Rate- and State-based Simulations of Induced Seismicity and Coupling to Reservoir Processes

SIAM Geosciences
March 13, 2019

Kayla A. Kroll ${ }^{1}$
James H. Dieterich², Keith B. Richards-Dinger², Thomas A. Buscheck ${ }^{1}$, and Joshua A. White ${ }^{1}$

'ucRIVERSIDE

Simulation Goals

- Perform simulations of induced events
- Develop a method to determine safe injection practices
- Inform regulatory agencies
- Simulations must produce realistic results
- Power law FMD
- Migration of events away from well with time
- Small events that lead to larger events
- $\mathrm{M}_{\text {max }}$ scales with injected volume (?)
- Low stress drops
- Rupture speeds on the order of traditional VEQ

What information is necessary to simulate induced earthquakes?

1. Fault geometry and rate-state constitutive parameters
2. Reservoir characterization
3. External stressing history

- Analytical solution for pore-fluid diffusion (Wang, 2002)
- NUFT (Nitao, 1998; Hao et al., 2012)

4. Tectonic driving stress (perhaps neglect this in relatively aseismic regions)
5. Pre-existing shear stress conditions:

- In situ stress measurements - regional average (from global stress maps)
- Projection of the regional stress tensor (from global stress maps)
- Randomly generated heterogeneous field (some fractal distribution)

6. Earthquake simulation method

- RSQSim

7. Well located seismicity catalog with low magnitude of completeness

Earthquake Time-dependency: Rate- and State-dependent Friction

$$
\begin{gathered}
\tau=\mu(\sigma-p) \\
\mu=\mu_{0}+a \ln \left(\frac{V}{V^{*}}\right)+b \ln \left(\frac{\theta V^{*}}{D_{c}}\right) \\
\tau=(\sigma-p)\left[\mu_{0}+\operatorname{a\operatorname {ln}(\frac {V}{V^{*}})} \operatorname{b\cdot \operatorname {ln}(\frac {\theta V^{*}}{D_{c}})}\right] \\
\text { Rate-term State-term }
\end{gathered}
$$

$\mu_{0}=$ Nominal coefficient of friction
V^{*} : Reference slip rate
V: Earthquake slip rate
θ : State variable
D_{c} : Characteristic slip distance
a and b : Constitutive parameters describing the material

RSQSim: Governing equations

- Constitutive relation: $\quad \tau_{i}^{\text {fric }}=\sigma_{i}\left[\mu_{0}+a \ln \left(\frac{\dot{\delta}_{i}}{\dot{\delta}^{*}}\right)+b \ln \left(\frac{\theta_{i} \dot{\delta}^{*}}{D_{c}}\right)\right]$
- State evolution:

$$
\begin{aligned}
\dot{\theta}_{i} & =1-\frac{\theta_{i} \dot{\delta}_{i}}{D_{c}}-\frac{\alpha \theta_{i}}{b \sigma_{i}} \dot{\sigma}_{i} \\
\dot{\tau}_{i} & =\dot{\tau}_{i}^{\text {tect }}+K_{i j}^{\tau} \dot{\delta}_{j} \\
\dot{\sigma}_{i} & =\dot{\sigma}_{i}^{\text {tect }}+K_{i j}^{\sigma} \dot{\delta}_{j}
\end{aligned}
$$

- Terms in red are additional ones due to normal stress variations (Linker and Dieterich, 1992)
- Interaction coefficients, K, calculated from the dislocation solutions of Okada, 1992
- Tectonic stressing rates derived from backslipping the model
- Numerical integration too slow for the scale of problems we would like to address

Coulomb stress change from unit slip on one element

RSQSim: Governing equations

- Constitutive relation: $\quad \tau_{i}^{\text {fric }}=\sigma_{i}\left[\mu_{0}+a \ln \left(\frac{\dot{\delta}_{i}}{\dot{\delta}^{*}}\right)+b \ln \left(\frac{\theta_{i} \dot{\delta}^{*}}{D_{c}}\right)\right]$
- State evolution:

$$
\begin{aligned}
\dot{\theta}_{i} & =1-\frac{\theta_{i} \dot{\delta}_{i}}{D_{c}}-\frac{\alpha \theta_{i}}{b \sigma_{i}} \dot{\sigma}_{i} \\
\dot{\tau}_{i} & =\dot{\tau}_{i}^{\text {tect }}+K_{i j}^{\tau} \dot{\delta}_{j} \\
\dot{\sigma}_{i} & =\dot{\sigma}_{i}^{\text {tect }}+K_{i j}^{\sigma} \dot{\delta}_{j}
\end{aligned}
$$

