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Introduction HiCOO and effective sparse tensor ordering Concluding remarks

Motivation

TENSOR DECOMPOSITIONS AND APPLICATIONS 463

Table 3.1 Some of the many names for the CP decomposition.

Name Proposed by
Polyadic form of a tensor Hitchcock, 1927 [105]
PARAFAC (parallel factors) Harshman, 1970 [90]
CANDECOMP or CAND (canonical decomposition) Carroll and Chang, 1970 [38]
Topographic components model Möcks, 1988 [166]
CP (CANDECOMP/PARAFAC) Kiers, 2000 [122]
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Fig. 3.1 CP decomposition of a three-way array.

The CP decomposition factorizes a tensor into a sum of component rank-one
tensors. For example, given a third-order tensor X ∈ RI×J×K , we wish to write it as

(3.1) X ≈
R∑

r=1

ar ◦ br ◦ cr,

where R is a positive integer and ar ∈ RI , br ∈ RJ , and cr ∈ RK for r = 1, . . . , R.
Elementwise, (3.1) is written as

xijk ≈
R∑

r=1

air bjr ckr for i = 1, . . . , I, j = 1, . . . , J, k = 1, . . . , K.

This is illustrated in Figure 3.1.
The factor matrices refer to the combination of the vectors from the rank-one

components, i.e., A =
[
a1 a2 · · · aR

]
and likewise for B and C. Using these

definitions, (3.1) may be written in matricized form (one per mode; see section 2.4):

X(1) ≈ A(C⊙B)T,(3.2)

X(2) ≈ B(C⊙A)T,

X(3) ≈ C(B⊙A)T.

Recall that ⊙ denotes the Khatri–Rao product from section 2.6. The three-way model
is sometimes written in terms of the frontal slices of X (see Figure 2.2):

Xk ≈ AD(k)BT, where D(k) ≡ diag(ck:) for k = 1, . . . , K.

Analogous equations can be written for the horizontal and lateral slices. In general,
though, slicewise expressions do not easily extend beyond three dimensions. Following
Kolda [134] (see also Kruskal [141]), the CP model can be concisely expressed as

X ≈ !A,B,C" ≡
R∑

r=1

ar ◦ br ◦ cr.
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Given a tensor X , and a number R, Candecomp/Parafac (CP)
decomposition approximates X as a sum of R rank-1 tensors.

Many applications: data analysis & mining for health care, natural
language processing, machine learning, social network analytics,...

We will look at the method CP-ALS for computing CP decompositions.
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CP-ALS

Algorithm 1: CP-ALS for 3D

Input : X : I × J × K tensor
R: The rank

Output: CP decomposition
[[λ; A,B,C]]

Initialize A,B,C
repeat

A← X(1)(C�B)(BTB ∗ CTC)†

Normalize columns of A
B← X(2) . . .
Normalize columns of B
C← X(3) . . .
Normalize columns of C and
store the norms as λ

until . . .

X(1) sparse matrix, I × J · K
A is I × R; B is J × R;
C is K × R.

(BTB ∗ CTC)† is R × R,
Hadamard product,
pseudo-inverse.

C� B Khatri-Rao product,
J · K × R.

X(1)(C� B) is Matricized
Tensor-Times Khatri-Rao
Product (MTTKRP)

MTTKRP is the computational core.
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MTTKRP Operation

Matricized tensor times Khatri-Rao product (MTTRKP):

MTTKRP Operation

!30

Khatri-Rao Product 

Matriced Tensor Times Khatri-Rao Product (MTTKRP) 

Tensor
Matricization Khatri-Rao Product

Factor MatrixUpdated
Factor Matrix

C    BD

Matrix

R

IJ

R

I

R

J

C B

D

.

MTTKRP is the performance bottleneck of 
CP decomposition.

CP decomposition in a 
nutshell

column vectors, one forms the factor matrices A, B, and C, where the goal
of CP algorithms is to find such matrices providing the best approximation
to the input tensor.

The computational core of the most common CP decomposition methods
involves an operation called the matricized tensor-times-Khatri-Rao product.
This core can be described succinctly as shown in Algorithm 1. Here, B and
C are known matrices of sizes J⇥R and K⇥R, respectively ; MA is another
matrix of size I⇥R. For each tensor nonzero xi,j,k, the jth row of the matrix
B is multiplied element-wise with the kth row of the matrix C, the result is
scaled with the tensor entry xi,j,k and added to the ith row of MA. In the
encompassing CP decomposition algorithm, the factor matrix of interest, A,
is computed after Algorithm 1 by a regular, dense matrix operation using
MA, BTB and CTC, where BTB and CTC are tiny. A similar operation
is then performed with the new matrix A and C to compute a new B for
the second mode ; and then a new C is computed using the new A and B.
Then, this whole step of computing a new factor matrix using the other two
is repeated by the CP decomposition algorithm until a stopping criteria met.

foreach xi,j,k 2 X do
MA(i, :) MA(i, :) + xi,j,k[B(j, :) ⇤C(k, :)]

end
Algorithm 1: The computational core in the CP decomposition algorithms
for 3-mode tensors along the first mode. The jth row of the matrix B is
multiplied element-wise with the kth row of the matrix C ; then the result
is scaled with the tensor entry xi,j,k and added to the ith row of MA.

