
Tensor Computations: Efficiency Or Productivity?

Paolo Bientinesi – Ume̊a Universitet & RWTH Aachen University
Rasmus Bro – University of Copenhagen

Edoardo Di Napoli – Jülich Supercomputing Centre

Lars Karlsson – Ume̊a Universitet

March 1, 2019
SIAM Conference on Computational Science and Engineering

Spokane, Washington, USA



Part I

The HPC perspective

Disclaimer: Talk about awareness, not results

2 / 20



Typical HPC “workflow” – not limited to tensor computations

I 1. Target problem
I Fixed problem size?
I Target architecture? (parallel paradigm)

I 2. Identify building blocks, bottlenecks, hotspots, critical paths, . . .

I 3. Algorithmic & code optimizations
Objectives: speedups, scalability, portability, . . .

I : High exploitation of platform’s potential, time savings, green computing
(publications, “more science per hour”, . . . )

I : However, ... often limited integration into actual scientific codes
(little funding, not researchy/publishable effort, no credits, . . . )

⇒ Caveat: Gains in the building blocks... often lost at the higher levels

3 / 20



Typical HPC “workflow” – not limited to tensor computations

I 1. Target problem
I Fixed problem size?
I Target architecture? (parallel paradigm)

I 2. Identify building blocks, bottlenecks, hotspots, critical paths, . . .

I 3. Algorithmic & code optimizations
Objectives: speedups, scalability, portability, . . .

I : High exploitation of platform’s potential, time savings, green computing
(publications, “more science per hour”, . . . )

I : However, ... often limited integration into actual scientific codes
(little funding, not researchy/publishable effort, no credits, . . . )

⇒ Caveat: Gains in the building blocks... often lost at the higher levels

3 / 20



Typical HPC “workflow” – not limited to tensor computations

I 1. Target problem
I Fixed problem size?
I Target architecture? (parallel paradigm)

I 2. Identify building blocks, bottlenecks, hotspots, critical paths, . . .

I 3. Algorithmic & code optimizations
Objectives: speedups, scalability, portability, . . .

I : High exploitation of platform’s potential, time savings, green computing
(publications, “more science per hour”, . . . )

I : However, ... often limited integration into actual scientific codes
(little funding, not researchy/publishable effort, no credits, . . . )

⇒ Caveat: Gains in the building blocks... often lost at the higher levels

3 / 20



Typical HPC “workflow” – not limited to tensor computations

I 1. Target problem
I Fixed problem size?
I Target architecture? (parallel paradigm)

I 2. Identify building blocks, bottlenecks, hotspots, critical paths, . . .

I 3. Algorithmic & code optimizations
Objectives: speedups, scalability, portability, . . .

I : High exploitation of platform’s potential, time savings, green computing
(publications, “more science per hour”, . . . )

I : However, ... often limited integration into actual scientific codes
(little funding, not researchy/publishable effort, no credits, . . . )

⇒ Caveat: Gains in the building blocks... often lost at the higher levels

3 / 20



Typical HPC “workflow” – not limited to tensor computations

I 1. Target problem
I Fixed problem size?
I Target architecture? (parallel paradigm)

I 2. Identify building blocks, bottlenecks, hotspots, critical paths, . . .

I 3. Algorithmic & code optimizations
Objectives: speedups, scalability, portability, . . .

I : High exploitation of platform’s potential, time savings, green computing
(publications, “more science per hour”, . . . )

I : However, ... often limited integration into actual scientific codes
(little funding, not researchy/publishable effort, no credits, . . . )

⇒ Caveat: Gains in the building blocks... often lost at the higher levels

3 / 20



Typical HPC “workflow” – not limited to tensor computations

I 1. Target problem
I Fixed problem size?
I Target architecture? (parallel paradigm)

I 2. Identify building blocks, bottlenecks, hotspots, critical paths, . . .

I 3. Algorithmic & code optimizations
Objectives: speedups, scalability, portability, . . .

