
1/26

A multi-dimensional Morton block storage
for mode-oblivious tensor computations

F. Paw lowski1,2 B. Uçar2 A.J. Yzelman1

1Huawei Technologies France
20 Quai du Point du Jour, 92100 Boulogne-Billancourt, France

2ENS Lyon, France

1 March 2019



2/26

Motivation

Examples of tensors:

Dense: Images and videos
Sparse: User-product-time database of an online store

Tensor algorithms help analyze data

They rely on these core tensor kernels:

Tensor–vector multiplication (TVM)
Tensor–matrix multiplication (TMM)
Khatri–Rao product



3/26

Motivation: TVM

Tensor–vector product is denoted with the symbol ×k :

P = A ×k v , P ∈ Rn1×n2×···×nk−1×1×nk+1×···×nd

TVM can be applied along any of the modes:

A ×1 v A ×3 v



4/26

Contribution

We propose a blocked storage for dense tensors:

Morton-order on blocks,
regular ordering within blocks

We evaluate our method against the state-of-the-art TVM

The proposed storage is mode-oblivious on a TVM kernel



5/26

Related work

Li et al. (2015) discuss an algorithm for TMM using BLAS3
routines and an auto-tuning approach

Li et al. (2018) apply Morton-order for sparse tensors

Lorton and Wise (2007) apply Morton-order for dense matrices

Kjolstad et al. (2017) propose taco, a tensor algebra compiler
(code generator) for tensor computations



6/26

Tensor layout

Tensor layout maps tensor elements Ai1,...,id onto an array of
size N = Πd

i=1ni and is denoted by ρ(A):

{1, . . . , n1} × · · · × {1, . . . , nd} 7→ {1, . . . ,N}.

Describes the order in which the tensor elements are stored

Unfold layout ρπ (multidimensional array)

Morton layout ρZ



7/26

Unfold layout ρπ

Multidimensional array storage

Associated with a permutation π of (1, . . . , d)

Tensor stored according to one of d! orderings π of the modes

Convention: the rightmost mode in the permutation is one
whose index is the fastest changing in memory

TVM reduces to matrix–vector multiplication (MVM) kernels



8/26

Unfold layout ρπ: Matrix

There are two possible storages for a matrix (a tensor
A ∈ Rn1×n2):

π = (1, 2) π = (2, 1)



9/26

Unfold layout ρπ: 3D Example

There are 6 (3!) ways of storing an order-3 tensor:

π = (1, 2, 3) π = (3, 1, 2) . . .

Example:
ρπ(A)(2, 2, 2) = 11
ρ−1
π (A)(8) = (2, 1, 2)



10/26

TVM using unfold layout: DGEMV kernels

We formulate TVM in terms of MVM BLAS2 kernels

Both assume a ρ(1,2) layout for A

2 available BLAS2 MVM kernels:

mv kernel: the right-hand sided
multiplication (u = Av)

vm kernel: the left-hand
sided multiplication

(u = vA)



11/26

TVM using unfold layout: Matricization

Mode d : apply a single mv on a tensor matricized as a
tall-skinny N/nd × nd matrix

A ×3 v reduces to single (n1n2 × n3) mv



12/26

TVM using unfold layout: Matricization

Mode 1: apply a single vm on a tensor matricized as
short-wide n1 × N/n1 matrix

A ×1 v reduces to single (n1 × n2n3) vm



13/26

TVM using unfold layout: State-of-the-art

For the other d − 2 modes there are two algorithms:

tvUnfold (transpose-DGEMV) explicitly rearranges tensor
memory into a π = (k , . . .) tensor,
aligned for a single (nk × N/nk) vm kernel

tvLooped (loop-over-DGEMV)
runs N/r executions of (nk × r/nk) vm kernels



14/26

Morton layout ρZ

Morton-order is an ordering with locality preserving properties

Typically implemented using binary permutations



15/26

TVM using Morton layout: Optimized implementation
Array mortonResultIndex of size dlog max(nk)e one-initialized

Array coord of current element coordinates in the tensor

1: for tensorIndex = 1 to N do
2: BresultIndex += AtensorIndexvvectorIndex
3: resultIndex ← resultIndex + 1
4: level, offset ← incMortonCoord(coord)
5: if offset = k then
6: swap(mortonResultIndex[level], resultIndex)
7: blockDiff = ceil(log2(maxk(nk)− coordk))
8: if blockDiff < level then
9: level = blockDiff

10: end if
11: for j = 1 to level do
12: mortonResultIndex[j] = resultIndex
13: end for
14: end if
15: vectorIndex = coordk
16: end for



16/26

TVM using Morton layout: Complexity

Space complexity: Θ(d + log2n)

Time complexity:

1 Line 3: incMortonCoord : Θ(N)

2 Lines 4− 13:

Θ

(
log2n−1∑
i=0

2di+k +

log2n−2∑
i=0

2di+log2n−2+k

)
= Θ(N/2d−k)



17/26

Block TVM algorithms

We propose Morton-blocked storage ρZρπ

with smaller equally-sized tensors as its elements
and blocks stored as ρπ to use BLAS2 kernels

