,[=](int i, int& lsum) {
lsum += i;   

},sum);
printf("Result %lf\n",sum);  

// A parallel_scan executes the body in parallel over the index space, here a simple range 0<=i<10 and 
// Performs a scan operation over the values given to the second argument 
// If final == true lsum contains the prefix sum. 
double sum = 0;
Kokkos::parallel_scan(10,[=](int i, int& lsum, bool final) {
if(final) printf(”ScanValue %i\n",lsum); 
lsum += i;   

});

Kokkos::finalize();
}



Kokkos protects us against…

§ Hardware divergence
§ Programming model diversity
§ Threads at all

§ Kokkos::Serial back-end
§ Kokkos’ semantics require 

vectorizable (ivdep) loops
§ Expose parallelism to exploit later
§ Hierarchical parallelism model 

encourages exploiting locality
§ Kokkos protects our HUGE time 

investment of porting Trilinos
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Kokkos is our hedge



Other Node-Parallel Abstractions

§ An underlying node-parallel data/loop abstraction seems 

necessary for sparse computations:

§ To reduce redundant coding for different targets.

§ To provide good data placement strategies.

§ Kokkos is one approach.  Others include:

§ RAJA.

§ OCCA.

§ OpenACC.

§ OpenMP (ramping up).

§ Without some abstraction, these things are especially hard:

§ Porting to different architectures.

§ Execution on heterogeneous architectures.
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Resilient Sparse Solvers



Our Luxury in Life (wrt FT/Resilience)
The privilege to think of a computer as a 

reliable, digital machine.

Conjecture: This privilege will persist through 
Exascale.

Reason: Vendors will not give us a unreliable 
system until we are ready to use one, and 
we will not be ready by 2020 – 2023.
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If we want unreliable systems, 
we must work harder on resilience.
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Take away message



Four Resilience Programming Models

§ Relaxed Bulk Synchronous (rBSP)

§ Skeptical Programming. (SP)

§ Local-Failure, Local-Recovery (LFLR)

§ Selective (Un)reliability (SU/R)

Toward Resilient Algorithms and Applications
Michael A. Heroux arXiv:1402.3809v2 [cs.MS]
https://arxiv.org/abs/1402.3809
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Skeptical Programming
I might not have a reliable digital machine

Evaluating the Impact of SDC in Numerical Methods
J. Elliott, M. Hoemmen, F. Mueller, SC’13 28



What is Needed for 
Skeptical Programming?

§ Skepticism.
§ Meta-knowledge:

§ Algorithms, 
§ Mathematics,
§ Problem domain.

§ Nothing else, at least to get started.
§ FEM ideas:

§ Invariant subspaces.
§ Conservation principles.
§ More generally: 

§ pre-conditions, post-conditions, 
invariants.
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Note: These same ideas are 
useful for the Artifact 
Evaluation Appendix, used 
by SC18 Tech Papers 
Program.



Every calculation matters

§ Small PDE Problem: ILUT/GMRES
§ Correct result:35 Iters, 343M FLOPS
§ 2 examples of a single bad op.
§ Solvers: 

§ 50-90% of total app operations.
§ Soft errors most likely in solver.

§ Need new algorithms for soft errors:
§ Well-conditioned wrt errors.
§ Decay proportional to number of errors.
§ Minimal impact when no errors.

Description Iters FLOP
S

Recursive 
Residual 
Error

Solution Error

All Correct 
Calcs

35 343
M

4.6e-15 1.0e-6

Iter=2, y[1] += 
1.0
SpMV incorrect
Ortho 
subspace

35 343
M

6.7e-15 3.7e+3

Q[1][1] += 1.0
Non-ortho 
subspace

N/C N/A 7.7e-02 5.9e+5

Soft Error Resilience

• New Programming Model Elements: 
• SW-enabled, highly reliable:

• Data storage, paths.
• Compute regions.

• Idea: New algorithms with minimal 
usage of high reliability.

• First new algorithm: FT-GMRES.
• Resilient to soft errors.
• Outer solve: Highly Reliable
• Inner solve: “bulk” reliability.

• General approach applies to many 
algorithms.

