HPC Formulations of Optimization Algorithms
for Tensor Completion

Shaden Smith%2?, Jongsoo Park3, and George Karypis!

LUniversity of Minnesota
2Intel Parallel Computing Lab
3Facebook

shaden.smith@intel.com

1/19

shaden.smith@intel.com

Tensor introduction

» Tensors are the generalization of matrices to > 3D.
» Tensors have N dimensions (or modes).
» We will use dimensions / xJx K in this talk.

users

. contexts

items

Tensor completion

» Many tensors are sparse due to missing or unknown data.
» Missing values are not treated as zero.

» Tensor completion estimates a low rank model to recover missing
entries.

» Applications: recommender systems, social network analysis, ...

2
N
l.

3/19

Tensor completion with the CPD

R(i,Jj, k) is written as the inner product of A(/,:), B(j,:), and C(k,:).

2

Tensor completion with the CPD

R(i,j, k) is written as the inner product of A(/,:), B(j,:), and C(k,:).

JEEEEEEEEEE --
2 gc

L1l |

We arrive at a non-convex optimization problem:

minimize L(R, A, B,C)+ (||All +|[B|[Z + ||C||7)

~
Loss Regularization

nnz(R) f=1

F 2
E(R,A,B,C):% > ((i.j, k) =Y _A(i, f)B(j,f) (k,f))

Challenges

Optimization algorithms

» Algorithms for matrix completion are relatively mature.
» How do their tensor adaptations perform on HPC systems?
» Several properties to consider when comparing algorithms:

1. Convergence rate.

2. Number of operations and computational intensity.
3. Memory footprint.

4. Parallelism!

Experimental setup

v

Source code was implemented as part of SPLATT with

MPI1+OpenMP.

Experiments are on the Cori supercomputer at NERSC.
» Nodes have two sixteen-core Intel Xeon CPUs (Haswell).

Experiments show a rank-10 factorization of the Yahoo Music
(KDD cup) tensor.

» 210 million user-song-month ratings.

» More datasets and ranks in the paper.

v

v

v

Root-mean-squared error (RMSE) on a test set measures solution

quality:
_ [2-L(R,A,B,C)
RMSE = \/ nnz(R)

6

19

Alternating least squares (ALS)

» Each row of A is a linear least squares problem.
» Hjis an |R(i,:,:)|xF matrix:
» R(i,j, k) = B(j,:) * C(k,:) (elementwise multiplication).
T -t T
A(i,:) « <H,- H,-+>\I> (H,. vec(R(/,;,;)))

normal eq. MTTKRP

)
J

1.0
20
3.0
4.0
50
6.0
7.0
8.0

ol B 4
' 724

(oD R~=A~]
(NN N === =]
(PO == we=wNj

(PN === =]

(o)
)
L

Compressed sparse fiber (CSF) [IPDPS’15; 1A3'15]

» Modes are recursively compressed.

» Paths from roots to leaves encode non-zeros.

%

|

-

[P === W]

(RN == == =]
(PPN = =]

r
&

BLAS-3 formulation

» Element-wise computation is an outer product formulation.
» O(F?) work with O(F?) data per non-zero.

» Instead, collect (B(j,:) * C(k,:)) into a matrix Z.

Distributed ALS [Choi & Vishwanathan '14; Shin & Kang '14]

» Challenge: unlike the traditional CPD, we have asymmetric
communication.
» Aggregating the partial H; matrices is O(/F?).
» We use a coarse-grained decomposition.
» Only the updated rows need to be communicated, taking O(/F).

o

10 / 19

ALS evaluation

295x relative speedup and 153x speedup over base-ALS.

512.00
256.00\-. A-A base-ALS
- BE-E ALS

128.00, A
64.00
32.00
16.00
8.00
4.00
2.00
1.00
0.50
0.25

Time per epoch (s)

0'121 2 4 8 16 32 64 128 256 512 1024
Number of cores

base-ALS is a pure-MPI implementation in C++ [Karlsson et al. '15]. ALS is our
MPI+OpenMP implementation with one MPI rank per node.

Coordinate descent (CCD++)

» Select a variable and update while holding all others constant.

» Rank-1 factors are updated in sequence.
1 e — 1

12 /19

Distributed CCD++

» CCD++ has a communication volume matching traditional
CPD, so we can leverage the work there.

» Medium- and fine-grained decompositions are scalable to large
machines.

T T

A; | I
1 1
1 1

A; jcz
1 1 C

13 /19

CCD++ distributed-memory evaluation

685x relative speedup and 21x speedup over base-CCD++.

256.00
128.00| “-. %-X base-CCD++

L e A-A CCD++
64.007-. e

32.000 A e
16.00 A T
8.00 AL
4.00 e
2.00
1.00
0.50
0.25
0.12 Ty
0.06,

Time per epoch (s)

L 2 4 8 16 32 64 128 256 512 1024
Number of cores

base-CCD++ is a pure-MPI implementation in C4++ [Karlsson et al. '15].

CCD++ is our MPI4+OpenMP implementation with two MPI ranks per node.

14 /19

Strong scaling

» SGD exhibits initial slowdown as strata teams are populated.
» All methods scale to (past) 1024 cores.

4.00

............... o BB ALS
~2.00. "~ A-A CCD++ ||

15 /19

Patents strong scaling

Patents is a 46 x240K x240K tensor with 2.9B non-zeros.

64.00
D

Bl ALS |
Ak-A CCD++
® ® SGD |

32.00] -

s)
[=]
o
(=]
o

Time per epoch (

2 4 8 16 32 64 128 256 512
Nodes

16 / 19

Convergence @ 1 core

SGD rapidly converges to a high quality solution.