- Terms in red are additional ones due to normal stress variations (Linker and Dieterich, 1992)
- Interaction coefficients, K, calculated from the dislocation solutions of Okada, 1992
- Tectonic stressing rates derived from backslipping the model
- Numerical integration too slow for the scale of problems we would like to address

RSQSim: Governing equations

- Constitutive relation: $\tau_{i}^{\text {fric }}=\sigma_{i}\left[\mu_{0}+a \ln \left(\frac{\dot{\delta}_{i}}{\dot{\delta}^{*}}\right)+b \ln \left(\frac{\theta_{i} \dot{\delta}^{*}}{D_{c}}\right)\right]$
- State evolution: $\quad \dot{\theta}_{i}=1-\frac{\theta_{i} \dot{\delta}_{i}}{D_{c}}-\frac{\alpha \theta_{i}}{b \sigma_{i}} \dot{\sigma}_{i}$
- Stress evolution: $\quad \dot{\tau}_{i}=\dot{\tau}_{i}^{\text {tect }}+K_{i j}^{\tau} \dot{\delta}_{j} \quad \dot{\sigma}_{i}=\dot{\sigma}_{i}^{\text {tect }}+K_{i j}^{\sigma} \dot{\delta}_{j}$

$\mathrm{M}=7.0$ Multi-fault earthquake rupture simulation

Fault 2

Fault 1

Red shows areas that are actively slipping in the earthquake
Earth Surface

RSQSim
 (Rate-State earthQuake Simulator)

Developed by Jim Dieterich and Keith Richards-Dinger at UC Riverside

- Comprehensive simulation of fault slip phenomena:
\rightarrow earthquakes, continuous creep, slow slip events, afterslip

RSQSim

(Rate-State earthQuake Simulator)

- Comprehensive simulation of fault slip phenomena:
\rightarrow earthquakes, continuous creep, slow slip events, afterslip
- Implement rate- and state-dependent friction effects
\rightarrow Earthquake clustering effects (aftershocks and foreshocks)

RSQSim

(Rate-State earthQuake Simulator)

All-California simulation Aftershocks follow the Omori Law for aftershock decay with time

RSQSim

(Rate-State earthQuake Simulator)

- Comprehensive simulation of fault slip phenomena:
\rightarrow earthquakes, continuous creep, slow slip events, afterslip
- Implement rate- and state-dependent friction effects
\rightarrow Earthquake clustering effects (aftershocks and foreshocks)
- High resolution models of geometrically complex fault systems
\rightarrow Up to 10^{6} fault elements
\rightarrow Range of earthquake magnitudes $\mathrm{M}=3.5$ to $\mathrm{M}=8$ (for $1 \mathrm{~km}^{2}$ triangular elements)

RSQSim

(Rate-State earthQuake Simulator)

- Comprehensive simulation of fault slip phenomena:
\rightarrow earthquakes, continuous creep, slow slip events, afterslip
- Implement rate- and state-dependent friction effects
\rightarrow Earthquake clustering effects (aftershocks and foreshocks)
- High resolution models of geometrically complex fault systems
\rightarrow Un to 10^{6} fault elements
\rightarrow Range of earthquake magnitudes $\mathrm{M}=3.5$ to $\mathrm{M}=8$ (for $1 \mathrm{~km}^{2}$ triangular elements)
- Highly efficient code
\rightarrow Good statistical characterizations from long simulations of 10^{6} earthquakes
\rightarrow Repeated simulations to explore parameter space

Model Geometry

Injection and Co-production (various volumes)

- 25 \% (14.25 Mt CO2)
- 50\% (28.50 Mt CO2)
- 75\% (42.75 MT CO2)
- 100% (57 Mt CO 2)

- Injection for 30 years ($\sim 0.6 \mathrm{~m}^{3} / \mathrm{s}$)
- Co-production
- 30 years at fractional rate

Fault Geometry, Pre-stress, and Pressure

Resulting Seismic Catalog (Injection Only)

Pore-fluid Pressure On Fault

Resulting Number and Maximum Magnitude

*Net injection volume $=$ injected volume - production volume

Selection of Preferred Injection Scenario?

Magnitude Threshold

Conclusions

- Active pressure management might be a useful mitigation strategy
- May actually cause more (but smaller?) earthquakes
- Highly dependent upon knowledge of fault location, well/fault configuration, reservoir characteristics, the pre-stress conditions, fault interaction and permeability structure
- Most advantageous when co-produced fluids can be managed and potentially dangerous faults are known
- Perhaps more applicable to carbon storage settings?
- Replace low-risk brine with high-risk CO2
- Fewer coordination logistics

