HPC Formulations of Optimization Algorithms for Tensor Completion

Shaden Smith^{1,2}, Jongsoo Park³, and George Karypis¹

¹University of Minnesota ²Intel Parallel Computing Lab ³Facebook

shaden.smith@intel.com

Tensor introduction

- ▶ Tensors are the generalization of matrices to $\geq 3D$.
- ► Tensors have *N* dimensions (or *modes*).
 - ▶ We will use dimensions $I \times J \times K$ in this talk.

Tensor completion

- ► Many tensors are sparse due to missing or unknown data.
 - ► Missing values are *not* treated as zero.
- Tensor completion estimates a low rank model to recover missing entries.
 - ► Applications: recommender systems, social network analysis, . . .

Tensor completion with the CPD

 $\mathcal{R}(i,j,k)$ is written as the inner product of $\mathbf{A}(i,:)$, $\mathbf{B}(j,:)$, and $\mathbf{C}(k,:)$.

Tensor completion with the CPD

 $\mathcal{R}(i,j,k)$ is written as the inner product of $\mathbf{A}(i,:)$, $\mathbf{B}(j,:)$, and $\mathbf{C}(k,:)$.

We arrive at a non-convex optimization problem:

$$\underbrace{\text{minimize}}_{\substack{\textbf{A},\textbf{B},\textbf{C}}} \underbrace{\mathcal{L}(\boldsymbol{\mathcal{R}},\textbf{A},\textbf{B},\textbf{C})}_{\substack{\textbf{Loss}}} + \underbrace{\lambda\left(||\textbf{A}||_F^2 + ||\textbf{B}||_F^2 + ||\textbf{C}||_F^2\right)}_{\substack{\textbf{Regularization}}}$$

$$\mathcal{L}(\mathcal{R}, \mathbf{A}, \mathbf{B}, \mathbf{C}) = \frac{1}{2} \sum_{\mathsf{nnz}(\mathcal{R})} \left(\mathcal{R}(i, j, k) - \sum_{f=1}^F \mathbf{A}(i, f) \mathbf{B}(j, f) \mathbf{C}(k, f) \right)^2$$

Challenges

Optimization algorithms

- ► Algorithms for *matrix* completion are relatively mature.
 - ▶ How do their tensor adaptations perform on HPC systems?
- ► Several properties to consider when comparing algorithms:
 - 1. Convergence rate.
 - 2. Number of operations and computational intensity.
 - 3. Memory footprint.
 - 4. Parallelism!

Experimental setup

- Source code was implemented as part of SPLATT with MPI+OpenMP.
- ► Experiments are on the Cori supercomputer at NERSC.
 - ▶ Nodes have two sixteen-core Intel Xeon CPUs (Haswell).
- ► Experiments show a rank-10 factorization of the Yahoo Music (KDD cup) tensor.
 - ▶ 210 million *user-song-month* ratings.
 - More datasets and ranks in the paper.
- ► Root-mean-squared error (RMSE) on a test set measures solution quality:

$$\mathsf{RMSE} = \sqrt{\frac{2 \cdot \mathcal{L}(\mathcal{R}, \mathbf{A}, \mathbf{B}, \mathbf{C})}{\mathsf{nnz}(\mathcal{R})}}$$

Alternating least squares (ALS)

- ► Each row of **A** is a linear least squares problem.
- ▶ \mathbf{H}_i is an $|\mathcal{R}(i,:,:)| \times F$ matrix:
 - ▶ $\mathcal{R}(i,j,k) \to \mathbf{B}(j,:) * \mathbf{C}(k,:)$ (elementwise multiplication).

$$\mathbf{A}(i,:) \leftarrow \underbrace{\left(\mathbf{H}_{i}^{T}\mathbf{H}_{i} + \lambda \mathbf{I}\right)^{-1}}_{\text{normal eq.}} \underbrace{\left(\mathbf{H}_{i}^{T} \operatorname{vec}(\mathcal{R}(i,:,:))\right)}_{\text{MTTKRP}}$$

- ► Modes are recursively compressed.
- ▶ Paths from roots to leaves encode non-zeros.

