Tensor Computations: Efficiency Or Productivity?

Paolo Bientinesi - Umeå Universitet \& RWTH Aachen University
Rasmus Bro - University of Copenhagen
Edoardo Di Napoli - Jülich Supercomputing Centre
Lars Karlsson - Umeå Universitet

March 1, 2019
SIAM Conference on Computational Science and Engineering Spokane, Washington, USA

High Performance and
Automatic Computing

Part I
The HPC perspective

Disclaimer: Talk about awareness, not results

Typical HPC "workflow" - not limited to tensor computations

- 1. Target problem
- Fixed problem size?
- Target architecture? (parallel paradigm)

Typical HPC "workflow" - not limited to tensor computations

- 1. Target problem
- Fixed problem size?
- Target architecture? (parallel paradigm)
- 2. Identify building blocks, bottlenecks, hotspots, critical paths,...

Typical HPC "workflow" - not limited to tensor computations

$>$ 1. Target problem

- Fixed problem size?
- Target architecture? (parallel paradigm)
- 2. Identify building blocks, bottlenecks, hotspots, critical paths, ...
- 3. Algorithmic \& code optimizations

Objectives: speedups, scalability, portability, ...

Typical HPC "workflow" - not limited to tensor computations

$>$ 1. Target problem

- Fixed problem size?
- Target architecture? (parallel paradigm)
- 2. Identify building blocks, bottlenecks, hotspots, critical paths, ...
- 3. Algorithmic \& code optimizations

Objectives: speedups, scalability, portability, ...
$>$: $:$ High exploitation of platform's potential, time savings, green computing (publications, "more science per hour", ...)

Typical HPC "workflow" - not limited to tensor computations

- 1. Target problem
- Fixed problem size?
- Target architecture? (parallel paradigm)
- 2. Identify building blocks, bottlenecks, hotspots, critical paths, ...
- 3. Algorithmic \& code optimizations

Objectives: speedups, scalability, portability, ...
$\triangleright \because$: High exploitation of platform's potential, time savings, green computing (publications, "more science per hour", ...)

- $\because:$ However, ... often limited integration into actual scientific codes (little funding, not researchy/publishable effort, no credits, ...)

Typical HPC "workflow" - not limited to tensor computations

- 1. Target problem
- Fixed problem size?
- Target architecture? (parallel paradigm)
- 2. Identify building blocks, bottlenecks, hotspots, critical paths, ...
- 3. Algorithmic \& code optimizations Objectives: speedups, scalability, portability, ...
$\triangleright \because$: High exploitation of platform's potential, time savings, green computing (publications, "more science per hour", ...)
- \because : However, ... often limited integration into actual scientific codes (little funding, not researchy/publishable effort, no credits, ...)
\Rightarrow Caveat: Gains in the building blocks... often lost at the higher levels

Examples (1/2)

- What is it? Data correlation analysis. 2D grid of generalized least squares problems (GLS)

Examples (1/2)

Genome-Wide Association Studies (GWAS)

- How is it related to tensors?
$1 \mathrm{D} \times 1 \mathrm{D}$ cartesian product of GLSs, 2 D output $=4 \mathrm{D}$ data

- Algorithmic improvement: lower computational complexity
- HPC optimizations: asynch I/O, overlap, BLAS-3, parallelism, ...

Computing Petaflops over Terabytes of Data: The Case of Genome-Wide Association Studies. ACM TOMS, 2014

- Algorithmic improvement: lower computational complexity
- HPC optimizations: asynch I/O, overlap, BLAS-3, parallelism, ...
$>100 x-1000 x$ speedups! \because Library available: OmicABEL

Computing Petaflops over Terabytes of Data: The Case of Genome-Wide Association Studies. ACM TOMS, 2014

- Algorithmic improvement: lower computational complexity
- HPC optimizations: asynch I/O, overlap, BLAS-3, parallelism, ...
- 100x - 1000x speedups! \because Library available: OmicABEL
- But...