We have identified a coarse and and a fine grain formulation for the
computational core shown in Algorithm 1, and investigated suitable paralle-
lizations with the two formulations in a recent paper [9]. In this paper, we
have designed a library for implementing a CP decomposition algorithm and
presented scalability results on up to 1024 MPI ranks at Ada. The experi-
ments showed that the proposed fine-grain formulation can achieve the best
performance with respect to other alternatives (including a state of the recent
work) with a good partitioning, reaching up to 194x speedups on 512 MPI
ranks. In our analysis and experiments [9], we identified the communication
latency as the dominant hindrance for further scalability. We will investigate
this issue further in the near future by designing novel partitioning methods.

4

Perform MTTKRP as efficiently as possible.
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Some existing sparse tensor formats

COO: coordinate

CSF: Compressed sparse fiber (extension of CSR) [Smith et al.’15]

F-COO: Flagged COO [Liu et al.’17]

Baseline Sparse Tensor Formats in This Work

!16

(a) COO

i j k val

0 0 0 1
0 1 0 2
1 0 0 3
1 0 2 4
2 1 0 5
2 2 2 6
3 0 1

3 3 2

7

8

(b) CSF

i

j

k

val

0

0

0

1

1

0

2

1

0

0
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0

2

4

2

0

1

5

1

3

0 3

2

2

2

6 7 8

(c) F-COO

bf j k val

1 0 0 1
0 1 0 2
1 0 0 3
0 0 2 4
1 1 0 5
0 2 2 6
1 0 1

0 3 2

7

8

sf[0]=1

sf[1]=1

Mode-Generic Mode-Specific
prefer different representations for different modes.

i = 1,…,I

j = 1,…,J k =
 1,

…,K

4

4 3

COO: coordinate formats [Bader et al., 2006]
CSF: Compressed Sparse Fibers, extension of CSR. [Smith et al. 2015]
F-COO: Flagged COO format [Liu et al., 2017]
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Sparse tensor storage challenges

A compact, space-efficient representation

efficient computations on all modes, for many typical computations,
mode-genericity(-obliviousness).

HiCOO is a more recent storage format

retains mode-genericity of COO.
while being space efficient.

cache friendly.

Baskaran et al.’12 for the term mode-genericity; Jiajia Li et al.’18 for HiCOO
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HiCOO

Store the tensor in units of small sparse blocks (generalized from CSB)

shorten the bit-length of indices

compress the block indices

HiCOO Format

!25

i = bi * B + ei

32-bit 8-bit32-bit

COO indices:
= nnz * 3 * 32

HiCOO indices:
= nnz * 3 * 8 + nnb * (3 * 32 + 32) 

block indices element indices

Store a sparse tensor in units of small sparse blocks
• Shorten the bit-length of element indices
• Compress the number of block indices 

HiCOO

ek val
0 0 0 1
0 1 0 2
1 0 0 3
1 0 0 4
0 1 0 5
1 0 1 7
0 0 0
1 1 0

6
8

0 0 0

0 0 1
1 0 0

1 1 1

0

3
4

6

ei ejbi bj bkbptr

B1

B2

B3

B4

COO

i j k val
0 0 0 1
0 1 0 2
1 0 0 3
1 0 2 4
2 1 0 5
2 2 2 6
3 0 1
3 3 2

7
8

nnz: #Nonzeros; nnb: #Non-zero blocks

CSB: Compressed sparse blocks, Buluc et al.’09
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Our aim

Goal: (Further) Improve the performance of HiCOO by reordering the
mode indices.

Why reordering: Number of blocks will reduce if we do it right.

⇒ improve data locality in the tensor and the factor matrices.
COO and CSF will benefit.

No changes in the MTTKRP code.
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Our aim: What exactly

HiCOO

Reduce the number of blocks
by closely packing nonzeros

Yield denser blocks

Reduce storage

The performance gain: increased
block density, reduced num blocks,
and improved cache use.

COO and CSF

No difference in COO storage

No difference in CSF’s tree
structure (the order of
children changes)

The performance gain: from the
improved data locality.
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How we go about it?

We propose two heuristics

⇒ arrange the nonzeros close to each other, in all modes.

Reasoning with matrices

Reorder the rows and columns so that nonzeros are around the diagonal.

Nonzeros in a row or column will be close to each other.

Any (regular) blocking will have nonzero blocks around the diagonal.

0 100 200 300 400 500 600
nz = 2184

0

100

200

300

400

500

600

Original matrix

0 100 200 300 400 500 600
nz = 2184

0

100

200

300

400

500

600

Iteration 6
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First heuristic: BFS-MCS

A breadth-first-search-like heuristic,
using maximum cardinality search.

Build a hypergraph: a set of vertices
per mode, & every nonzero is a
hyperedge

Order each mode independently.