=—a ALS
&--o CCD++
— SGD

RMSE

] 2000 4000 6000 8000 10000 12000
Time (seconds)

Convergence is detected if the RMSE does not improve after 20 epochs.

Convergence @ 1024 cores

» ALS now has the lowest time-to-solution.
» CCD++ and SGD exhibit similar convergence rates.

=—a ALS
&--o CCD++
— SGD

RMSE

AR AAARAMLA|

20 30 40 50 60 70
Time (seconds)

Convergence is detected if the RMSE does not improve after 20 epochs.

Wrapping Up

» Careful attention to sparsity and data structures can give over
10x speedups.
» There is no “best” algorithm — it depends on your hardware
architecture and problem
» SGD: best in a serial setting.
» ALS: best in a multi-core setting or with a few nodes, but has a
large memory footprint.
» CCD++: best on large-scale systems, but requires high
memory-bandwidth.

http://cs.umn.edu/~splatt/

19 /19

http://cs.umn.edu/~splatt/

Backup Slides

Stochastic gradient descent (SGD)

» Randomly select entry R(/,, k) and update A, B, and C.
» O(F) work per non-zero.

F
ijk +— RA(i,j, k) ZA C(k,f)
f=1

A(i,:) < A(i,:) + 1[0 (BU, :) * Ck,2)) —
B(j.:) < BU,:) +n [0 (A(i,:) * Ck,:)) —
k,:) <= C(k,:) +n [0 (A(i,:) * B(,) — /\C(k,
n is the step size; typically O(10™

Stratified SGD

» Strata identify independent blocks of non-zeros.
» Each stratum is processed in parallel.

s
N

» There is only as much parallelism as the smallest dimension.

Limitations of stratified SGD:

» Sparsely populated strata are communication bound.

19 /19

Asynchronous SGD (ASGD)

» Processes overlap updates and exchange to avoid divergence.

» Local solutions are combined via a weighted sum.
» Go Hogwild! on shared-memory systems.

I'I
|

Limitations of ASGD:

» Convergence suffers unless updates are frequently exchanged.

19 /19

Hybrid stratified /asynchronous SGD

Limit the number of strata to reduce communication.

v

v

Assign multiple processes to the same stratum (called a team).

v

Each process performs updates on its own local factors.

v

At the end of a strata, updates are exchanged among the team.

>
I o

7
e

19 /19

Effects of stratification on SGD @ 1024 cores

Hybrid stratification combines the speed of ASGD with the stability of
stratification.
32

~—a asynchronous
=—a hybrid
e—e stratified

30

0 10 20 30 40 50 60 70 80
Time (seconds)

Hybrid uses sixteen teams of four MPI processes.

19 /19

Parallel CCD++

» Shared-memory: each entry of A(:, f) is computed in parallel.
» Distributing non-zeros with a 3D grid limits communication to
the grid layers.
» Distributing non-zeros requires «; and §3; to be aggregated.
» Communication volume is O(/F) per process.
» For short modes, use a grid dimension of 1 and fully replicate the
factor.

A; L e
1 1 C

19 / 19

Alternating least squares (ALS)

» Normal equations N; = H,-TH,- are formed one non-zero at a time.

» H/ vec(R(i,:,:)) is similarly accumulated into a vector q;.

Algorithm 1 ALS: updating A(/,)

N, « 0F><F, q; FOFXl

: for (i,j,k) € R(i,:,:) do
x < B(j,:) * C(k,:)
N; «+ N,'+XTX
q; < q; + R(’v./7 k)XT

end for

A(i,:) < (N; + D) 1q;

N g ks ends

CCD++ formulation

» O(F) work per non-zero.
» Each epoch requires NF passes over the tensor.
» Heavily dependent on memory bandwidth.

F
Sk < R(i,j, k) = > A(i, f)B(j, f)C(k,)
f=1

aj < > S (B, f)C(k,f))
R(i.:»)
Bi+ > (B(,f)C(k,F))
R(i.:\)
A(i,) « —

Bi+ A

Netflix strong scaling

2.00

Bl ALS

® ® SGD
1.00P A-A CCD++

Time per epoch (s)
° °
N [
&) =)

(=]
=}
N

0.06

0'031 5

Nodes

16 32

Communication volume on Yahoo!

6le8
A =a ALS
g e-a SGD
L d
-4 CCD++
g% . i
[}
g .
54
>
. L
2 .
w3
2
c
F]
£
£2
[}
(¥)
g _____________
El ——————— A AL
g ~~~~~ A
< p
0,
| 2) ; 16 32
Nodes

Figure: Average communication volume per node on the Yahoo! dataset.

CCD++ and SGD use two MPI ranks per node and ALS uses one.

19 /19

Amazon strong scaling

128.00
N B-E ALS
» A-A CCD++
@ ® SGD
64.00
0 Mpennneeee A
$ 32.00
[<]
Q.
[
I
g
16.00
0 o
£ i
= e .
A {
8.00 .\:\:/A
4.00; 3 i 16 32

Scaling factorization rank on 1024 cores

2.0

=—a ALS
---+ SGD
44 CCD++

15

Time per Epoch (s)

0.(i0 20 30 40 50 60 70 80
Rank

Figure: Effects of increasing factorization rank on the Yahoo! dataset.

19 /19

	Introduction & Preliminaries
	Tensor Completion
	Evaluation Criteria

	Optimization Algorithms
	Alternating Least Squares
	Coordinate Descent

	Comparison of Optimization Methods
	Conclusions