Fault-tolerant linear solvers via selective 
reliability, 
Patrick G. Bridges, Kurt B. Ferreira, 
Michael A. Heroux, Mark Hoemmen
arXiv:1206.1390v1 [math.NA] 
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FT-GMRES Algorithm
“Unreliably” computed.
Standard solver library call.
Majority of computational cost.

Captures true linear operator issues, AND
Can use some “garbage” soft error results.
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Selective Reliability Highlights

§ The Selective Reliability Model 
is Implementable, even today.

§ SDC (Bit-flips) are not equally 
impactful.

§ Bit protection can be selective:
§ Integers, Pointers – Use high bits.
§ FP – Exponent bits.

§ (Lowlight) Work in this area is stalled.
§ Waiting for the next call-to-arms.
§ Beyond Moore may be next opportunity (unreliable digital).
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Iterative Linear Solvers. In Proceedings of the 24th International Symposium on High-
Performance Parallel and Distributed Computing (HPDC '15). ACM, New York, NY, USA, 
271-274. DOI=http://dx.doi.org/10.1145/2749246.2749254



NON-ACCELERATOR SYSTEMS
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Non-accelerate systems didn’t disappear:
Sandia “Astra” System
§ Cavium ThunderX2 ARM based system.
§ System performance: 2.3 PF.
§ Number of nodes: 2,592 
§ Cores/node: 56 (2 socket, 28 cores)
§ Better than average memory performance (8-channel design.)
§ Total # cores: 145152
§ Core spec: 

§ 2GHz
§ 2 128-bit FP units, 4 fmadds
§ 8 DP flops/core/clock/ 

§ Also: Diskless storage system.
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ThunderX3 SVE (Future capability)
§ Scalable vector length allowing each implementation to choose 

the amount of parallelism.
§ Rich addressing modes including non-linear data accesses.
§ Per-lane predication allowing vectorization of loops with 

complex control flow.
§ Predicate-driven loop control and management to reduce 

vectorization overhead relative to scalar code.
§ Horizontal operations for reducible loop-carried dependencies.
§ Vector partitioning and software-managed speculation to 

vectorize loops with data-dependent exits.
§ Scalarized intra-vector sub-loops to allow vectorizing loops with 

complex loop-carried dependencies.
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Alejandro Rico, José A. Joao, Chris Adeniyi-Jones, and Eric Van Hensbergen. 2017. ARM HPC 
Ecosystem and the Reemergence of Vectors: Invited Paper. In Proceedings of the Computing Frontiers 
Conference (CF'17). ACM, New York, NY, USA, 329-334.  DOI: https://doi.org/10.1145/3075564.3095086



Final Take-Away Points

Development for accelerated sparse solvers in full swing.
Critical mass of sparse solver code exists, continues to grow.

Simultaneous heterogeneous execution is hard.
Sequenced heterogeneous is OK, but need code generation 
tools for multiple targets (e.g., Kokkos).

Intra-node parallelism is still biggest challenge:
Kokkos provides vehicle for reasoning and implementing on-
node parallel.
Eventual goal: Search and replace Kokkos:: with std::
Node-parallel algorithms are already available.
Fully node parallel execution is hard work.
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Take Away points, cont.
§ Resilience will be an issue, really.

§ But only as we are ready to adapt algorithms and codes.
§ The longer we delay, the more likely we will have a future system 

installed but never accepted.

§ Already is: 
§ Performance variability is result.

§ Latency tolerant algorithms are key.
§ Delays in system delivery, others.

§ Checkpoint/restart will continue to improve:
§ NVRAM, Compression
§ Moving away from this model is very expensive.

§ Embedded soft error detection/correction could be useful:
§ Skeptical programming (meta-computations).
§ Selective reliability (managing key bits and pointers).
§ Does not require any special support outside of solvers.
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Take Away points, cont.
§ Manycore systems are re-emerging.
§ Far from exascale-ready.
§ Astra: 2.3 PF on 2600 nodes.
§ Exascale possible with 430X:

§ Combination node/core/VL increases. 
§ Example (440X):

§ Nodes: 2600 → 250,000
§ Cores: 56 → 64
§ VL: 4 → 16

§ Targeting accelerators and manycore with same code base:
§ Kokkos-like abstractions needed.
§ Will still be challenging.

§ Plenty of work to do, and we didn’t talk about asynchronous 
tasking!
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