(a) Tensor

i j k val
i1 a

b
c
d

j1 k1

i1 j2 k1

i2 j2 k1

i2 j2 k2

(b) Hypergraph

i1 j1 k1

i2 j2 k2

c

d

a

b
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Second heuristic: Lexi-Order

An extension of doubly lexical ordering of matrices to tensors.

Doubly lexicographic ordering of matrices:

The di s are read in the shown order, to
form a string of {0, 1}s of length m · n.

We want the smallest string in the
dictionary order (1s are before 0s).

Every real-valued matrix has a doubly
lexicographic ordering.

Not unique.

DOUBLY LEXICAL ORDERINGS OF MATRICES 857

dl d3 d6
dE d5
d4

FIG. 2.1. The vector d.

After exchanging rows k and the component of d(M) which was M(l,j) becomes
M(k,j) and the components beyond that retain their old values. The symmetric
argument works for column. 1-1

ProofofTheorem 2.1. By Claim 2.2 an ordering of a matrix M which makes d(M)
lexically largest is a doubly lexical ordering of M.

For an ordered 0-1 matrix the following property is equivalent to the condition
that the columns of the matrix be in lexical order: for any row r with a 1 in some
column c and a 0 in some column k > c there is a row s > r with a 0 in column c and
a 1 in column k.

Note that there is no restriction on the submatrices of an ordered doubly lexical

matrix: If M is any ordered 0-1 matrix then the ordered matrix [ 2] is doubly lexical,
where 11 and I2 are appropriately dimensioned identity matrices, and J is a matrix of
all l’s.

Consider now the case of symmetric matrices. It is not true that every symmetric
matrix has a symmetric ordering which is doubly lexical" An example is [o ].

THEOREM 2.3. Every symmetric matrix with a dominant diagonal has a symmetric
ordering which is a doubly lexical ordering.

Recall that the symmetric matrix M with rows and columns indexed by $ has a

dominant diagonal ifM(s, s) -> M(s, t) for all s, S. It is not necessary for a symmetric
matrix to have a dominant diagonal in order for it to have a symmetric ordering which
is doubly lexical" An example is [10 ].

ProofofTheorem 2.3. In a symmetric ordered matrix M with a dominant diagonal
the exchange of two columns which are lexically out of order leaves the corresponding
two rows lexically out of order. Thus by Claim 2.2 the exchange of two columns of

M which are lexically out of order and subsequent exchange of the two corresponding
rows both lexically improve d(M). A symmetric ordering of M which makes d(M)
lexically largest must then be a symmetric doubly lexical ordering of M. l-!

The neighbourhood matrix ofany graph is symmetric and has a dominant diagonal.
Thus Theorem 2.3 guarantees that every graph has a lexical ordering.

The condition that the ordering vl,/)2, On of the vertices of a graph G be a

lexical ordering is equivalent to the following condition, where indicates adjacent
or equal vertices:

For any vertices vi, vj, Vk with <j, Vk Vi, Vk Vj there is a vertex v, > k with

v vi, v- v. (l =j is allowed.)

3. Doubly lexieal ordering algorithm. This section contains a doubly lexical order-

ing algorithm and a proof that the algorithm works. It also contains a modification of
the algorithm which finds symmetric doubly lexical orderings of symmetric matrices

with dominant diagonals.
An ordered partition of a finite set E is an ordered list (El, EE,’" ", Ek) where

the sets E, called the parts, partition E. The ordered partition (F1, F2,"" ", Ft) is a

refinement of the ordered partition (El, E2," , Ek) if there are indices 1 il < i2" <

Lubiw’87
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Lexi-Order: Matrix case

Known methods are“direct”. Run time of O(nnz log(I + J) + J) and
O(nnz + I + J) space, for an I × J matrix with nnz nonzeros.

Too high for our purposes.

The data structures are too complex (“rather elaborate”).
Hard to achieve efficient generalizations for tensors.

We propose matLexiOrder

An iterative algorithm; an iteration sorts either rows or columns.

It obtains a solution; simpler and probably more efficient.

We do not need an exact lexico-ordering; a close-by one will likely
suffice (to improve the MTTKRP performance).

Assume an ordering of the rows, sort the columns lexically in linear
time with an order preserving variant of Partition Refinement.

Lubiw’87; Paige and Tarjan’87
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Lexi-Order: Proposed variant for tensors

Order one mode by assuming the others are ordered.