I : High exploitation of platform’s potential, time savings, green computing
(publications, “more science per hour”, . . . )

I : However, ... often limited integration into actual scientific codes
(little funding, not researchy/publishable effort, no credits, . . . )

⇒ Caveat: Gains in the building blocks... often lost at the higher levels

3 / 20



Examples (1/2) Genome-Wide Association Studies (GWAS)

I What is it? Data correlation analysis. 2D grid of generalized least squares problems (GLS)

γ µ

α

η

m

SNPs

t Ph-s

p

B

bγ,α

=
XT
γ

−1

Mα Xγ

−1

XT
γ

−1

Mα yα

bγ,η

=
XT
γ

−1

Mη Xγ

−1

XT
γ

−1

Mη yη bµ,η

=
XT
µ

−1

Mη Xµ

−1

XT
µ

−1

Mη yη

4 / 20



Examples (1/2) Genome-Wide Association Studies (GWAS)

I How is it related to tensors? 1D×1D cartesian product of GLSs, 2D output = 4D data

γ µ

α

η

m

SNPs

t Ph-s

p

B

bγ,α

=
XT
γ

−1

Mα Xγ

−1

XT
γ

−1

Mα yα

bγ,η

=
XT
γ

−1

Mη Xγ

−1

XT
γ

−1

Mη yη bµ,η

=
XT
µ

−1

Mη Xµ

−1

XT
µ

−1

Mη yη

4 / 20



Computing Petaflops over Terabytes of Data:
The Case of Genome-Wide Association Studies.

ACM TOMS, 2014

γ µ

α

η

m

SNPs

t Ph-s

p

B

bγ,α

=
XT
γ

−1

Mα Xγ

−1

XT
γ

−1

Mα yα

bγ,η

=
XT
γ

−1

Mη Xγ

−1

XT
γ

−1

Mη yη bµ,η

=
XT
µ

−1

Mη Xµ

−1

XT
µ

−1

Mη yη

I Algorithmic improvement: lower computational complexity

I HPC optimizations: asynch I/O, overlap, BLAS-3, parallelism, . . .

I 100x – 1000x speedups! Library available: OmicABEL

I But...
I Interface: C vs. R
I Data management: data formats, overwriting, multiple files
I Data manipulation: imputation, filtering, selection
I Workflow not as fixed as first understood: M vs no-M, . . .
I “The pre-processing is slower than the analysis”

⇒ Performance is important, but not as much as we like to think

5 / 20



Computing Petaflops over Terabytes of Data:
The Case of Genome-Wide Association Studies.

ACM TOMS, 2014

γ µ

α

η

m

SNPs

t Ph-s

p

B

bγ,α

=
XT
γ

−1

Mα Xγ

−1

XT
γ

−1

Mα yα

bγ,η

=
XT
γ

−1

Mη Xγ

−1

XT
γ

−1

Mη yη bµ,η

=
XT
µ

−1

Mη Xµ

−1

XT
µ

−1

Mη yη

I Algorithmic improvement: lower computational complexity

I HPC optimizations: asynch I/O, overlap, BLAS-3, parallelism, . . .

I 100x – 1000x speedups! Library available: OmicABEL

I But...
I Interface: C vs. R
I Data management: data formats, overwriting, multiple files
I Data manipulation: imputation, filtering, selection
I Workflow not as fixed as first understood: M vs no-M, . . .
I “The pre-processing is slower than the analysis”

⇒ Performance is important, but not as much as we like to think

5 / 20



Computing Petaflops over Terabytes of Data:
The Case of Genome-Wide Association Studies.

ACM TOMS, 2014

γ µ

α

η

m

SNPs

t Ph-s

p

B

bγ,α

=
XT
γ

−1

Mα Xγ

−1

XT
γ

−1

Mα yα

bγ,η

=
XT
γ

−1

Mη Xγ

−1

XT
γ

−1

Mη yη bµ,η

=
XT
µ

−1

Mη Xµ

−1

XT
µ

−1

Mη yη

I Algorithmic improvement: lower computational complexity

I HPC optimizations: asynch I/O, overlap, BLAS-3, parallelism, . . .

I 100x – 1000x speedups! Library available: OmicABEL

I But...

