
P R E S E N T E D B Y

Sandia National Laboratories is a multimission
laboratory managed and operated by National
Technology & Engineering Solutions of Sandia,
LLC, a wholly owned subsidiary of Honeywell
International Inc., for the U.S. Department of

Energy’s National Nuclear Security
Administration under contract DE-NA0003525.

Performance portable parallel sparse
CP-APR tensor decompositions

Keita Teranishi
1

C h r i s t o p h e r F o r s t e r (N V I D I A) , R i c h a r d B a r r e t t ,
D a n i e l D u n l a v y, a n d Ta m a r a K o l d a

SIAM CSE19, 03/01/2019

SAND2019-2243 C

HPDA Tensor Project2

Develop production quality library software to perform CP
factorization for Poisson Regression Problems for HPC
platforms

Tensor Tool Box (http://www.tensortoolbox.org)
◦Matlab only!

Support several HPC platforms
◦ Node parallelism (Multicore, Manycore and GPUs)

Major Questions
◦ Software Design
◦ Performance Tuning

This talk
◦ We are interested in two major variants

◦ Multiplicative Updates
◦ Projected Damped Newton for Row-subproblems

CP Tensor Decomposition3

Express the important feature of data using a small number of vector outer products

Key references: Hitchcock (1927), Harshman (1970), Carroll and Chang (1970)

CANDECOMP/PARAFAC (CP) Model

Model:

Poisson for Sparse Count Data4

Gaussian (typical) Poisson

The random variable x is a
continuous real-valued number.

The random variable x is a
discrete nonnegative integer.

Poisson for Sparse Count Data5

Gaussian (typical) Poisson

The random variable x is a
continuous real-valued number.

The random variable x is a
discrete nonnegative integer.

Model: Poisson distribution (nonnegative factorization)

Sparse Poisson Tensor Factorization6

§ Nonconvex problem!
§ Assume R is given

§ Minimization problem with constraint
§ The decomposed vectors must be non-negative

§ Alternating Poisson Regression (Chi and Kolda, 2011)
§ Assume (d-1) factor matrices are known and solve for the remaining one

Alternating Poisson Regression (CP-APR)7

Repeat until converged…

Fix B,C;
solve for A

Fix A,C;
solve for B

Fix A,B;
solve for C

Theorem: The CP-APR algorithm will converge to a constrained stationary point
if the subproblems are strictly convex and solved exactly at each iteration. (Chi
and Kolda, 2011)

Convergence
Theory

Accuracy is High For Very Sparse Data8

Nonzeros Poisson
Regression FMS

Gaussian Regression
FMS

480,000 (.100%) 0.99 0.57

240,000 (.050%) 0.81 0.49

48,000 (.010%) 0.77 0.47

24,000 (.005%) 0.74 0.46

Data: 1000 x 800 x 600 Tensor with R=10 Components
CP-APR: Max Iterations = 200, Max Inner Iterations = 30 (10 per mode), Tol = 1e-4

(KKT)
CP-ALS: Max Iterations = 200, Tol = 1e-8 (change in fit)

CP-APR9

Minimization problem is expressed as:

CP-APR10

Minimization problem is expressed as:

⨀ is called Khatori-Rao product
(Column wise Kronecker product)

" = ["% "& "']
) = [)%)&)']

"⨀) = ["%⨂)%| "&⨂)&|"'⨂)']

CP-APR11

Minimization problem is expressed as:

⨀ is called Khatori-Rao product
(Column wise Kronecker product)

" = ["% "& "']
) = [)%)&)']

"⨀) = ["%⨂)%| "&⨂)&|"'⨂)']

Π is expressed in sparse matrix (indices and values).Π is expressed in COO sparse format (indices and values).

CP-APR12

Minimization problem is expressed as:

• 2 major approaches
• Multiplicative Updates like Lee & Seung (2000) for

matrices, but extended by E. C. Chi and T. G.
Kolda. On Tensors, Sparsity, and Nonnegative
Factorizations, SIAM Journal on Matrix Analysis
and Applications 33(4):1272-1299, December
2012.

• Newton and Quasi-Newton method for Row-
subpblems by S. Hansen, T. Plantenga and T. G.
Kolda. Newton-Based Optimization for Kullback-
Leibler Nonnegative Tensor Factorizations, to
appear in Optimization Methods and Software,
2015.