is used to order its rows and columns alternatively. Given an
ordering of the rows, the columns can be sorted lexically. This
is achieved by an order preserving variant of the partition re-
finement method [28], which is called orderlyRefine. We
briefly explain the partition refinement technique by ordering
matrix columns as an example. Given an I ⇥ J matrix A,
all columns are initially put into a single partition. Then, its
nonzeros are visited row by row. At a row i, each column
partition C is split into two partitions C1 = C \ A(i, :)
and C2 = C \ A(i, :), and these two partitions replace C

in the order C1 � C2 (empty sets are discarded). Note that
this algorithm keeps the partitions in a particular order which
generates an ordering of the columns. orderlyRefine is
used to obtain all partitions of row i in O(|A(i, :)|) time,
where |A(i, :)| is the number of nonzeros of row i. Overall,
matLexiOrder costs a linear total time of O(M + I + J)
(for rows and columns ordering) per iteration and O(J) space.
We also observe that only a small number of iterations will
be enough (will be shown in Section IV-G for tensors),
yielding a more time- and storage-efficient algorithm com-
pared to the prior doubly lexical ordering methods [27], [28].
matLexiOrder, in particular the use of orderlyRefine
routine, is sufficient for our needs. This is so as we do not
need a full lexicographic order, thereby making our approach
faster and simpler to implement.
Algorithm 2 LEXI-ORDER for a given mode.
Input: An N th-order sparse tensor X 2 RI1⇥···⇥IN , mode n;
Output: Permutation permn;

. Sort all nonzeros along with all but mode n.
1: quickSort(X, coordCmp);

. Matricize X to X(n).
2: r = compose (inds ([�n]), 1);
3: for m = 1, . . . ,M do
4: c = inds(n,m); . Column index of X(n)

5: if coordCmp(X,m,m� 1) == 1 then
6: r = compose (inds ([�n]),m); . Row index of X(n)

7: X(n)(r, c) = val(m);
. Use a variation of partition refinement in [28]

8: permn = orderlyRefine (X(n));
9: return permn;

. Comparison function for two indices of X
10: Function: coordCmp(X,m1,m2)
11: for n

0 = 1, . . . , N do
12: if n0! = n then
13: if m1(n

0) < m2(n
0) then

14: return �1; . Entry m1 < entry m2

15: if m1(n
0) > m2(n

0) then
16: return 1; . Entry m1 > entry m2

17: return 0; . Entry m1 = entry m2

Fig. 5. The steps of LEXI-ORDER (Algorithm 2) illustrated for mode 1.

To order tensors, we propose the LEXI-ORDER function as
an extension of matLexiOrder. The basic idea of LEXI-
ORDER is to determine the permutation of each tensor mode
independently, while considering the order in other dimensions
fixed. LEXI-ORDER sets the indices of the mode to be ordered
as the columns of a matrix, the other indices as the rows and
sorts the columns as described for matrices (with the order
preserving partition refinement method). The precise algorithm
appears in Algorithm 2, which we also illustrate in Figure 5
when applied to mode 1. Given a mode n, LEXI-ORDER first
builds a matricized tensor in Compressed Sparse Row (CSR)
format by a call to quicksort with the comparison function
coordCmp and then by partitioning the nonzeros into the row
segments (Lines 3–7). This comparison function coordCmp

does a lexicographic comparison of all-but-mode-n indices,
which enables efficient matricization. In other words, sorting
of the tensor X is the same as building the matricized tensor
X(n) by rows in the fixed lexical ordering, where mode n is
the column dimension and the remaining modes constitute the
rows. In Figure 5, the sorting step orders the COO entries
by (j, k) tuples, which then serve as the row indices of
the matricized CSR representation of X(1). Once the matrix
is built, we construct zero-one row vectors in Figure 5 to
illustrate its nonzero distribution, which could seamlessly call
orderlyRefine function. Apart from the quickSort, the
other parts of LEXI-ORDER are of linear time complexity
(linear in terms of tensor storage). We use OpenMP Tasks
to parallelize quickSort to accelerate LEXI-ORDER.

Like BFS-MCS approach, LEXI-ORDER also finds the
permutations for N modes of an N th-order sparse tensor. Fig-
ure 6(a) illustrates the effect of LEXI-ORDER on an example
4⇥ 4⇥ 3 sparse tensor. The original tensor is converted to a
HICOO representation with block size B = 2 consisting of 5
blocks, with maximum 2 nonzeros per block. After reordering
with LEXI-ORDER, the new HICOO has 3 nonzero blocks
with up to 4 nonzeros per block. Thus, the blocks are denser,
which should exhibit better locality behavior. However, this
reordering scheme is heuristic. For example, consider Figure 2,
we draw another HICOO representation after reordering in
Figure 6(b). Applying LEXI-ORDER would yield a reordered
HICOO representation with 4 blocks, which is the same as
the input ordering, although the maximum number of nonzeros
per block would increase to 4. For this tensor, LEXI-ORDER
may not show a big advantage.