We implemented

the associated ρZρπ TVM algorithm
the ρπρπ TVM algorithm for comparisons

Complexity drops from N to N/B, where B is the block size



18/26

Setup

Intel Ivy Bridge node with two Intel Xeon E5-2690 v2
processors (10 cores each)

We measure sequential execution

The processor has 32 KB of L1 cache, 256 KB of L2 cache
memory, and 25 MB of L3 cache memory

We assume square tensors and blocks

Tensors of several GB

We benchmark for d = 2 tensors up to d = 10



19/26

Implementation

MKL library for unblocked tensors

MKL and LIBXSMM [1] for individual blocks

MVM kernel performance depends on size of the matrix, its
aspect ratio as well as its orientation

Microbenchmarks indicate that L2 and L3 block size yields
best performance, in particular 2.5MB (10% of L3)



20/26

Microbenchmark results

TVM is bandwidth-bound due to low arithmetic intensity,
between 1 and 2:

2Πd
i=1ni

Πd
i=1ni +

Πd
i=1ni
nk

+ nk
flop per element . (1)

STREAM benchmark at 18.3 GB/s

Copy routine at 11.4 GB/s



21/26

Comparisons (effective bandwidth)

d taco tvUnfold tvLooped ρπρπ-block ρZρπ-block

2 9.36 12.22 12.22 14.09 14.10
3 11.92 6.36 12.47 10.90 11.06
4 10.09 4.50 10.79 11.77 11.86
5 10.69 3.76 10.71 12.03 12.06
6 9.93 3.46 10.98 11.20 11.48
7 9.55 3.64 11.26 10.69 11.52
8 6.94 3.68 11.13 9.28 10.87
9 6.75 3.54 10.82 8.66 10.36

10 7.05 3.77 10.26 9.14 10.62

Table: Average effective bandwidth (in GB/s) of different algorithms for
large order-d tensors. The highest bandwidth, signifying the best
performance, for each d is shown in bold. Tensor sizes n are such that at
least several GB of memory is required.



22/26

Comparisons (standard deviation between modes)

d taco tvUnfold tvLooped ρπρπ-block ρZρπ-block

2 18.50 6.66 6.66 1.15 0.65
3 38.25 83.75 20.24 14.31 12.99
4 38.18 80.03 6.27 9.78 10.31
5 33.65 77.73 13.49 8.47 7.08
6 30.30 88.34 11.07 16.54 8.58
7 28.50 81.39 10.07 24.79 4.73
8 11.53 75.93 12.29 27.49 5.82
9 10.21 77.26 14.98 35.82 9.44

10 11.03 74.71 18.56 33.79 9.17

Table: Relative standard deviation (in percentage, versus the average
bandwidth) of different algorithms for large order-d tensors. The lowest
standard deviation, signifying the best mode-oblivious behavior, for each
d is shown in bold. Tensor sizes n are such that at least several GB of
memory is required.



23/26

Case study: Higher order power method

High-order power method is used to find rank-one tensor
approximation

1: for iters = 0 to maxIters − 1 do
2: for k = 0 to d − 1 do
3: ũ(k) ← A
4: for t = 0 to k − 1 do
5: ũ(k) ← ũ(k) ×t u

(t)

6: end for
7: for t = k + 1 to d − 1 do
8: ũ(k) ← ũ(k) ×t u

(t)

9: end for
10: u(k) ← ũ(k)

‖ũ(k)‖
11: end for
12: end for
13: return (u(0), u(1), . . . , u(d−1))



24/26

Comparisons (effective bandwidth)

d tvLooped ρπρπ-block ρZρπ-block

2 11.10 13.96 13.98
3 13.99 9.85 9.80
4 9.64 11.32 11.29
5 9.83 12.80 12.82
6 10.88 12.65 12.63
7 10.90 12.47 12.50
8 10.82 12.34 12.35
9 10.30 11.74 11.76

10 9.69 11.42 11.46

Table: Average effective bandwidth (in GB/s) of different algorithms for
HOPM of large order-d tensors on an Intel Ivy Bridge node. The highest
bandwidth, signifying the best performance, for each d is shown in bold.
Tensor sizes n are such that at least several GBs of memory is required.



25/26

Conclusions

The preferred method is the ρZρπ-block TVM algorithm:

Mode-oblivious performance with standard deviations
≤ 10% (except for d = 3)
Better performance

Transfers to other architectures, with significant speedups on
both Ivy Bridge and Haswell nodes

Future work

Other operations: TMM and Khatri–Rao product
Parallel implementations
Auto-tuning approach



26/26

Thank you for your attention!



26/26

A. Heinecke, G. Henry, M. Hutchinson, H. Pabst, LIBXSMM:
Accelerating small matrix multiplications by runtime code
generation, in: Proceedings of the International Conference for
High Performance Computing, Networking, Storage and
Analysis, SC ’16, IEEE Press, Piscataway, NJ, USA, 2016, pp.
84:1–84:11.