I Interface: C vs. R
I Data management: data formats, overwriting, multiple files
I Data manipulation: imputation, filtering, selection
I Workflow not as fixed as first understood: M vs no-M, . . .
I “The pre-processing is slower than the analysis”

⇒ Performance is important, but not as much as we like to think

5 / 20



Computing Petaflops over Terabytes of Data:
The Case of Genome-Wide Association Studies.

ACM TOMS, 2014

γ µ

α

η

m

SNPs

t Ph-s

p

B

bγ,α

=
XT
γ

−1

Mα Xγ

−1

XT
γ

−1

Mα yα

bγ,η

=
XT
γ

−1

Mη Xγ

−1

XT
γ

−1

Mη yη bµ,η

=
XT
µ

−1

Mη Xµ

−1

XT
µ

−1

Mη yη

I Algorithmic improvement: lower computational complexity

I HPC optimizations: asynch I/O, overlap, BLAS-3, parallelism, . . .

I 100x – 1000x speedups! Library available: OmicABEL

I But...
I Interface: C vs. R
I Data management: data formats, overwriting, multiple files
I Data manipulation: imputation, filtering, selection
I Workflow not as fixed as first understood: M vs no-M, . . .
I “The pre-processing is slower than the analysis”

⇒ Performance is important, but not as much as we like to think

5 / 20



Computing Petaflops over Terabytes of Data:
The Case of Genome-Wide Association Studies.

ACM TOMS, 2014

γ µ

α

η

m

SNPs

t Ph-s

p

B

bγ,α

=
XT
γ

−1

Mα Xγ

−1

XT
γ

−1

Mα yα

bγ,η

=
XT
γ

−1

Mη Xγ

−1

XT
γ

−1

Mη yη bµ,η

=
XT
µ

−1

Mη Xµ

−1

XT
µ

−1

Mη yη

I Algorithmic improvement: lower computational complexity

I HPC optimizations: asynch I/O, overlap, BLAS-3, parallelism, . . .

I 100x – 1000x speedups! Library available: OmicABEL

I But...
I Interface: C vs. R
I Data management: data formats, overwriting, multiple files
I Data manipulation: imputation, filtering, selection
I Workflow not as fixed as first understood: M vs no-M, . . .
I “The pre-processing is slower than the analysis”

⇒ Performance is important, but not as much as we like to think

5 / 20



Examples (2/2) High-Performance Tensor Kernels

Paul Springer

I Tensor Transpositions

I Summations

I Tensor Contractions

6 / 20



Examples (2/2) High-Performance Tensor Kernels

Paul Springer

I Tensor Transpositions

Bi1i2...iN ← α · Aπ(i1i2...iN) + β · Bi1i2...iN

I Summations — linear summation over tensor transpositions

Bi0i1i2 ← 2Ai0i1i2 −Ai2i1i0 −Ai0i2i1

Bi0i1i2 ← 4Ai0i1i2 − 2Ai1i0i2 − 2Ai2i1i0 +Ai1i2i0 − 2Ai0i2i1 +Ai2i0i1

Bi0i1i2i3 ← 2Ai0i1i2i3 −Ai2i1i0i3 −Ai0i2i1i3 −Ai0i1i3i2

I Tensor Contractions

CπC(Im∪In) ← α · AπA(Im∪Ik ) × BπB(In∪Ik ) + β · CπC(Im∪In)

6 / 20



Examples (2/2) High-Performance Tensor Kernels
Paul Springer

I Tensor Transpositions

TTC: A high-performance Compiler for Tensor Transpositions. ACM TOMS, 2018

Compiler: https://github.com/HPAC/TTC Library: https://github.com/HPAC/hptt

I Summations — linear summation over tensor transpositions

Spin Summations: A High-Performance Perspective. ACM TOMS, 2019

Generator: https://github.com/springer13/spin-summations

I Tensor Contractions

Design of a high-performance GEMM-like Tensor-Tensor Multiplication. ACM TOMS, 2018

Compiler: https://github.com/HPAC/tccg Library: https://github.com/springer13/tcl

6 / 20

https://github.com/HPAC/TTC
https://github.com/HPAC/hptt
https://github.com/springer13/spin-summations
https://github.com/HPAC/tccg
https://github.com/springer13/tcl


But...