⨀ is called Khatori-Rao product
(Column wise Kronecker product)

" = ["% "& "']
) = [)%)&)']

"⨀) = ["%⨂)%| "&⨂)&|"'⨂)']

Π is expressed in COO sparse format (indices and values).

Key Elements of MU and PDNR methods13

Key computations
◦ Khatri-Rao Product

◦ Multiplicative Update Modifier
(10+ iterations)

Key features
◦ Factor matrix is updated all at

once
◦ Exploits the convexity of row

subproblems for global
convergence

Key computations
◦ Khatri-Rao Product

◦ Constrained Non-linear
Newton-based optimization
for each row

Key features
◦ Factor matrix can be updated by

rows
◦ Exploits the convexity of row-

subproblems

Multiplicative Update (MU)
Projected Damped Newton for Row-

subproblems (PDNR)

CP-APR-MU14

Key Computations

Parallelizing CP-APR15

Focus on on-node parallelism for multiple architectures
◦ Multiple choices for programming

◦ OpenMP, OpenACC, CUDA, Pthread …
◦ Manage different low-level hardware features (cache, device memory, NUMA…)

◦ Our Solution: Use Kokkos for productivity and performance portability
◦ Abstraction of parallel loops
◦ Abstraction Data layout (row-major, column major, programmable memory)
◦ Same code to support multiple architectures

Kokkos

Intel
Multicore

Intel
Manycore

NVIDIA GPU IBM PowerAMD Multicore/APU ARM

Parallel Execution Runtime (Pthread, OpenMP, CUDA etc.)

What is Kokkos?16

Templated C++ Library by Sandia National Labs (Edwards, et al)

◦ Serve as substrate layer of sparse matrix and vector kernels

◦ Support any machine precisions

◦ Float, Double, etc

Kokkos::View() accommodates performance-aware

multidimensional array data objects

◦ Light-weight C++ class to accommodate abstractions for platform specific

features (host, device, GPU’s shared memory, data access pattern, etc.)

Parallelizing loops using C++ language standard

◦ Lambda
◦ Functors

Extensive support of atomics

Parallel Programing with Kokkos17

Provide parallel loop operations using C++ language features
Conceptually, the usage is no more difficult than OpenMP. The annotations just go in
different places.
Support for task parallel computing is ongoing (Task Parallel Kokkos and UINTHA)

for (size_t i = 0; i < N; ++i)
{
/* loop body */

}

#pragma omp parallel for
for (size_t i = 0; i < N; ++i)
{
/* loop body */

}

parallel_for ((N, [=], (const size_t i)
{
/* loop body */

});

Se
ri

al
O

pe
nM

P
Ko

kk
os

Kokkos information courtesy of Carter Edwards

Parallel CP-APR-MU18

Data Parallel

Notes on Data Structure and implementation19

Use Kokkos::View for all data strcutures
Sparse Tensor
◦ Similar to the Coordinate (COO) Format in Sparse Matrix representation

Atomics
◦ Expensive for CPUs and Manycore
◦ Efficient for the latest GPUs

Nested Parallelism
◦ Kokkos provides abstraction for multiple platforms (team, thread, vector) to

map parallel program execution to:
◦ SM
◦ Warp

11 1 1 2 2 14 3 3 5 4

43 1 3 5 2 24 3 5 1 4

15 2 2 2 3 13 5 4 1 4

0.50.2 0.1 0.7 0.9 2.1 0.50.4 0.1 0.4 0.6 0.1

INDICES
(_indices)

Nonzero
Entries (_data)

Mode-1

Mode-2

Mode-3

Notes on Implementation of CP-APR-MU20

Modifier Computation is the major part of CP-APR-MU.
◦ Two ways to parallelize, which affects the way

to access the output factor matrices

1. Partition with respect to the mode
◦ No atomics to access the output vectors by

partition
◦ Extra indexing is required to access nonzero

entries by partition (reordering)

2. Partition COO sparse tensor storage format
◦ No extra indexing is required
◦ Need efficient hardware supported atomics

◦ The output vector elements are updated by
multiple threads concurrently

◦ Large outermost loop irrespective of the mode
sizes

◦ Recent work by Smith and Karypis, and Li and Vuduc
suggest more efficient data format than COO