C. Parallel format conversion

For an efficient parallel HICOO-MTTKRP algorithm, su-
perblocks, an extra blocking level above blocks, are pro-
posed to increase the workload granularity of scheduling.
A superblock is essentially a “logical” subtensor that can
potentially consist of many small blocks. (Please refer to
[25] for details.) During HICOO format conversion in Fig-
ure 7, we first sort all nonzeros only by i indices in mode
0 (“rowblock sorting”), to ensure that a mode-0 slice is
not split between superblocks. Then L ⇥ · · · ⇥ L nonzero
superblocks are partitioned with an additional array lptr to

For each dim

Matricize to have dim as the
columns

Order the columns lexically

is used to order its rows and columns alternatively. Given an
ordering of the rows, the columns can be sorted lexically. This
is achieved by an order preserving variant of the partition re-
finement method [28], which is called orderlyRefine. We
briefly explain the partition refinement technique by ordering
matrix columns as an example. Given an I ⇥ J matrix A,
all columns are initially put into a single partition. Then, its
nonzeros are visited row by row. At a row i, each column
partition C is split into two partitions C1 = C \ A(i, :)
and C2 = C \ A(i, :), and these two partitions replace C

in the order C1 � C2 (empty sets are discarded). Note that
this algorithm keeps the partitions in a particular order which
generates an ordering of the columns. orderlyRefine is
used to obtain all partitions of row i in O(|A(i, :)|) time,
where |A(i, :)| is the number of nonzeros of row i. Overall,
matLexiOrder costs a linear total time of O(M + I + J)
(for rows and columns ordering) per iteration and O(J) space.
We also observe that only a small number of iterations will
be enough (will be shown in Section IV-G for tensors),
yielding a more time- and storage-efficient algorithm com-
pared to the prior doubly lexical ordering methods [27], [28].
matLexiOrder, in particular the use of orderlyRefine
routine, is sufficient for our needs. This is so as we do not
need a full lexicographic order, thereby making our approach
faster and simpler to implement.
Algorithm 2 LEXI-ORDER for a given mode.
Input: An N th-order sparse tensor X 2 RI1⇥···⇥IN , mode n;
Output: Permutation permn;

. Sort all nonzeros along with all but mode n.
1: quickSort(X, coordCmp);

. Matricize X to X(n).
2: r = compose (inds ([�n]), 1);
3: for m = 1, . . . ,M do
4: c = inds(n,m); . Column index of X(n)

5: if coordCmp(X,m,m� 1) == 1 then
6: r = compose (inds ([�n]),m); . Row index of X(n)

7: X(n)(r, c) = val(m);
. Use a variation of partition refinement in [28]

8: permn = orderlyRefine (X(n));
9: return permn;

. Comparison function for two indices of X
10: Function: coordCmp(X,m1,m2)
11: for n

0 = 1, . . . , N do
12: if n0! = n then
13: if m1(n

0) < m2(n
0) then

14: return �1; . Entry m1 < entry m2

15: if m1(n
0) > m2(n

0) then
16: return 1; . Entry m1 > entry m2

17: return 0; . Entry m1 = entry m2

i j k val
0 0 0 1
3 0 0 7
3 1 0 8
0 1 1 2
0 1 2 3
1 2 2 4
1 3 2
2 3 2

5
6

orderlyRefine
Quick 

sort Matricize
(1, 2, 3, 0)

Original COO

i j k val
0 0 0 1
0 1 1 2
0 1 2 3
1 2 2 4
1 3 2 5
2 3 2 6
3 0 0
3 1 0

7
8

1 0 0 1
0 0 0 1
1 0 0 0
1 0 0 0
0 1 0 0
0 1 1 0

i(j,k)
(0,0)
(1,0)
(1,1)
(1,2)
(2,2)
(3,2)

Zero-one RepresentationSorted COO

0 3
3
0
0
1

i(j,k)
(0,0)
(1,0)
(1,1)
(1,2)
(2,2)
(3,2) 1 2

JK*I CSR Matrix

Non-zero
Distribution

permi

Fig. 5. The steps of LEXI-ORDER (Algorithm 2) illustrated for mode 1.

To order tensors, we propose the LEXI-ORDER function as
an extension of matLexiOrder. The basic idea of LEXI-
ORDER is to determine the permutation of each tensor mode
independently, while considering the order in other dimensions
fixed. LEXI-ORDER sets the indices of the mode to be ordered
as the columns of a matrix, the other indices as the rows and
sorts the columns as described for matrices (with the order
preserving partition refinement method). The precise algorithm
appears in Algorithm 2, which we also illustrate in Figure 5
when applied to mode 1. Given a mode n, LEXI-ORDER first
builds a matricized tensor in Compressed Sparse Row (CSR)
format by a call to quicksort with the comparison function
coordCmp and then by partitioning the nonzeros into the row
segments (Lines 3–7). This comparison function coordCmp

does a lexicographic comparison of all-but-mode-n indices,
which enables efficient matricization. In other words, sorting
of the tensor X is the same as building the matricized tensor
X(n) by rows in the fixed lexical ordering, where mode n is
the column dimension and the remaining modes constitute the
rows. In Figure 5, the sorting step orders the COO entries
by (j, k) tuples, which then serve as the row indices of
the matricized CSR representation of X(1). Once the matrix
is built, we construct zero-one row vectors in Figure 5 to
illustrate its nonzero distribution, which could seamlessly call
orderlyRefine function. Apart from the quickSort, the
other parts of LEXI-ORDER are of linear time complexity
(linear in terms of tensor storage). We use OpenMP Tasks
to parallelize quickSort to accelerate LEXI-ORDER.