I “Wrong” level of abstraction for domain scientists

I Kernels: good for developers – too low level for most end users

I Mismatch → mapping problem

7 / 20



But...

I “Wrong” level of abstraction for domain scientists

I Kernels: good for developers – too low level for most end users

I Mismatch → mapping problem

7 / 20



But...

I “Wrong” level of abstraction for domain scientists

I Kernels: good for developers – too low level for most end users

I Mismatch → mapping problem

7 / 20



But...

I “Wrong” level of abstraction for domain scientists

I Kernels: good for developers – too low level for most end users

I Mismatch → mapping problem

7 / 20



2D case: “Right” level of abstraction

Generalized Least Squares b := (XTM−1X )−1XTM−1y n > m; M ∈ Rn×n, SPD; X ∈ Rn×m; y ∈ Rn×1

Signal Processing x :=
(
A−TBTBA−1 + RTLR

)−1
A−TBTBA−1y

Kalman Filter Kk := Pb
kH

T (HPb
kH

T + R)−1; xak := xbk + Kk (zk − Hxbk ); Pa
k := (I − KKH)Pb

k

Ensemble Kalman Filter X a := X b +
(
B−1 + HTR−1H

)−1 (
Y − HX b

)
Image Restoration xk := (HTH + λσ2In)−1(HT y + λσ2(vk−1 − uk−1))

Rand. Matrix Inversion Xk+1 := S(STAS)−1ST + (In − S(STAS)−1STA)Xk (In − AS(STAS)−1ST )

Stochastic Newton Bk := k
k−1

Bk−1(In − ATWk ((k − 1)Il + WT
k ABk−1A

TWk )−1WT
k ABk−1)

Optimization xf := WAT (AWAT )−1(b − Ax); xo := W (AT (AWAT )−1Ax − c)

Tikhonov Regularization x := (ATA + ΓT Γ)−1ATb A ∈ Rn×m; Γ ∈ Rm×m; b ∈ Rn×1

Gen. Tikhonov Reg. x := (ATPA + Q)−1(ATPb + Qx0) P ∈ Rn×n, SSPD; Q ∈ Rm×m, SSPD; x0 ∈ Rm×1

LMMSE estimator Kt+1 := CtAT (ACtAT + Cz )−1; xt+1 := xt + Kt+1(y − Axt); Ct+1 := (I − Kt+1A)Ct

8 / 20



x := A(BTB + ATRTΛRA)−1BTBA−1y

{
C† := PCPT + Q

K := C†H
T (HC†H

T )−1

E := Q−1U(I + UTQ−1U)−1UT . . .

MUL ADD MOV

MOVAPD

VFMADDPD . . .
9 / 20



x := A(BTB + ATRTΛRA)−1BTBA−1y

{
C† := PCPT + Q

K := C†H
T (HC†H

T )−1

E := Q−1U(I + UTQ−1U)−1UT . . .

y := αx + y LU = A · · · C := αAB + βC

X := A−1B C := ABT + BAT + C X := L−1ML−T QR = A

BLAS . . . LAPACK . . .

MUL ADD MOV

MOVAPD

VFMADDPD . . .

LINEAR
ALGEBRA
MAPPING
PROBLEM
(LAMP)

10 / 20



x := A(BTB + ATRTΛRA)−1BTBA−1y

{
C† := PCPT + Q

K := C†H
T (HC†H

T )−1

E := Q−1U(I + UTQ−1U)−1UT . . .

y := αx + y LU = A · · · C := αAB + βC

X := A−1B C := ABT + BAT + C X := L−1ML−T QR = A

BLAS . . . LAPACK . . .

MUL ADD MOV

MOVAPD

VFMADDPD . . .

LINEAR
ALGEBRA
MAPPING
PROBLEM
(LAMP)

10 / 20



x := A(BTB + ATRTΛRA)−1BTBA−1y

{
C† := PCPT + Q

K := C†H
T (HC†H

T )−1

E := Q−1U(I + UTQ−1U)−1UT . . .

y := αx + y LU = A · · · C := αAB + βC

X := A−1B C := ABT + BAT + C X := L−1ML−T QR = A

BLAS . . . LAPACK . . .