Computing Petaflops over Terabytes of Data: The Case of Genome-Wide Association Studies. ACM TOMS, 2014

- Algorithmic improvement: lower computational complexity
- HPC optimizations: asynch I/O, overlap, BLAS-3, parallelism, ...
$>100 x-1000 x$ speedups! \because Library available: OmicABEL $($
- But...
- Interface: C vs. R
- Data management: data formats, overwriting, multiple files
- Data manipulation: imputation, filtering, selection
- Workflow not as fixed as first understood: M vs no-M, ...
- "The pre-processing is slower than the analysis"

Computing Petaflops over Terabytes of Data: The Case of Genome-Wide Association Studies. ACM TOMS, 2014

- Algorithmic improvement: lower computational complexity
- HPC optimizations: asynch I/O, overlap, BLAS-3, parallelism, ...
- 100x - 1000x speedups! \because Library available: OmicABEL $($
- But...
- Interface: C vs. R
- Data management: data formats, overwriting, multiple files
- Data manipulation: imputation, filtering, selection
- Workflow not as fixed as first understood: M vs no-M, ...
- "The pre-processing is slower than the analysis"
\Rightarrow Performance is important, but not as much as we like to think

Examples (2/2)

High-Performance Tensor Kernels

Examples (2/2)

- Tensor Transpositions

$$
\mathcal{B}_{i_{1} i_{2} \ldots i_{N}} \leftarrow \alpha \cdot \mathcal{A}_{\pi\left(i_{1} i_{2} \ldots i_{N}\right)}+\beta \cdot \mathcal{B}_{i_{1} i_{2} \ldots i_{N}}
$$

- Summations - linear summation over tensor transpositions

$$
\begin{aligned}
& \mathcal{B}_{i_{0} i_{1} i_{2}} \leftarrow 2 \mathcal{A}_{i_{0} i_{1} i_{2}}-\mathcal{A}_{i i_{1} i_{0} i_{0}}-\mathcal{A}_{i_{0} i_{2} i_{1}} \\
& \mathcal{B}_{i 0 i_{1} i_{2}} \leftarrow 4 \mathcal{A}_{i_{0} i_{1} i_{2}}-2 \mathcal{A}_{i_{1} i_{0} i_{2}}-2 \mathcal{A}_{i_{2} i_{1} i_{0}}+\mathcal{A}_{i i_{12} i_{0}}-2 \mathcal{A}_{i_{i j} i_{1}}+\mathcal{A}_{i_{2} i_{0} i_{1}}
\end{aligned}
$$

- Tensor Contractions

$$
\mathcal{C}_{\pi_{\mathcal{C}}\left(I_{m} \cup I_{n}\right)} \leftarrow \alpha \cdot \mathcal{A}_{\pi_{\mathcal{A}}\left(I_{m} \cup I_{k}\right)} \times \mathcal{B}_{\pi_{\mathcal{B}}\left(I_{n} \cup I_{k}\right)}+\beta \cdot \mathcal{C}_{\pi_{\mathcal{C}}\left(I_{m} \cup I_{n}\right)}
$$

Examples (2/2)

High-Performance Tensor Kernels

- Tensor Transpositions

TTC: A high-performance Compiler for Tensor Transpositions. ACM TOMS, 2018
Compiler: https://github.com/HPAC/TTC
Library: https://github.com/HPAC/hptt

- Summations - linear summation over tensor transpositions

Spin Summations: A High-Performance Perspective. ACM TOMS, 2019
Generator: https://github.com/springer13/spin-summations

- Tensor Contractions

Design of a high-performance GEMM-like Tensor-Tensor Multiplication. ACM TOMS, 2018
Compiler: https://github.com/HPAC/tccg Library: https://github.com/springer13/tcl

But...

But...

- "Wrong" level of abstraction for domain scientists

But...