Like BFS-MCS approach, LEXI-ORDER also finds the
permutations for N modes of an N th-order sparse tensor. Fig-
ure 6(a) illustrates the effect of LEXI-ORDER on an example
4⇥ 4⇥ 3 sparse tensor. The original tensor is converted to a
HICOO representation with block size B = 2 consisting of 5
blocks, with maximum 2 nonzeros per block. After reordering
with LEXI-ORDER, the new HICOO has 3 nonzero blocks
with up to 4 nonzeros per block. Thus, the blocks are denser,
which should exhibit better locality behavior. However, this
reordering scheme is heuristic. For example, consider Figure 2,
we draw another HICOO representation after reordering in
Figure 6(b). Applying LEXI-ORDER would yield a reordered
HICOO representation with 4 blocks, which is the same as
the input ordering, although the maximum number of nonzeros
per block would increase to 4. For this tensor, LEXI-ORDER
may not show a big advantage.

C. Parallel format conversion

For an efficient parallel HICOO-MTTKRP algorithm, su-
perblocks, an extra blocking level above blocks, are pro-
posed to increase the workload granularity of scheduling.
A superblock is essentially a “logical” subtensor that can
potentially consist of many small blocks. (Please refer to
[25] for details.) During HICOO format conversion in Fig-
ure 7, we first sort all nonzeros only by i indices in mode
0 (“rowblock sorting”), to ensure that a mode-0 slice is
not split between superblocks. Then L ⇥ · · · ⇥ L nonzero
superblocks are partitioned with an additional array lptr to
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Experiments: Set up

Linux-based Intel Xeon E5-2698 v3 multicore platform with 32
physical cores distributed on two sockets, each with 2.3 GHz.

Haswell microarchitecture,
32 KiB L1 data cache and 128 GiB memory.

C using OpenMP parallelization; compiler icc 18.0.1.

sparse tensors from http://frostt.io/ (Smith, Choi, Li, et al.)
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Experiments: Configuration

Best configurations to obtain the highest MTTKRP performance:

the superblock size L and the block size B of HiCOO format,
best practices for COO & CSF.

Five lexi-ordering iterations.

Approximation rank of R = 16.

The parallel experiments use 32 threads.

The total execution time of MTTKRPs in all modes.

Speedup is the ratio over a run on a randomly reordered tensor.

Run times are averaged over five runs.
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HiCOO-MTTKRP sequential

Speedups with reordering
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(a) Sequential

Lexi-Order: 0.99–4.14× speedup
(2.12× on average).

BFS-MCS: 0.99–1.88× speedup
(1.34× on average).

flickr4d is constructed from the same
data with flickr, with an extra short
mode. Lexi-Order obtains 4.14×
speedup on flickr while 3.02× speedup
on flickr4d.

Similar behavior on deli and deli4d.

Hard to get good data locality on higher-order tensors.
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HiCOO-MTTKRP parallel

Speedups with reordering
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(b) Parallel

Lexi-Order: 0.71–11.88× speedup
(2.14× on average).

BFS-MCS: 0.25–1.94× speedup
(0.98× on average).

The benefit is generally less than that
in the sequential case.

11.88× speedup on flick4d is because of
a different superblock size L.

Need a better thread scheduling in HiCOO?—Done recently

Automatically tuning the parameters of HiCOO will be very helpful.

18/24 Sparse tensor reordering



Introduction HiCOO and effective sparse tensor ordering Concluding remarks

COO-MTTKRP sequential and parallel

Speedups with reordering
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(a) Sequential
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(b) Parallel

COO-MTTKRP from Parti!, following
TensorToolbox

Sequential

Lexi-Order: 1.00–4.29× speedup
(1.79× on average).

BFS-MCS: 0.95–1.27× speedup
(1.10× on average).

Parallel

Lexi-Order: 1.01–1.48× speedup
(1.21× on average).

BFS-MCS: 0.70–1.68× speedup
(1.11× on average).

The qualitative effect on performance:

less for COO-MTTKRP than HiCOO-MTTKRP.
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CSF-MTTKRP sequential and parallel

Speedups with reordering
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(a) Sequential
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(b) Parallel

CSF-MTTKRP from Splatt v1.1.1
with all CSF representations.

Sequential

Lexi-Order: 0.65–2.33× speedup
(1.50× on average).

BFS-MCS: 1.00–1.86× speedup
(1.22× on average)

Parallel

Lexi-Order: 0.86–1.88× speedup
(1.27× on average).

BFS-MCS: 0.59–1.36× speedup
(1.04× on average).

The qualitative effect on performance:
less for CSF-MTTKRP than HiCOO-MTTKRP.
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Other reordering methods

On tensors nell2, nell1, and deli

The reordering methods used in Splatt:

The speedups using graph partitioning: 1.06, 1.11, and 1.19×
The speedups using hypergraph partitioning: 1.06, 1.12, and 1.24×.

For comparison (HiCOO sequential):

BFS-MCS: 1.04, 1.64, and 1.61× speedups.
Lexi-Order: 1.04, 1.70, and 2.24× speedups.