11 1 1 2 2 14 3 3 5 4

43 1 3 5 2 24 3 5 1 4

15 2 2 2 3 13 5 4 1 4

0.50.2 0.1 0.7 0.9 2.1 0.50.4 0.1 0.4 0.6 0.1

INDICES
(_indices)

Nonzero
Entries (_data)

Mode-1

Mode-2

Mode-3

Performance Test21

Strong Scalability
◦ Problem size is fixed

Random Tensor
◦ 3K x 4K x 5K, 10M nonzero entries
◦ 100 outer iterations

Realistic Problems
◦ Count Data (Non-negative)
◦ Available at http://frostt.io/
◦ 10 outer iterations

Data Dimensions Nonzeros Rank (*)

LBNL 2K x 4K x 2K x 4K x 866K 1.7M 10

NELL-2 12K x 9K x 29K 77M 10

NELL-1 3M x 2M x 25M 144M 10

Delicious 500K x 17M x 3M x 1K 140M 10

(*) if not indicated.

http://frostt.io/

Scalability of CPAPR-MU on CPU (Random)22

0

200

400

600

800

1000

1200

1400

1600

1800

2000

1 2 4 6 8 10 12 14 16 18 20 22 24 26 28

CP-APR-MU method, 100 outer-iterations, (3000 x 4000 x
5000, 10M nonzero entries), R=100, 2 Haswell (14 core) CPUs

per node, HyperThreading disabled

Pi Phi+ Update

CP-APR-MU: Performance on GPUs (10 inner, 10 outer
iterations, 10 components)

Data
Haswell CPU

1-core

2 Haswell
CPUs

14-cores

2 Haswell
CPUs

28-cores

Intel KNL
(Cache
Mode)

68-core
CPU

NVIDIA
P100 GPU

NVIDIA
V100 GPU

Time(s) Speedup Time(s) Speedup Time(s) Speedup Time(s) Speedup Time(s) Speedup Time(s) Speedup

Random 185 1 22 8.4 13 14.11 8.4 22.01 4.47 41.31 3.01 61.53

LBNL 39 1 19 2.05 13 3.0 33 1.18 2.99 13.04 2.09 18.66

NELL-2 1157 1 137 8.44 87 13.29 100 11.02 47.17 24.52 28.80 40.17

NELL-1 3365 1 397 16.62 258 20.9 257 10.86 OOM OOM

Delicious 4170 1 2183 1.91 1872 2.23 3463 1.41 OOM OOM

Performance Comparison: Atomic vs Non-Atomic24

Intel CPUs: Software-based atomic operations

NVIDIA GPUs: Hardware-based atomic operations

0

100

200

300

400

500

600

700

R=10 R=16 R=32

Performance of CP-APR-MU on
Haswell CPUs

3Kx4Kx5K Random Sparse Tensor

No Atomic Atomic

0

100

200

300

400

500

600

700

R=10 R=16 R=32

Performance of CP-APR-MU on
V100

3Kx4Kx5K Random Sparse Tensor

No Atomic Atomic

Performance of CPU-APR-MU with respect to different rank size25

0

500

1000

1500

2000

2500

3000

3500

4000

0 16 32 48 64 80 96 112 128 144 160 176 192

CP-APR-MU (Random tensor 3Kx4Kx5K, 100 outer iterations)

Volta Pascal Haswell

Performance of CP-APR-MU (LBNL-Network) with respect to different
rank sizes26

0

50

100

150

200

250

300

0.00 32.00 64.00 96.00 128.00 160.00 192.00 224.00 256.00

Se
co

nd
s

Number of Ranks

CP-APR-MU (LBNL-NETWORK, 10 outer iterations)

Volta Pascal Haswell

Conclusion27

Development of Portable on-node Parallel CP-APR
Solvers
◦ Data parallelism for MU method
◦ Multiple Architecture Support using Kokkos
◦ Performance on CPU, Manycore and GPUs
◦ Two different work partitioning

◦ CPU: Row-wise in each mode
◦ GPU: Partition COO format

◦ Benefit from GPU atomics
◦ Better capability wit latest GPUs

Future Work
◦ Better GPU support for PDNR and PQNR
◦ Performance tuning to handle irregular nonzero distributions

and disparity in mode sizes

