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Part |
The HPC perspective

Disclaimer: Talk about awareness, not results
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Typical HPC “workflow” — not limited to tensor computations

1. Target problem

Fixed problem size?
Target architecture? (parallel paradigm)
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Typical HPC “workflow” — not limited to tensor computations

1. Target problem

Fixed problem size?
Target architecture? (parallel paradigm)

2. ldentify building blocks, bottlenecks, hotspots, critical paths, ...

3. Algorithmic & code optimizations
Objectives: speedups, scalability, portability, ...

@: High exploitation of platform's potential, time savings, green computing
(publications, “more science per hour”, ...)

@: However, ... often limited integration into actual scientific codes
(little funding, not researchy/publishable effort, no credits, ...)

= Caveat: Gains in the building blocks... often lost at the higher levels



Examples (1/2) Genome-Wide Association Studies (GWAS)

What is it? Data correlation analysis.

2D grid of generalized least squares problems (GLS)
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Examples (1/2) Genome-Wide Association Studies (GWAS)

> How is it related to tensors? 1D x 1D cartesian product of GLSs, 2D output = 4D data

-1 -1
I = —/ ! —/
b’y’n ( X’? . I{’) X’? . "
-1 -1 -1
I = —/ —/
bra ( XT | M, In) XT | Mg | [¥%
Py
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P Algorithmic improvement: lower computational complexity

» HPC optimizations: asynch 1/0, overlap, BLAS-3, parallelism, ...
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Algorithmic improvement: lower computational complexity

HPC optimizations: asynch 1/0, overlap, BLAS-3, parallelism, ...

100x — 1000x speedups! @ Library available: OmicABEL O
But...

Interface: C vs. R

Data management: data formats, overwriting, multiple files
Data manipulation: imputation, filtering, selection
Workflow not as fixed as first understood: M vs no-M, ...
“The pre-processing is slower than the analysis”
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Algorithmic improvement: lower computational complexity

HPC optimizations: asynch 1/0, overlap, BLAS-3, parallelism, ...

100x — 1000x speedups! @ Library available: OmicABEL O
But...

Interface: C vs. R

Data management: data formats, overwriting, multiple files
Data manipulation: imputation, filtering, selection
Workflow not as fixed as first understood: M vs no-M, ...
“The pre-processing is slower than the analysis”

= Performance is important, but not as much as we like to think
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Examples (2/2)

High-Performance Tensor Kernels
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Examples (2/2) High-Performance Tensor Kernels

Tensor Transpositions
Biiy...iv < @ Ar(iviy...in) T B+ Biriy...iy

Summations — linear summation over tensor transpositions
Bioiviy < 2Aiii, — Abivio — Aioiiy
Bf0i1f2 A 4Af0i1i2 - 2Af1fof2 - 2A/2i1f0 + Af1f2i0 - 2Aiof2f1 + Af2i0f1
Bioi1izi3 A 2Aioi1i2f3 - Ai2i1i0i3 - Aioi2f1i3 - ‘Afohléiz

Tensor Contractions

Cre(nUtn) < @ Ay (1mute) X Brg(iaute) T B Cre(nuiy)

6
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Examples (2/2) High-Performance Tensor Kernels

Paul Springer

Tensor Transpositions

TTC: A high-performance Compiler for Tensor Transpositions. ACM TOMS, 2018
Compiler: https://github.com/HPAC/TTC Library: https://github.com/HPAC/hptt

Summations — linear summation over tensor transpositions

Spin Summations: A High-Performance Perspective. ACM TOMS, 2019

Generator: https://github.com/springer13/spin-summations

Tensor Contractions
Design of a high-performance GEMM-like Tensor-Tensor Multiplication. ACM TOMS, 2018

Compiler: https://github.com/HPAC/tccg Library: https://github.com/springeri3/tcl O

6
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But...

“Wrong" level of abstraction for domain scientists
Kernels: good for developers — too low level for most end users

Mismatch — mapping problem

~
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2D case: “Right” level of abstraction

Generalized Least Squares

b:=(XTM1X)"1XTM~1y n>m; M€R"™" SPD; X € R™*™; y ¢ R"%!

Signal Processing

x:= (A"TBTBA-1 4+ RTLR) ' A-TBTBA-ly

Kalman Filter

Ki := PPHT(HPEPHT + R)=1; x2 := xP + Ki(zi — Hxf); PZ := (I — KxH) P?

