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Simulation Goals

* Perform simulations of induced events
* Develop a method to determine safe injection practices
* Inform regulatory agencies
e Simulations must produce realistic results
* Power law FMD
* Migration of events away from well with time
* Small events that lead to larger events
* M., scales with injected volume (?)
* Low stress drops
* Rupture speeds on the order of traditional VEQ




What information is necessary to simulate induced
earthquakes?

1. Fault geometry and parameters
2. Reservoir characterization
3. External stressing history

* Analytical solution for pore-fluid diffusion (Wang, 2002)
 NUFT (Nitao, 1998; Hao et al., 2012)

4. Tectonic driving stress (perhaps neglect this in relatively aseismic regions)
* |n situ stress measurements - regional average (from global stress maps)

* Projection of the regional stress tensor (from global stress maps)
« Randomly generated heterogeneous field (some fractal distribution)

7. Well located seismicity catalog with low magnitude of completeness



Earthquake Time-dependency: Rate- and State-dependent Friction

(1) Modified Coulomb Criterion

T=u(o-p)
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Rate-term State-term

Uo= Nominal coefficient of friction
V*: Reference slip rate

V: Earthquake slip rate

: State variable

D.: Characteristic slip distance

a and b: Constitutive parameters describing the material
Dieterich, 1978, 1979; Ruina 1983



RSQSi1m: Governing equations
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* Applied stress evolution:

* Terms 1n red are additional ones due to normal stress variations (Linker and
Dieterich, 1992)

* Interaction coefficients, K, calculated from the dislocation solutions of Okada, 1992
* Tectonic stressing rates derived from backslipping the model

* Numerical integration too slow for the scale of problems we would like to address



Coulomb stress change from unit slip on one element




RSQSi1m: Governing equations
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RSQSim: Governing equations
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M=7.0 Multi-fault earthquake rupture simulation

Fault 2
Fault 1

Red shows areas that are actively slipping in the earthquake
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Fault 2
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RSQSIim
(Rate-State earthQuake Simulator)

Developed by Jim Dieterich and Keith Richards-Dinger at UC Riverside ~—

e Comprehensive simulation of fault slip phenomena:

— earthquakes, continuous creep, slow slip events, afterslip



RSQSIim
(Rate-State earthQuake Simulator)
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e Implement rate- and state-dependent friction effects

— Earthquake clustering effects (aftershocks and foreshocks)



RSQSIm
(Rate-State earthQuake Simulator)
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RSQSim
(Rate-State earthQuake Simulator)
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e High resolution models of geometrically complex fault systems
— Up to 10° fault elements

— Range of earthquake magnitudes M=3.5 to M=8 (for 1 km? triangular elements)



RSQSIim
(Rate-State earthQuake Simulator)

Oak Ridge F.




RSQSim
(Rate-State earthQuake Simulator)
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e Highly efficient code
— Good statistical characterizations from long simulations of 10° earthquakes

— Repeated simulations to explore parameter space
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Fault Geometry, Pre-stress, and Pressure
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Pore-fluid Pressure On Fault
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Resulting Number and Maximum Magnitude
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Selection of Preferred Injection Scenario?

._._-_-_-_._._-_-_-—-—.—-—-------‘—; ------------
-~
o P
=t -
-/
-~
~ East (km)
prany 1.5 2.0 2.5 3.0 3.5 4.0
E T T T T T T
R =
s ©
3 o _| s
= ™ pv P :7
w w1 w2
[1h} ©
o v X
“0_.) g PWSK
(] - <l |
© =T
£ 5 A Py
3 o
— o T ~N L
o —
= ®
8
[i}] =
© = 5
2 o
=
R
© o
= -
; -_'.'.'-‘:-'.:‘-:: ::: % Production
eemeemzggessrIIIoecIO 25%
:,-==e!§§§§======s-"' 500/0
o 75%
[ | | | |
2.6 2.8 3.0 3.2 34

Magnitude Threshold



Conclusions

e Active pressure management might be a useful mitigation strategy
* May actually cause more (but smaller?) earthquakes
* Highly dependent upon knowledge of fault location, well/fault
configuration, reservoir characteristics, the pre-stress conditions,
fault interaction and permeability structure
* Most advantageous when co-produced fluids can be managed and
potentially dangerous faults are known
* Perhaps more applicable to carbon storage settings?
* Replace low-risk brine with high-risk CO2
* Fewer coordination logistics