BLAS-3 formulation

- ► Element-wise computation is an outer product formulation.
 - ▶ $\mathcal{O}(F^2)$ work with $\mathcal{O}(F^2)$ data per non-zero.

▶ Instead, collect $(\mathbf{B}(j,:) * \mathbf{C}(k,:))$ into a matrix \mathbf{Z} .

Distributed ALS [Choi & Vishwanathan '14; Shin & Kang '14]

- Challenge: unlike the traditional CPD, we have asymmetric communication.
 - ▶ Aggregating the partial \mathbf{H}_i matrices is $O(IF^2)$.
- ▶ We use a *coarse-grained* decomposition.
- ▶ Only the updated rows need to be communicated, taking O(IF).

ALS evaluation

 $295 \times$ relative speedup and $153 \times$ speedup over base-ALS.

base-ALS is a pure-MPI implementation in C++ [Karlsson et al. '15]. **ALS** is our MPI+OpenMP implementation with one MPI rank per node.

Coordinate descent (CCD++)

- ► Select a variable and update while holding all others constant.
- ► Rank-1 factors are updated in sequence.

Distributed CCD++

- ► CCD++ has a communication volume matching traditional CPD, so we can leverage the work there.
- Medium- and fine-grained decompositions are scalable to large machines.

CCD++ distributed-memory evaluation

 $685 \times$ relative speedup and $21 \times$ speedup over base-CCD++.

base-CCD++ is a pure-MPI implementation in C++ [Karlsson et al. '15].CCD++ is our MPI+OpenMP implementation with two MPI ranks per node.

Strong scaling

- ► SGD exhibits initial slowdown as strata teams are populated.
- ► All methods scale to (past) 1024 cores.

Patents strong scaling

Patents is a $46 \times 240 K \times 240 K$ tensor with 2.9B non-zeros.

Convergence @ 1 core

SGD rapidly converges to a high quality solution.

Convergence is detected if the RMSE does not improve after 20 epochs.

Convergence @ 1024 cores

- ► ALS now has the lowest time-to-solution.
- ► CCD++ and SGD exhibit similar convergence rates.

Convergence is detected if the RMSE does not improve after 20 epochs.

Wrapping Up

- Careful attention to sparsity and data structures can give over 10× speedups.
- ► There is no "best" algorithm it depends on your hardware architecture and problem.
 - ► SGD: best in a serial setting.
 - ► ALS: best in a multi-core setting or with a few nodes, but has a large memory footprint.
 - ► CCD++: best on large-scale systems, but requires high memory-bandwidth.

http://cs.umn.edu/~splatt/

Backup Slides

Stochastic gradient descent (SGD)

- ▶ Randomly select entry $\mathcal{R}(i,j,k)$ and update **A**, **B**, and **C**.
 - \triangleright $\mathcal{O}(F)$ work per non-zero.

$$\begin{split} \delta_{ijk} \leftarrow \mathcal{R}(i,j,k) - \sum_{f=1}^F \mathbf{A}(i,f)\mathbf{B}(j,f)\mathbf{C}(k,f) \\ \mathbf{A}(i,:) \leftarrow \mathbf{A}(i,:) + \eta \left[\delta_{ijk} \left(\mathbf{B}(j,:) * \mathbf{C}(k,:) \right) - \lambda \mathbf{A}(i,:) \right] \\ \mathbf{B}(j,:) \leftarrow \mathbf{B}(j,:) + \eta \left[\delta_{ijk} \left(\mathbf{A}(i,:) * \mathbf{C}(k,:) \right) - \lambda \mathbf{B}(j,:) \right] \\ \mathbf{C}(k,:) \leftarrow \mathbf{C}(k,:) + \eta \left[\delta_{ijk} \left(\mathbf{A}(i,:) * \mathbf{B}(j,:) \right) - \lambda \mathbf{C}(k,:) \right] \\ \eta \text{ is the step size; typically } \mathcal{O}(10^{-3}). \end{split}$$

Stratified SGD

- Strata identify independent blocks of non-zeros.
- ► Each stratum is processed in parallel.