MUL ADD MOV

MOVAPD

VFMADDPD . . .

LINEAR
ALGEBRA
MAPPING
PROBLEM
(LAMP)

10 / 20



LAMP: A problem often ignored
Linnea: A compiler for linear algebra – Henrik Barthels, Christos Psarras

Linnea’s speedups

Jl: Julia, Arma: Armadillo, Eig: Eigen, Mat: Matlab. n/r: naive/recommended implementation
11 / 20



Tensor App #1 Tensor App #2 . . . Tensor App #N

MUL ADD MOV

MOVAPD

VFMADDPD . . .

12 / 20



Tensor App #1 Tensor App #2 . . . Tensor App #N

Transposition Contraction · · · Alternating LS

Khatri-Rao SpMTTKRP · · · TTV, TTM

HPTT TCL . . . BLAS

MUL ADD MOV

MOVAPD

VFMADDPD . . .

13 / 20



nD case: Exemplary applications
Coupled-Cluster methods

Finite Element 3D diffusion operator

credits to D. Matthews, E. Solomonik, J. Stanton, and J. Gauss

credits to A. Fisher – https://github.com/LLNL/acrotensor

14 / 20

https://github.com/LLNL/acrotensor


nD case: Exemplary applications
Coupled-Cluster methods Finite Element 3D diffusion operator

credits to D. Matthews, E. Solomonik, J. Stanton, and J. Gauss credits to A. Fisher – https://github.com/LLNL/acrotensor

14 / 20

https://github.com/LLNL/acrotensor


Awareness

I Performance:
Speedups in building blocks do not always translate to speedups in applications

I Research Problem: Mapping onto building blocks

I Solved by hand → loss of productivity (possibly loss of efficiency too)
I Solved automatically → loss of efficiency

Beware: It’s challenging even for “simple” matrix computations!

15 / 20



Awareness

I Performance:
Speedups in building blocks do not always translate to speedups in applications

I Research Problem: Mapping onto building blocks

I Solved by hand → loss of productivity (possibly loss of efficiency too)
I Solved automatically → loss of efficiency

Beware: It’s challenging even for “simple” matrix computations!

15 / 20



Part II

The computational scientists’ perspective

“The fastest FLOPS are those that are not executed.”
– Lars

16 / 20



Chromatography-MS

PARAFAC Tucker PARAFAC2

Transposition Contraction · · · Alternating LS

Khatri-Rao SpMTTKRP · · · TTV, TTM

HPTT TCL . . . BLAS

MUL ADD MOV

MOVAPD

VFMADDPD . . .
17 / 20



Example application: Untargeted chemical profiling
Chromatography with mass spectrometry detection

I Problem: Identify components in a sample

Jessica Torres – Bitesize Bio

18 / 20



Example application: Untargeted chemical profiling
Chromatography with mass spectrometry detection

I 3-way data: Mass-spectrum × elution time × sample

Rasmus Bro

18 / 20



Example application: Untargeted chemical profiling
Chromatography with mass spectrometry detection

I 3-way tensor → Individual components

→

Rasmus Bro

18 / 20



Workflow

I 1. (Pre-processing: alignment)

I 2. Choose time intervals across samples

I 3. (Data preparation: remove background)

I 4. Fit model: 1–15 components; if needed: non-negativity constraints
PARAFAC — PARAFAC2 — TUCKER

I 5. Determine whether or not one of the models is “right”

I : Determine which of the components represent chemical information

I : Start over; add/change constraints, change model

19 / 20



Workflow

I 1. (Pre-processing: alignment)

I 2. Choose time intervals across samples

I 3. (Data preparation: remove background)

I 4. Fit model: 1–15 components; if needed: non-negativity constraints
PARAFAC — PARAFAC2 — TUCKER

I 5. Determine whether or not one of the models is “right”

I : Determine which of the components represent chemical information

I : Start over; add/change constraints, change model

19 / 20



Workflow

I 1. (Pre-processing: alignment)

I 2. Choose time intervals across samples

I 3. (Data preparation: remove background)