- "Wrong" level of abstraction for domain scientists
- Kernels: good for developers - too low level for most end users

But...

- "Wrong" level of abstraction for domain scientists
- Kernels: good for developers - too low level for most end users
- Mismatch \rightarrow mapping problem

2D case: "Right" level of abstraction

Generalized Least Squares	$b:=\left(X^{T} M^{-1} X\right)^{-1} X^{T} M^{-1} y \quad n>m ; M \in \mathbb{R}^{n \times n}, S P D ; X \in \mathbb{R}^{n \times m} ; y \in \mathbb{R}^{n \times 1}$
Signal Processing	$x:=\left(A^{-T} B^{T} B A^{-1}+R^{T} L R\right)^{-1} A^{-T} B^{T} B A^{-1} y$
Kalman Filter	$K_{k}:=P_{k}^{b} H^{T}\left(H P_{k}^{b} H^{T}+R\right)^{-1} ; x_{k}^{a}:=x_{k}^{b}+K_{k}\left(z_{k}-H x_{k}^{b}\right) ; P_{k}^{a}:=\left(I-K_{k} H\right) P_{k}^{b}$
Ensemble Kalman Filter	$X^{a}:=X^{b}+\left(B^{-1}+H^{T} R^{-1} H\right)^{-1}\left(Y-H X^{b}\right)$
Image Restoration	$x_{k}:=\left(H^{T} H+\lambda \sigma^{2} I_{n}\right)^{-1}\left(H^{T} y+\lambda \sigma^{2}\left(v_{k-1}-u_{k-1}\right)\right)$
Rand. Matrix Inversion	$X_{k+1}:=S\left(S^{T} A S\right)^{-1} S^{T}+\left(I_{n}-S\left(S^{T} A S\right)^{-1} S^{T} A\right) X_{k}\left(I_{n}-A S\left(S^{T} A S\right)^{-1} S^{T}\right)$
Stochastic Newton	$B_{k}:=\frac{k}{k-1} B_{k-1}\left(I_{n}-A^{T} W_{k}\left((k-1) I_{I}+W_{k}^{T} A B_{k-1} A^{T} W_{k}\right)^{-1} W_{k}^{T} A B_{k-1}\right)$
Optimization	$x_{f}:=W^{T}\left(A W A^{T}\right)^{-1}(b-A x) ; \quad x_{0}:=W\left(A^{T}\left(A W A^{T}\right)^{-1} A x-c\right)$
Tikhonov Regularization	$x:=\left(A^{T} A+\Gamma^{T} \Gamma\right)^{-1} A^{T} b \quad A \in \mathbb{R}^{n \times m} ; \Gamma \in \mathbb{R}^{m \times m} ; b \in \mathbb{R}^{n \times 1}$
Gen. Tikhonov Reg.	$x:=\left(A^{T} P A+Q\right)^{-1}\left(A^{T} P b+Q x_{0}\right) \quad P \in \mathbb{R}^{n \times n}, S S P D ; Q \in \mathbb{R}^{m \times m}, S S P D ; x_{0} \in \mathbb{R}^{m \times 1}$
LMMSE estimator	$K_{t+1}:=C_{t} A^{T}\left(A C_{t} A^{T}+C_{z}\right)^{-1} ; x_{t+1}:=x_{t}+K_{t+1}\left(y-A x_{t}\right) ; C_{t+1}:=\left(I-K_{t+1} A\right) C_{t}$

$$
\begin{gathered}
x:=A\left(B^{T} B+A^{T} R^{T} \wedge R A\right)^{-1} B^{T} B A^{-1} y \quad\left\{\begin{array}{l}
C_{\dagger}:=P C P^{T}+Q \\
K:=C_{\dagger} H^{T}\left(H C_{\dagger} H^{T}\right)^{-1}
\end{array}\right. \\
E:=Q^{-1} U\left(I+U^{T} Q^{-1} U\right)^{-1} U^{T} \quad \ldots
\end{gathered}
$$

