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Overview

Goal: Model deformations of composite materials used in aerospace
engineering

Outline:
1. Problem formulation
2. MCMC
3. Preconditioning
4. Surrogate Models
5. Outlook
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Problem formulation: Composite Materials
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Modelling Challenges for Composite Materials

Classical Finite Elements (FE) on grid Th, find uh ∈ V such that∫
Ω

C(x)ε(uh) : ε(vh) dx =

∫
Ω

f · vh dx +

∫
Γ

(σ · n) · vh dx ∀vh ∈ Vh

leads to system of matrix equations: Au = b, u ∈ RM

• C(x) Elasticity Tensor varies over small length
scales (<mm) application/component on > 10m
scale→ massive systems of equations!
• High Contrast Fibre to Resin (∼ 10 : 1)→ very

ill-conditioned equations!
• Strongly Anisotropic (often non-grid aligned)→

non-local coupling in A!
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Defects in Composites

• Defects can form when
manufacturing complex aerospace
components.
• Reduce testing by using numerical

simulations
- Requires good mathematical /

mechanical models for
composite failure

- Efficient stochastic
algorithms to calculate the
probability distribution of failure

• Inverse problems might avoid
expensive/infeasible scans.
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FE modeling

• Requires high number of degrees of freedom to resolve, plies, interfaces,
wrinkles
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• Very coarse FE modelnot possible as at least one element per layer is
needed
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Characterising Wrinkles

Let {ψi (x)} define the orthonormal basis over which wrinkles are defined

• The deformation induced by W (x, ξ) should not self-intersect. At this
stage it is sufficient to choose ψi not self-intersecting, and impose the
constraint detJ (x, ξ) > 0 during the posterior sampling

• The misalignment is computed as follows

tanφj (x, ξ) =
Nw∑
i=1

ai
dψi (x,b)

dxj
for j = 1 and 2. (1)

• the choice of basis ψi is important as it constrains the representation of
wrinkles, it should be left as general as possible
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Characterising Wrinkles

Estimating alignment at a point by minimizing the integral of the gray scale
over the trial fibre using the MFIA algorithm.

Anne Reinarz | Strength Distribution of Composite Structures | CSE | Feb. 2019 8



Characterising Wrinkles
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Randomly sampled points are used to reconstruct an alignment over the
domain. Samples are concentrated in areas of high misalignment in a
multilevel scheme.
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Wrinkle parameterisation

Represent a wrinkle using a
Karhunen-Loéve expansion:

W (x) =

NKL∑
i=1

ai Ψi (λ, x1)︸ ︷︷ ︸
KL modes

F (x)︸︷︷︸
Decay fct

,

where the decay functions

F (x) =
3∏

j=1

exp

[
−

(xj − Xj )
n

λD

]

account for the localized nature
of the wrinkles.
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Defect Modeling
A Markov chain is a sequence of samples {ξ(0), ξ(1), . . . , ξ(m)}. The first set of
coefficients is generated randomly from N (0,1). Subsequent samples are
generated by preconditioned Crank-Nicolson proposal with tuning parameter
β ∈ R:

ξ′ =
√

(1− β2) ξk−1 + βω; 1 6 k 6 m

For the proposal we calculate its fit to the data A = {a(0), . . . ,a(n)}

L(ξ′) = exp

[
− 1

2
√

n min
i=1,...,n

||a(i) − ξ′j ||2
]

The proposal ξ′ is accepted as the next sample ξ(k) with probability

α(ξ′, ξk−1) = min

{
1,
L(ξ′)

L(ξk−1)

}
otherwise ξk = ξk−1.
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Markov Chain Monte-Carlo

• We initialize five independent
Markov chains

• By computing the autocorrelation
length Λ we approximate the
subsampling interval for which the
samples are independent, i.e. Ξ ={
ξ(Λ), ξ(2Λ), . . . , ξSΛ

}
and SΛ = m.

• Subsampling only occurs after a
burn-in period to remove influence
of the start of the chain on the
distribution. autocorrelation length Λ < 100
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Results
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Domain Decomposition Methods

• Additive Schwarz methods solve on each small subdomain Ω and use
these local approximations of K−1 as a preconditioner

• Performance reduces with increasing number of domains/processors
→ does not scale to large problem sizes

• Strong connectivity between subdomains (fibre direction) may not be
captured in large problems
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GenEO Preconditioner

Idea: Add a global coarse space to add information from neighboring
subdomains
[GenEO]

M−1
AS,2 = RT

H K−1
H RH︸ ︷︷ ︸

coarse space

+
N∑

j=1

RT
j K−1

j Rj︸ ︷︷ ︸
AS,1

• Robust for Composite Applications
- Condition of preconditioned system stays constant with increasing

number of domains/processors
- Fine scale behaviour of the fibres is captured

[GENEO] Spillane et al, Abstract robust coarse spaces for systems of PDEs
via generalized eigenproblems in the overlaps, 2014.
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GenEO Coarse Space

Definition (Generalized eigenproblems in the overlaps)

For each subdomain j = 1, . . . ,N, we define the generalized eigenproblem

aΩj (p, v) = λaΩo
j
(Ξj (p),Ξj (v))∀v ∈ Vh(Ωj ),

where Ξj is the partition of unity and aΩj , aΩo
j

is the bilinear form restricted to
the subdomain Ωj and the overlap respectively.

Definition (GenEO coarse space)

For each subdomain j = 1, . . . ,N, let (pj
k )

mj
k=1 be the eigenfunctions from the

eigenproblem in definition corresponding to the mj smallest eigenvalues.
Then the GenEO coarse space is defined as

VH := span {RT
j Ξj (p

j
k ) : k = 1, . . . ,mj ; j = 1, . . . ,N}.
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GenEO Coarse Space

Definition (Generalized eigenproblems in the overlaps)

For each subdomain j = 1, . . . ,N, we define the generalized eigenproblem

aΩj (p, v) = λaΩo
j
(Ξj (p),Ξj (v))∀v ∈ Vh(Ωj ),

where Ξj is the partition of unity and aΩj , aΩo
j

is the bilinear form restricted to
the subdomain Ωj and the overlap respectively.

Sample eigenfunctions:
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Performance
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GenEO as a surrogate model
• Find u ∈ V := H1

0 (Ω), such that

−∇ · c(x)∇u(x) = 1 ∀x ∈ Ω := [0,1]d

u(x) = 0 ∀x ∈ ∂Ω

• c(x) Log-normal random field
• Variations over small length scales and high

contrast
• Subdivide into 16 subdomains
• Overlap subdomain by O layers
• dim Vh = 4.0× 104

• Babuska I & Lipton R, Optimal Local
Approximation Spaces for Generalized
Finite Element Methods with Application to
Multiscale Problems, Multiscale
Model Simul, 2011.
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Motivating Example: Incompressible Darcy Flow
First 5 eigenfunctions on Ω6. Lowest λ(1)

6 = 0 as Ω6 has no Dirichlet boundary

Fine model
dim Vh = 4× 104

Coarse Model
dim VH = 320
m = 20,O = 5

ε = ‖uh−RT
HUH‖2/‖uh‖2
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Conclusions
• Often in composite structures there

is little data, since large composite
parts are expensive to make. → not
possible to infer much about the
strength distribution of a component
from such limited data without the
use of statistical tools

• The GenEO preconditioner is robust
and scales well up to thousands of
cores

• Alternatively, a good multiscale
method can capture finescale
behaviour with fewer degrees of
freedom

• Avoid expensive scans/invasive
testing
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