Ensemble Kalman Filter

X7 := Xb 4 (B~ HTR=1H) ™" (Y — HX®)

Image Restoration

Xk = (HTH +Xo?In) "M (HTy + Ao?(vk—1 — uk—1))

Rand. Matrix Inversion

Xip1 1= S(STAS)LST + (I, — S(STAS)"1ST A)X, (I, — AS(STAS)~1ST)

Stochastic Newton

B == 25 Br_1(ln — AT Wi((k — 1)l + W, AB_1AT W) L W,T ABi_1)

Optimization

xr = WAT(AWAT)=1(b — Ax); xo := W(AT(AWAT)~1Ax — )

Tikhonov Regularization

x:=(ATA+TTN)~1ATh A€eR™m [ € R™Xm; b e R™1

Gen. Tikhonov Reg.

x:=(ATPA+ Q)"Y(ATPb+ Qxo) P € R"%" SSPD; Q € R™*™, SSPD; xo € R™*1

LMMSE estimator

Kig1 := CtAT(ACtAT + G)7h xer1 = xe + Kep1(y — Axe); Cepr i= (I — Ke1A) G
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Ci = PCPT + Q

— A(BTB + ATRTARA)-1BTBA-!
x=ABTB+ ) / {K — CHT(HCHT)!

E:=QlU(/+ UTQ-lU)tUT

IMUL|[ADD || MOV

Xeop'
pmcesgor




Ci = PCPT + Q

— A(BTB + ATRTARA)-1BTBA-!
x=ABTB+ ) / {K — CHT(HCHT)!

E:=QlU(/+ UTQ-lU)tUT

y::ax—|—y| LU=A I C::aAB—i—ﬁCl

X:=AB || C:=ABT +BAT + C || X:=L'MLT |[[ QR= A

BLAS ‘ ‘ LAPACK ‘
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Ci = PCPT + Q

.= A(BTB + ATRTARA)1BT BA~1
x=ABTB+ ) Y {K = G HT(HGHT)™!

E:=Q Ul + UTQ tu)tuT

LINEAR
ALGEBRA
y:=ax+y MAPPING =aAB+ §C |
X —A1B |[ci= s PROBLEM M7 |[[QrR=A
(LAMP)

' LAPACK ‘

[MUL || ADD || MOV |
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LAMP: A problem often ignored

Linnea: A compiler for linear algebra — Henrik Barthels, Christos Psarras

Linnea’s speedups

100 1= JIn Jlr = Arman ' Armar f
¢ Eign ¢ Eigr ¢ Matn o Matr .
A
A ¢
A A §
A o
10 B O
¢ A, o & ae?
‘0‘9 49 o"'ﬁ‘ B o
oo Thy TolegtlT e
1 ¢ atota o i
] = g o 2 s "4 $
g
| ]
1 ] [ L] n u [] »
Test problems
JI: Julia, Arma: Armadillo, Eig: Eigen, Mat: Matlab. n/r: naive/recommended implementation
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Tensor App #1 Tensor App #2 ... Tensor App #N

[MUL |[ADD |[ MOV |

(nte])
Xeop:
ﬁfbcesgo r
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Tensor App #1 Tensor App #2 ... Tensor App #N

9

| Transposition | Contraction | Alternating LS |

| Khatri-Rao || SpMTTKRP | I TTV, TTM

HPTT ’ TCL ‘ ’ BLAS

IMUL|[ADD || MOV

Xeop'
pmcesgor
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nD case: Exemplary applications
Coupled-Cluster methods

1 .
b = t,-j’-b+§P§Pjt?tf’
Fro= £ 4y vl
fn
= ~ 1
F: = (lfdae)feafz‘c:t;wfizvef taf+z f’tnv

mnf

Em o~ (1 6,,,,)f"’+ZF'"t+ vat,n+z
nef

Wmn = oy Z v

. 1

W = v P,Z Ve 4 +5 Z v,

W = S T+ Qz L

W = B S

7 = ZFmta+Zfate Z e 4 Z veEm 4 %Z
efm

A= v RS v+ PR Y Wt Py e+ P

credits to D. Matthews, E. Solomonik, J. Stanton, and J. Gauss
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https://github.com/LLNL/acrotensor

nD case: Exemplary applications

Coupled-Cluster methods Finite Element 3D diffusion operator

ab ab 1 a pizah

T =ty T PePY . .

. . TE.BeginMultiKernellLaunch();

F o= fe"’+ZV£’f’"tm TE("T2_e_i1_i2 k3 = B_k3_i3 X_e_i1_i2_i3", T2, B, X);

TE("T1_e_il k2 k3 = B_k2_i2 T2 e i1 _i2 k3", T1, B, T2);

E2 = (1-60)f7— meta Z., nyaf +Z vanef TE("Ul_e_k1 k2 k3 = G _k1_i1 T1_ e i1 k2 k3", U1, G, T1);
2mnf TE("T1_e_il k2_k3 = G_k2_i2 T2 e_i1_i2 k3", T1, G, T2);

Em o JMI)fm+ZFmt ad Z e +Z . TE("U2_e_k1 k2 k3 = B _k1_i1 Tl e il k2 k3", U2, B, T1);