§?

$$
\begin{gathered}
x:=A\left(B^{T} B+A^{T} R^{T} \wedge R A\right)^{-1} B^{T} B A^{-1} y \quad\left\{\begin{array}{l}
C_{\dagger}:=P C P^{T}+Q \\
K:=C_{\dagger} H^{T}\left(H C_{\dagger} H^{T}\right)^{-1}
\end{array}\right. \\
E:=Q^{-1} U\left(I+U^{T} Q^{-1} U\right)^{-1} U^{T} \quad \cdots
\end{gathered}
$$

BLAS

$$
\begin{gathered}
x:=A\left(B^{\top} B+A^{T} R^{\top} \wedge R A\right)^{-1} B^{\top} B A^{-1} y \quad\left\{\begin{array}{l}
C_{\dagger}:=P C P^{T}+Q \\
K:=C_{\dagger} H^{T}\left(H C_{\dagger} H^{T}\right)^{-1}
\end{array}\right. \\
E:=Q^{-1} U\left(I+U^{\top} Q^{-1} U\right)^{-1} U^{\top} \quad \ldots
\end{gathered}
$$

BLAS

MUL ADD
MOV
MOVAPD
VFMADDPD \ldots

$$
\begin{gathered}
x:=A\left(B^{T} B+A^{T} R^{T} \wedge R A\right)^{-1} B^{T} B A^{-1} y \quad\left\{\begin{array}{l}
C_{\dagger}:=P C P^{T}+Q \\
K:=C_{\dagger} H^{T}\left(H C_{\dagger} H^{T}\right)^{-1}
\end{array}\right. \\
E:=Q^{-1} U\left(I+U^{T} Q^{-1} U\right)^{-1} U^{T} \quad \cdots
\end{gathered}
$$

LAMP: A problem often ignored

Linnea: A compiler for linear algebra - Henrik Barthels, Christos Psarras

Linnea's speedups

§?

nD case: Exemplary applications

Coupled-Cluster methods

$$
\begin{aligned}
& \tau_{i j}^{a b}= t_{i j}^{a b}+\frac{1}{2} P_{b}^{a} P_{j}^{i} t_{i}^{a} t_{j}^{b}, \\
& \tilde{F}_{e}^{m}=f_{e}^{m}+\sum_{f n} v_{e f}^{m n} t_{n}^{f}, \\
& \tilde{F}_{e}^{a}=\left(1-\delta_{a e}\right) f_{e}^{a}-\sum_{m} \tilde{F}_{e}^{m} t_{m}^{a}-\frac{1}{2} \sum_{m n f} v_{e f}^{m n} t_{m n}^{a f}+\sum_{f n} v_{e f}^{a n} t_{n}^{f}, \\
& \tilde{F}_{i}^{m}=\left(1-\delta_{m i}\right) f_{i}^{m}+\sum_{e} \tilde{F}_{e}^{m} t_{i}^{e}+\frac{1}{2} \sum_{n e f} v_{e f}^{m n} t_{i n}^{e f}+\sum_{f n} v_{i f}^{m n} t_{n}^{f}, \\
& \tilde{W}_{e i}^{m n}=v_{e i}^{m n}+\sum_{f} v_{e f}^{m n} t_{i}^{f}, \\
& \tilde{W}_{i j}^{m n}=v_{i j}^{m n}+P_{j}^{i} \sum_{e} v_{i e}^{m n} t_{j}^{e}+\frac{1}{2} \sum_{e f} v_{e f}^{m n} \tau_{i j}^{e f}, \\
& \tilde{W}_{i e}^{a m}=v_{i e}^{a m}-\sum_{n} \tilde{W}_{e i}^{m n} t_{n}^{a}+\sum_{f} v_{e f}^{m a} t_{i}^{f}+\frac{1}{2} \sum_{n f} v_{e f}^{m n} t_{i n}^{a f}, \\
& \tilde{W}_{i j}^{a m}=v_{i j}^{a m}+P_{j}^{i} \sum_{e} v_{i e}^{a m} t_{j}^{e}+\frac{1}{2} \sum_{e f} v_{e f}^{a m} \tau_{i j}^{e f}, \\
& z_{i}^{a}=f_{i}^{a}-\sum_{m} \tilde{F}_{i}^{m} t_{m}^{a}+\sum_{e} f_{e}^{a} t_{i}^{e}+\sum_{e m} v_{e i}^{m a} t_{m}^{e}+\sum_{e m} v_{i m}^{a e} \tilde{F}_{e}^{m}+\frac{1}{2} \sum_{e f m} \\
& z_{i j}^{a b}=v_{i j}^{a b}+P_{j}^{i} \sum_{e} v_{i e}^{a b} t_{j}^{e}+P_{b}^{a} P_{j}^{i} \sum_{m e} \tilde{W}_{i e}^{a m} t_{m j}^{e b}-P_{b}^{a} \sum_{m} \tilde{W}_{i j}^{a m} t_{m}^{b}+P
\end{aligned}
$$