Smith et al. IPDPS’15.
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Experiments: Reordering overhead

The overhead of Lexi-Order with five iterations.

Ti
m

es
 o

f H
iC

O
O

 C
on

st
ru

tio
n

0

3

6

9

12

15

deli4d�ickr4denronnipsubercrimenell1deli�ickrfb-sfb-mdarpachoanell2vast

3-D Tensors 4-D Tensors

The ratio of parallel Lexi-Order
time to parallel HiCOO
construction time.

⇒ in the range of 1.97–12.91×.

HiCOO times 2.36 14.00 4.42 2.71 13.49 17.91 11.06 29.14 44.47 0.84 0.71 0.71 17.53 20.91 105.71

Can do less iterations.
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Concluding remarks

The problem of reordering a tensor to improve block density for
tensor computations (for HiCOO).

Two heuristics: BFS-MCS and Lexi-Order.

Lexi-Order obtains large MTTKRP speedup for both sequential
and multicore implementations of HiCOO, and some speedup on
COO and CSF formats.

BFS-MCS has lower overhead but does not improve as much.

Future work:

Automatic performance tuning: different storage formats and
HiCOO parameters.
Better and faster heuristics.
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Thanks for your attention.

More information:

Jiajia Li http://www.jiajiali.org/

http://perso.ens-lyon.fr/bora.ucar/

Jiajia Li, J. Sun, and R. Vuduc, “HiCOO: Hierarchical storage of
sparse tensors,” in Proceedings of the ACM/IEEE International
Conference on High Performance Computing, Networking, Storage
and Analysis (SC), Dallas, TX, USA, November 2018, (best student
paper award).

Jiajia Li, BU., U. V. Çatalyürek, J. Sun, K. Barker, R. Vuduc,
“Efficient and effective sparse tensor reordering”, in preparation.
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matLexiOrder: Proposed variant for matrices

Assume an ordering of the rows, sort the columns lexically in linear time.

Key: an order preserving variant of the partition refinement method.

Order preserving partition refinement: High level description

All columns are initially in a single part.

A’s nonzeros are visited row-by-row.

At a row i , each column part C is split into two parts
C1 = C ∩ A(i , :) and C2 = C \ A(i , :)

and these two parts replace C in the order C1 � C2.

The given partition is refined with row i in O(|A(i , :)|) time.

O(nnz + I + J) time per iteration and O(J) space,
for an I × J matrix A.

Paige and Tarjan’87 formalize the partition refinement method
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Demonstrating matLexiOrder
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Experiments: Data set

From FROSTT, http://frostt.io

Tensors Order Dimensions #nnzs Density
vast 3 165K × 11K × 2 26M 6.9× 10−3

nell2 3 12K × 9K × 29K 77M 2.4× 10−5

choa 3 712K × 10K × 767 27M 5.0× 10−6

darpa 3 22K × 22K × 24M 28M 2.4× 10−9

fb-m 3 23M × 23M × 166 100M 1.1× 10−9

fb-s 3 39M × 39M × 532 140M 1.7× 10−10

flickr 3 320K × 28M × 2M 113M 7.8× 10−12

deli 3 533K × 17M × 3M 140M 6.1× 10−12

nell1 3 2.9M × 2.1M × 25M 144M 9.1× 10−13

crime 4 6K × 24× 77× 32 5M 1.5× 10−2

uber 4 183× 24× 1140× 1717 3M 3.9× 10−4

nips 4 2K × 3K × 14K × 17 3M 1.8× 10−6

enron 4 6K × 6K × 244K × 1K 54M 5.5× 10−9

flickr4d 4 320K × 28M × 2M × 731 113M 1.1× 10−14

deli4d 4 533K × 17M × 3M × 1K 140M 4.3× 10−15
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HiCOO data structure

HiCOO parameters αb and cb.
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(b) Parallel

Fig. 8. Reordered HICOO-MTTKRP speedup over a random reordering
implementation.

same phenomenon is also observed on tensors deli and deli4d.
This phenomenon indicates that it is harder to get good data
locality on higher-order tensors, which will be justified in
Table III.

The speedup of the two reordering methods on multicore
parallel HICOO-MTTKRP appears in Figure 8(b). We set the
same superblock size L before and after reordering for a fair
comparison. Overall, LEXI-ORDER results in 0.71–11.88⇥
speedup (2.14⇥ on average) for a parallel HICOO-MTTKRP;
while BFS-MCS reordering gets 0.25–1.94⇥ speedup (0.98⇥
on average). Thus, the benefit from reordering using either
LEXI-ORDER or BFS-MCS is generally less than that in
the sequential case. This observation may indicate that a
better thread scheduling could help to gain further parallel
speedup. The 11.88⇥ speedup achieved on tensor flick4d is
because LEXI-ORDER changes the nonzero distribution and
hence the optimal superblock size L. Thus, under the same L,
reordering gives a big performance improvement. It indicates
that automatically tuning the parameters of HICOO will be
very helpful.