TE("T2_e_i1 i2 k3 = G_k3_i3 X_e_il1_i2 i3", T2, G, X);
TE("T1_ e il k2 k3 = B_k2_i2 T2_e_il_i2 k3", T1, B, T2);

nef

W = V;qzvgnt’ﬁ TE("U3_e k1 k2 k3 = B k1 i1 T1 e il k2 k3", U3, B, T1);
TE("Z_m_e_k1_k2_k3 = U_n_e_k1_k2_k3 D_e_m_n_k1_k2_ k3", zZ, U,

" TE("T1 e i3 k1 k2 = B_k3_i3 71 e k1 k2 k3", T1, B, z1);

mn  __ mn i mn e mn ef A E] E) 3 3

Wit = vit+ P Z” E] Ti TE("T2_e_i2_i3 k1 = _k2 12 T1 e i3 k1 k2", T2, B, T1);

i e ) TE("Y_e i1 12 13 = G_k1_il T2_e_i2 i3 k1", Y, G, T2);

wim = v,-'l"’fZW"’”ta Z 2t QZ et TE("T1 e i3 k1_k2 = B_k3_i3 Z2_e k1_k2_k3", T1, B, Z2);

TE("T2_e_i2_i3 k1 = G_k2_i2 T1 e i3 k1 k2", T2, G, T1);

Wam = 3"’+,D'Z Z el TE("Y_e 11 12 13 += B k1 i1 T2_e_i2 i3 k1", Y, B, T2);

TE("T1_e i3 k1 _k2 = G _k3_i3 73_e_k1_k2 k3", T1, G, z3);

1 TE("T2_e_i2_i3 k1 = B_k2_i2 T1 e_i3_k1 k2", T2, B, T1);

. Freo froe 1 S umee 1S ey L _e_i2_i3_ _k2_i2 T1 e_i3 k1 k2", T2, B, T1);

. Z +Z Z Z LAY TE("Y_e i1 12 13 += B_k1_il T2_e_i2 i3 k1", Y, B, T2);

efm

. TE.EndMultiKernelLaunch();
B0 = Vi Py bt - PRPIY Wk — P> Wit 4 P !
. me m

credits to D. Matthews, E. Solomonik, J. Stanton, and J. Gauss credits to A. Fisher — https://github.com/LLNL/acrotensor
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Performance:
Speedups in building blocks do not always translate to speedups in applications

Research Problem: Mapping onto building blocks

Solved by hand — loss of productivity (possibly loss of efficiency too)
Solved automatically — loss of efficiency

Beware: It's challenging even for “simple” matrix computations!



Part I
The computational scientists’ perspective

“The fastest FLOPS are those that are not executed.”
— Lars
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Chromatography-MS

@ § @

[PARAFAC] | Tucker | |PARAFAC2]

? § %

| Transposition | Contraction | Alternating LS |

| Khatri-Rao I | SpMTTKRP | | TTV, TT™M

HPTT ‘ TCL ‘ ‘ BLAS

[MUL |[ADD |[MOV |

Xeop'
pmcesgor
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Example application: Untargeted chemical profiling

Chromatography with mass spectrometry detection

Problem: Identify components in a sample

Sample [

Gas flow
regulator

Injector

v ~~ port

\ i

N

P

Column

Detector

L

Carrier gas

Jessica Torres — Bitesize Bio

Waste

]

Computer/
Data analysis
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Example application: Untargeted chemical profiling

Chromatography with mass spectrometry detection

3-way data: Mass-spectrum X elution time x sample

samples

Rasmus Bro
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Example application: Untargeted chemical profiling

Chromatography with mass spectrometry detection

3-way tensor — Individual components

Emissionmode

0.25
0.2
0.15

0.05

250 300 350 400 450
Emission wavelength

]
Rasmus Bro
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Workflow

1. (Pre-processing: alignment)
2. Choose time intervals across samples

3. (Data preparation: remove background)
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Workflow

1. (Pre-processing: alignment)
2. Choose time intervals across samples
3. (Data preparation: remove background)

4. Fit model: 1-15 components; if needed: non-negativity constraints
PARAFAC — PARAFAC2 — TUCKER

5. Determine whether or not one of the models is “right”

@: Determine which of the components represent chemical information

@: Start over; add/change constraints, change model

19/20
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Awareness & Conclusions

Performance:
Speedups in building blocks do not always translate to speedups in applications

Research Problem: Mapping onto building blocks

Solved by hand — loss of productivity (possibly loss of efficiency too)
Solved automatically — loss of efficiency

Beware: It's challenging even for “simple” matrix computations!
Application as a whole

Massive redundancy!  Careful with black-box libraries
Man-in-the-middle workflow. Manual “check & decide”

Gap: Domain scientists' needs <+ Computer scientists’ artifacts

Problem: How to maximize scientific output?

Speedups in algorithms and building blocks Thank you
Efficient mapping )
Reduction in computation in the application Questions?