credits to D. Matthews, E. Solomonik, J. Stanton, and J. Gauss

nD case: Exemplary applications

Coupled-Cluster methods

$$
\begin{aligned}
& \tau_{i j}^{a b}=t_{i j}^{a b}+\frac{1}{2} P_{b}^{a} P_{j}^{i} t_{i}^{a} t_{j}^{b}, \\
& \tilde{F}_{e}^{m}= f_{e}^{m}+\sum_{f n} v_{e f}^{m n} t_{n}^{f}, \\
& \tilde{F}_{e}^{a}=\left(1-\delta_{a e}\right) f_{e}^{a}-\sum_{m} \tilde{F}_{e}^{m} t_{m}^{a}-\frac{1}{2} \sum_{m n f} v_{e f}^{m n} t_{m n}^{a f}+\sum_{f n} v_{e f}^{a n} t_{n}^{f}, \\
& \tilde{F}_{i}^{m}=\left(1-\delta_{m i}\right) f_{i}^{m}+\sum_{e} \tilde{F}_{e}^{m} t_{i}^{e}+\frac{1}{2} \sum_{n e f} v_{e f}^{m n} t_{i n}^{e f}+\sum_{f n} v_{i f}^{m n} t_{n}^{f}, \\
& \tilde{W}_{e i}^{m n}=v_{e i}^{m n}+\sum_{f} v_{e f}^{m n} t_{i}^{f}, \\
& \tilde{W}_{i j}^{m n}=v_{i j}^{m n}+P_{j}^{i} \sum_{e} v_{i e}^{m n} t_{j}^{e}+\frac{1}{2} \sum_{e f} v_{e f}^{m n} \tau_{i j}^{e f}, \\
& \tilde{W}_{i e}^{a m}=v_{i e}^{a m}-\sum_{n} \tilde{W}_{e i}^{m n} t_{n}^{a}+\sum_{f} v_{e f}^{m a} t_{i}^{f}+\frac{1}{2} \sum_{n f} v_{e f}^{m n} t_{i n}^{a f}, \\
& \tilde{W}_{i j}^{a m}=v_{i j}^{a m}+P_{j}^{i} \sum_{e} v_{i e}^{a m m} t_{j}^{e}+\frac{1}{2} \sum_{e f} v_{e f}^{a m} \tau_{i j}^{e f}, \\
& z_{i}^{a}=f_{i}^{a}-\sum_{m} \tilde{F}_{i}^{m} t_{m}^{a}+\sum_{e} f_{e}^{a} t_{i}^{e}+\sum_{e m} v_{e i}^{m a} t_{m}^{e}+\sum_{e m} v_{i m}^{a e} \tilde{F}_{e}^{m}+\frac{1}{2} \sum_{e f m} \\
& z_{i j}^{a b}=v_{i j}^{a b}+P_{j}^{i} \sum_{e} v_{i e}^{a b} t_{j}^{e}+P_{b}^{a} P_{j}^{i} \sum_{m e} \tilde{W}_{i e}^{a m} t_{m j}^{e b}-P_{b}^{a} \sum_{m} \tilde{W}_{i j}^{a m} t_{m}^{b}+P
\end{aligned}
$$