C. HICOO Parameters

We use two critical parameters introduced in [25]: the block
ratio (↵b) and the average slice size per tensor block (cb).
Smaller ↵b and larger cb are favorable for good HICOO-
MTTKRP performance. Table III lists the parameter values
for all tensors before and after LEXI-ORDER, the HICOO-
MTTKRP speedup (as shown in Figure 8), and the storage
ratio of HICOO over random ordering cases. Generally, when
both parameters ↵b and cb are largely improved, we see a
good speedup and storage ratio using LEXI-ORDER. For the
same data in different orders, e.g., flickr4d and flickr, the ↵b

and cb values are the same for random reordering, after LEXI-
ORDER, these values of flickr are better than those of flickr4d.
This fact justifies the phenomenon that getting good data lo-
cality is harder for higher-order tensors. Besides, the HICOO

tensor storage also get compressed after LEXI-ORDER as we
analyzed in Section III.

TABLE III
HICOO PARAMETERS CHANGE BEFORE AND AFTER LEXI-ORDER

REORDERING.

Tensors Random reordering LEXI-ORDER Speedup Storage
↵b cb ↵b cb seq omp ratio

vast 0.004 1.758 0.004 1.562 1.01 1.01 0.999
nell2 0.020 0.314 0.008 0.074 1.04 1.13 0.966
choa 0.089 0.057 0.016 0.056 1.16 1.44 0.833

darpa 0.796 0.009 0.018 0.113 3.74 1.54 0.322
fb-m 0.985 0.008 0.086 0.021 3.84 1.13 0.335
fb-s 0.982 0.008 0.099 0.020 3.90 1.29 0.336

flickr 0.999 0.008 0.097 0.025 4.14 4.54 0.277
deli 0.988 0.008 0.501 0.010 2.24 0.86 0.634

nell1 0.998 0.008 0.744 0.009 1.70 0.71 0.812

crime 0.001 37.702 0.001 8.978 0.99 1.37 1.000
uber 0.041 0.469 0.011 0.270 1.00 0.83 0.838
nips 0.016 0.434 0.004 0.435 1.03 1.38 0.921

enron 0.290 0.017 0.045 0.030 1.25 1.76 0.573
flickr4d 0.999 0.008 0.148 0.020 3.02 11.88 0.214
deli4d 0.998 0.008 0.596 0.010 1.76 1.24 0.697

D. Reordering effect on other formats

1) COO-MTTKRP with Reordering: We show the effect
of the two reordering approaches on sequential and parallel
COO-MTTKRP from PARTI! [31] in Figure 9. This COO-
MTTKRP is implemented in C and OpenMP parallelized with
or without privatization determined for different modes, using
the same algorithm with TENSOR TOOLBOX [32]. For any
reordering approach, after doing a BFS-MCS, LEXI-ORDER,
or random reordering on the input tensor, we still sort the
tensor in the mode order of 1 � · · · � N . Observe that LEXI-
ORDER improves sequential COO-MTTKRP performance by
1.00–4.29⇥ (1.79⇥ on average), while BFS-MCS gets 0.95–
1.27⇥ (1.10⇥ on average). Also, LEXI-ORDER improves par-
allel COO-MTTKRP performance by 1.01–1.48⇥ (1.21⇥ on
average), while BFS-MCS improves by 0.70–1.68⇥ (1.11⇥
on average). Thus, the qualitative effect of reordering on
performance for COO-MTTKRP is less than that for HICOO-
MTTKRP.

2) CSF-MTTKRP with Reordering: We test the effect of
the two reordering approaches on sequential and parallel
CSF-MTTKRP from SPLATT v1.1.1 [33] in Figure 10. CSF-
MTTKRP is set to use all CSF representations (ALLMODE)
for MTTKRPs in all modes and with tiling option on. 1

LEXI-ORDER improves sequential CSF-MTTKRP performance
by 0.65–2.33⇥ (1.50⇥ on average) and accelerates parallel
CSF-MTTKRP by 0.86–1.88⇥ (1.27⇥ on average). LEXI-
ORDER improves sequential CSF-MTTKRP performance by
1.00–1.86⇥ (1.22⇥ on average) and accelerates parallel CSF-
MTTKRP by 0.59–1.36⇥ (1.04⇥ on average). These two re-
ordering approaches, especially LEXI-ORDER, do not perform
as well on CSF as on HICOO and COO formats.

3) Format Comparison: Figure 11 compares the parallel
performance of COO-, CSF-, and HICOO-MTTKRPs using

1Our tests using one CSF representation (ONEMODE) show quite similar
results of reordering effect to the ALLMODE setting. Same for using tiling or
no tiling options.

The block ratio (αb) and the
average slice size per block (cb).

Smaller αb and larger cb are good.

HiCOO storage gets compressed.

When both parameters αb and cb are largely improved, we see a good speedup
and storage ratio.
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Experiments: CPD speedup
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CPD performance on reordered tensors.

Lexi-Order has similar effect on
the parallel HiCOO-CPD.

0.65–10.44× speedup (1.81× on
average).

Reordering enhances the performance of CPD.
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