Limitations of stratified SGD:

- ▶ There is only as much parallelism as the smallest dimension.
- ► Sparsely populated strata are communication bound.

Asynchronous SGD (ASGD)

- ► Processes overlap updates and exchange to avoid divergence.
 - ▶ Local solutions are combined via a weighted sum.
- ► Go Hogwild! on shared-memory systems.

Limitations of ASGD:

► Convergence suffers unless updates are frequently exchanged.

Hybrid stratified/asynchronous SGD

- ▶ Limit the number of strata to reduce communication.
- ► Assign multiple processes to the same stratum (called a *team*).
- ► Each process performs updates on its own local factors.
- ▶ At the end of a strata, updates are exchanged among the team.

Effects of stratification on SGD @ 1024 cores

Hybrid stratification combines the speed of ASGD with the stability of stratification.

Hybrid uses sixteen teams of four MPI processes.

Parallel CCD++

- ▶ Shared-memory: each entry of A(:, f) is computed in parallel.
- ► Distributing non-zeros with a 3D grid limits communication to the grid layers.
 - ▶ Distributing non-zeros requires α_i and β_i to be aggregated.
 - ▶ Communication volume is $\mathcal{O}(IF)$ per process.
- ► For short modes, use a grid dimension of 1 and fully replicate the factor.

Alternating least squares (ALS)

- ▶ Normal equations $\mathbf{N}_i = \mathbf{H}_i^T \mathbf{H}_i$ are formed one non-zero at a time.
- ► $\mathbf{H}_{i}^{T} \operatorname{vec}(\mathcal{R}(i,:,:))$ is similarly accumulated into a vector \mathbf{q}_{i} .

Algorithm 1 ALS: updating A(i,:)

1:
$$\mathbf{N}_{i} \leftarrow \mathbf{0}^{F \times F}$$
, $\mathbf{q}_{i} \leftarrow \mathbf{0}^{F \times 1}$
2: $\mathbf{for} (i, j, k) \in \mathcal{R}(i, :, :) \mathbf{do}$
3: $\mathbf{x} \leftarrow \mathbf{B}(j, :) * \mathbf{C}(k, :)$
4: $\mathbf{N}_{i} \leftarrow \mathbf{N}_{i} + \mathbf{x}^{T} \mathbf{x}$
5: $\mathbf{q}_{i} \leftarrow \mathbf{q}_{i} + \mathcal{R}(i, j, k) \mathbf{x}^{T}$
6: $\mathbf{end} \ \mathbf{for}$
7: $\mathbf{A}(i, :) \leftarrow (\mathbf{N}_{i} + \lambda \mathbf{I})^{-1} \mathbf{q}_{i}$

CCD++ formulation

- \blacktriangleright $\mathcal{O}(F)$ work per non-zero.
- ► Each epoch requires *NF* passes over the tensor.
 - ► Heavily dependent on memory bandwidth.

$$\delta_{ijk} \leftarrow \mathcal{R}(i,j,k) - \sum_{f=1}^{F} \mathbf{A}(i,f) \mathbf{B}(j,f) \mathbf{C}(k,f)$$

$$\alpha_{i} \leftarrow \sum_{\mathcal{R}(i,:,:)} \delta_{ijk} \left(\mathbf{B}(j,f) \mathbf{C}(k,f) \right)$$

$$\beta_{i} \leftarrow \sum_{\mathcal{R}(i,:,:)} \left(\mathbf{B}(j,f) \mathbf{C}(k,f) \right)^{2}$$

$$\mathbf{A}(i,f) \leftarrow \frac{\alpha_{i}}{\beta_{i} + \lambda}$$

Netflix strong scaling

Communication volume on Yahoo!

Figure: Average communication volume per node on the Yahoo! dataset. CCD++ and SGD use two MPI ranks per node and ALS uses one.

Amazon strong scaling

Scaling factorization rank on 1024 cores

Figure: Effects of increasing factorization rank on the Yahoo! dataset.