Finite Element 3D diffusion operator

TE.BeginMultiKernelLaunch();
TE ("T2_e_i1_i2_k3 = B_k3_i3 X_e_i1_i2_i3", T2, B, X);
TE("T1_e_i1_k2_k3 = B_k2_i2 T2_e_i1_i2_k3", T1, B, T2);
TE("U1_e_k1_k2_k3 = G_k1_i1 T1_e_i1_k2_k3", U1, G, T1);
TE("T1_e_i1_k2_k3 = G_k2_i2 T2_e_i1_i2_k3", T1, G, T2);
TE("U2_e_k1_k2_k3 = B_k1_i1 T1_e_i1_k2_k3", U2, B, T1);
TE ("T2_e_i1_i2_k3 = G_k3_i3 X_e_i1_i2_i3", T2, G, X);
TE("T1_e_i1_k2_k3 = B_k2_i2 T2_e_i1_i2_k3", T1, B, T2);
TE("U3_e_k1_k2_k3 = B_k1_i1 T1_e_i1_k2_k3", U3, B, T1);
$T E\left(" Z _\frac{m}{-} e_{-} k 1 _k 2 _k 3=\right.$ U_n_e_k1_k2_k3 D_e_m_n_k1_k2_k3", Z, U,
TE("T1_e_i3_k1_k2 = B_k3_i3 Z1_e_k1_k2_k3", T1, B, Z1);
TE("T2_e_i2_i3_k1 = B_k2_i2 T1_e_i3_k1_k2", T2, B, T1);
TE("Y_e_i1_i2_i3 = G_k1_i1 T2_e_i2_i3_k1", Y, G, T2);
TE("T1_e_i3_k1_k2 = B_k3_i3 Z2_e_k1_k2_k3", T1, B, Z2);
TE("T2_e_i2_i3_k1 = G_k2_i2 T1_e_i3_k1_k2", T2, G, T1);
TE("Y_e_i1_i2_i3 += B_k1_i1 T2_e_i2_i3_k1", Y, B, T2);
TE("T1_e_i3_k1_k2 = G_k3_i3 Z3_e_k1_k2_k3", T1, G, Z3);
TE("T2_e_i2_i3_k1 = B_k2_i2 T1_e_i3_k1_k2", T2, B, T1);
TE("Y_e_i1_i2_i3 += B_k1_i1 T2_e_i2_i3_k1", Y, B, T2);
TE.EndMultiKernelLaunch();

Awareness

- Performance:

Speedups in building blocks do not always translate to speedups in applications

Awareness

- Performance:

Speedups in building blocks do not always translate to speedups in applications

- Research Problem: Mapping onto building blocks
- Solved by hand \rightarrow loss of productivity (possibly loss of efficiency too)
- Solved automatically \rightarrow loss of efficiency

Beware: It's challenging even for "simple" matrix computations!

Part II
The computational scientists' perspective

"The fastest FLOPS are those that are not executed." - Lars

Chromatography-MS

Tucker
PARAFAC2

Example application: Untargeted chemical profiling

Chromatography with mass spectrometry detection

- Problem: Identify components in a sample

Jessica Torres - Bitesize Bio

Example application: Untargeted chemical profiling

 Chromatography with mass spectrometry detection- 3-way data: Mass-spectrum \times elution time \times sample

Example application: Untargeted chemical profiling

Chromatography with mass spectrometry detection

- 3-way tensor \rightarrow Individual components

Workflow

- 1. (Pre-processing: alignment)
- 2. Choose time intervals across samples
- 3. (Data preparation: remove background)