I 4. Fit model: 1–15 components; if needed: non-negativity constraints
PARAFAC — PARAFAC2 — TUCKER

I 5. Determine whether or not one of the models is “right”

I : Determine which of the components represent chemical information

I : Start over; add/change constraints, change model

19 / 20



Workflow

I 1. (Pre-processing: alignment)

I 2. Choose time intervals across samples

I 3. (Data preparation: remove background)

I 4. Fit model: 1–15 components; if needed: non-negativity constraints
PARAFAC — PARAFAC2 — TUCKER

I 5. Determine whether or not one of the models is “right”

I : Determine which of the components represent chemical information

I : Start over; add/change constraints, change model

19 / 20



Awareness & Conclusions
I Performance:

Speedups in building blocks do not always translate to speedups in applications

I Research Problem: Mapping onto building blocks
I Solved by hand → loss of productivity (possibly loss of efficiency too)
I Solved automatically → loss of efficiency

Beware: It’s challenging even for “simple” matrix computations!

I Application as a whole
I Massive redundancy! Careful with black-box libraries
I Man-in-the-middle workflow. Manual “check & decide”

I Gap: Domain scientists’ needs ↔ Computer scientists’ artifacts

I Problem: How to maximize scientific output?
I Speedups in algorithms and building blocks
I Efficient mapping
I Reduction in computation in the application

Thank you

Questions?

20 / 20



Awareness & Conclusions
I Performance:

Speedups in building blocks do not always translate to speedups in applications

I Research Problem: Mapping onto building blocks
I Solved by hand → loss of productivity (possibly loss of efficiency too)
I Solved automatically → loss of efficiency

Beware: It’s challenging even for “simple” matrix computations!

I Application as a whole
I Massive redundancy! Careful with black-box libraries
I Man-in-the-middle workflow. Manual “check & decide”

I Gap: Domain scientists’ needs ↔ Computer scientists’ artifacts

I Problem: How to maximize scientific output?
I Speedups in algorithms and building blocks
I Efficient mapping
I Reduction in computation in the application

Thank you

Questions?

20 / 20



Awareness & Conclusions
I Performance:

Speedups in building blocks do not always translate to speedups in applications

I Research Problem: Mapping onto building blocks
I Solved by hand → loss of productivity (possibly loss of efficiency too)
I Solved automatically → loss of efficiency

Beware: It’s challenging even for “simple” matrix computations!

I Application as a whole
I Massive redundancy! Careful with black-box libraries
I Man-in-the-middle workflow. Manual “check & decide”

I Gap: Domain scientists’ needs ↔ Computer scientists’ artifacts

I Problem: How to maximize scientific output?
I Speedups in algorithms and building blocks
I Efficient mapping
I Reduction in computation in the application

Thank you

Questions?

20 / 20



Awareness & Conclusions
I Performance:

Speedups in building blocks do not always translate to speedups in applications

I Research Problem: Mapping onto building blocks
I Solved by hand → loss of productivity (possibly loss of efficiency too)
I Solved automatically → loss of efficiency

Beware: It’s challenging even for “simple” matrix computations!

I Application as a whole
I Massive redundancy! Careful with black-box libraries
I Man-in-the-middle workflow. Manual “check & decide”

I Gap: Domain scientists’ needs ↔ Computer scientists’ artifacts

I Problem: How to maximize scientific output?
I Speedups in algorithms and building blocks
I Efficient mapping
I Reduction in computation in the application

Thank you

Questions?

20 / 20



Awareness & Conclusions
I Performance:

Speedups in building blocks do not always translate to speedups in applications

I Research Problem: Mapping onto building blocks
I Solved by hand → loss of productivity (possibly loss of efficiency too)
I Solved automatically → loss of efficiency

Beware: It’s challenging even for “simple” matrix computations!

I Application as a whole
I Massive redundancy! Careful with black-box libraries
I Man-in-the-middle workflow. Manual “check & decide”

I Gap: Domain scientists’ needs ↔ Computer scientists’ artifacts

I Problem: How to maximize scientific output?
I Speedups in algorithms and building blocks
I Efficient mapping
I Reduction in computation in the application

Thank you

Questions?

20 / 20