Workflow

1. (Pre-processing: alignment)

- 2. Choose time intervals across samples
- 3. (Data preparation: remove background)
- 4. Fit model: 1 -15 components; if needed: non-negativity constraints PARAFAC - PARAFAC2 - TUCKER

Workflow

1. (Pre-processing: alignment)

- 2. Choose time intervals across samples
- 3. (Data preparation: remove background)
- 4. Fit model: 1-15 components; if needed: non-negativity constraints PARAFAC - PARAFAC2 - TUCKER
- 5. Determine whether or not one of the models is "right"

Workflow

1. (Pre-processing: alignment)

- 2. Choose time intervals across samples
- 3. (Data preparation: remove background)
- 4. Fit model: 1-15 components; if needed: non-negativity constraints PARAFAC - PARAFAC2 - TUCKER
- 5. Determine whether or not one of the models is "right"
- \because : Determine which of the components represent chemical information
- \because : Start over; add/change constraints, change model

Awareness \& Conclusions

- Performance:

Speedups in building blocks do not always translate to speedups in applications

- Research Problem: Mapping onto building blocks
\rightarrow Solved by hand \rightarrow loss of productivity (possibly loss of efficiency too)
\Rightarrow Solved automatically \rightarrow loss of efficiency
Beware: It's challenging even for "simple" matrix computations!

Awareness \& Conclusions

- Performance:

Speedups in building blocks do not always translate to speedups in applications

- Research Problem: Mapping onto building blocks
\rightarrow Solved by hand \rightarrow loss of productivity (possibly loss of efficiency too)
- Solved automatically \rightarrow loss of efficiency

Beware: It's challenging even for "simple" matrix computations!

- Application as a whole
- Massive redundancy! Careful with black-box libraries
- Man-in-the-middle workflow. Manual "check \& decide"

Awareness \& Conclusions

- Performance:

Speedups in building blocks do not always translate to speedups in applications

- Research Problem: Mapping onto building blocks
- Solved by hand \rightarrow loss of productivity (possibly loss of efficiency too)
- Solved automatically \rightarrow loss of efficiency

Beware: It's challenging even for "simple" matrix computations!

- Application as a whole
- Massive redundancy! Careful with black-box libraries
- Man-in-the-middle workflow. Manual "check \& decide"
- Gap: Domain scientists' needs \leftrightarrow Computer scientists' artifacts

Awareness \& Conclusions

- Performance:

Speedups in building blocks do not always translate to speedups in applications

- Research Problem: Mapping onto building blocks
- Solved by hand \rightarrow loss of productivity (possibly loss of efficiency too)
- Solved automatically \rightarrow loss of efficiency

Beware: It's challenging even for "simple" matrix computations!

- Application as a whole
- Massive redundancy! Careful with black-box libraries
- Man-in-the-middle workflow. Manual "check \& decide"
- Gap: Domain scientists' needs \leftrightarrow Computer scientists' artifacts
- Problem: How to maximize scientific output?
\Rightarrow Speedups in algorithms and building blocks
- Efficient mapping
- Reduction in computation in the application

Awareness \& Conclusions

- Performance:

Speedups in building blocks do not always translate to speedups in applications

- Research Problem: Mapping onto building blocks
- Solved by hand \rightarrow loss of productivity (possibly loss of efficiency too)
- Solved automatically \rightarrow loss of efficiency

Beware: It's challenging even for "simple" matrix computations!

- Application as a whole
- Massive redundancy! Careful with black-box libraries
- Man-in-the-middle workflow. Manual "check \& decide"
- Gap: Domain scientists' needs \leftrightarrow Computer scientists' artifacts
- Problem: How to maximize scientific output?
\Rightarrow Speedups in algorithms and building blocks
$>$ Efficient mapping
- Reduction in computation in the application

Thank you
Questions?

