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Outline

q Introduction: geohazards associated with Underground Gas Storage 
(UGS) activities

q The Netherlands case: conceptual model for the inception of fault 
movements

q Mathematical and numerical model: numerical discretization of fault 
mechanics by Lagrange multipliers

q Numerical results: factors that can enhance the probability of fault 
reactivation

q Conclusions: preliminary practical indications



Introduction
Geohazards associated to UGS

from Ellsworth (Science, 2013)

q The interest in developing UGS projects is continuously increasing
worldwide

q Geohazards associated with UGS 
activities:

Ø May 2015: over 270 plants in 
Europe, 400 in the US

Ø Formation integrity
Ø Leakage from the reservoir
Ø Land motion
Ø Induced and/or triggered

seismic events

q Coping with such issues is necessary
for health and safety as related to 
public perception, economic risk and 
environmental impact



Introduction
Geohazards associated to UGS

q Cases of seismic activity have been recently
recorded in a few UGS plants in the 
Netherlands
Ø Primary Production
Ø Cushion Gas injection
Ø Storage activities

q Highly compartmentalized and fractured
reservoirs in stiff rocks overlain by salt deposits

Develop numerical models to simulate 
the possible inception of fault motion
also in «unexpected» configurations



The Netherlands case
Conceptual model

q Schematic geometry representative of the 
typical configuration of Ducth UGS fields:

Ø Independent blocks with different
pressure variations

Ø Bounding vertical and sub-vertical faults
Ø Viscous salt formations on top of the 

reservoir



The Netherlands case
Conceptual model

 

LAYER DENSITY 
(kg/m3) 

YOUNG MODULUS 
(GPa) 

POISSON RATIO 

Overburden 2200 10.0 0.25 
Zechstein Salt 2100 40.0 0.3 

Reservoir (Upper Rotliegend) 2400 11.0 0.15 
Underburden 2600 30 0.2 

 

q Geomechanical parameters typical of Dutch UGS formations

q Almost isotropic initial stress state (M1=0.74, M2=0.83) with principal
directions oriented like the bounding faults



Mathematical and numerical model
Quasi-static equilibrium of faults

q Modeling fault/fracture mechanics involves a number of numerical open 
issues

q Available numerical approaches:

Ø Ease of implementation
Ø Inability to describe slippage and opening

1. Continuous Finite Elements with a different rheology, e.g. [Rutqvist et al. 
2008]

2. Interface frictional elements by penalties, e.g. [Beer, 1985; Cescotto & 
Charlier, 1993; Juanes et al., 2002; Ferronato et al., 2008]

Ø Definiteness preservation, controlled number of DoFs
Ø Ill-conditioning, instability, non-linear convergence difficulties

3. Lagrange multipliers, e.g. [Aagaard et al., 2013; Jha & Juanes, 2014; 
Franceschini et al. 2016]

Ø Mathematically robust prescription of constraints
Ø Increase of DoFs, saddle-point problem



q A fracture is a discontinuity 
within a 3D porous body made 
of a pair of friction surfaces in 
contact each other

q The surfaces can’t penetrate 
and continuity is preserved if:

0       ,tan <-=£ nnLs c sjstt

q The Mohr-Coulomb criterion defines tL, but gives no indication as to the 
direction of the limiting shear vector tL

q According to the Principle of Maximum Plastic Dissipation, tL is such that
the friction work Wf is maximum, i.e. is parallel to the slip vector ur
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Mathematical and numerical model
Quasi-static equilibrium of faults



Mathematical and numerical model
Governing equations

q From a mathematical standpoint, the problem requires the solution of a 
set of governing PDEs:
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Momentum balance
Boundary displacement
Boundary traction
Traction continuity

subject to normal contact conditions along Gf:

and Coulomb frictional contact conditions along Gf:



Mathematical and numerical model
Variational formulation

q The discretization is obtained with a mixed finite element approach where
displacement u and traction t on the fault are the main unknowns
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Mathematical and numerical model
Variational formulation

q The integrals along the fractures Gf are computed as the sum of the 
contributions arising from the portions operating in the «stick» and «slip» 
modes
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q The problem is highly non-linear because also the «stick» and «slip» 
portions of the fracture are unknown

q The non-linear problem is finally addressed by a Newton-Raphson
scheme



Mathematical and numerical model
Constitutive relationships

q A weakening model is implemented to account for the variation of the 
friction angle from static to dynamic conditions at the fault slipping:
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q A Maxwell model is used to simulate the viscous behaviour of the top salt

Zechstein formation:
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q The faults are partially sealing and are characterized by an inner
pressure variation pf



Mathematical and numerical model
Discrete problem

q The discrete Jacobian is a large, sparse matrix with a generalized
saddle-point structure:
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Numerical results
Basic activation mechanisms

q Pressure history prescribed in 
the UGS field

q A loading step corresponds to a 
1-year time interval

q Critical index:

! = #$ %
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≤ 1

q Sensitivity analysis on different configuration parameters:

Ø Block offset (0-200 m)
Ø Central fault dip (-25° - 25°)
Ø Reservoir and caprock stiffness
Ø Fault properties

Ø Biot coefficient (0.6 – 1.0)
Ø Initial stress regime (M1=M2=0.4)
Ø Pressure variation (0-200 bar)
Ø Fault pressure (0-200 bar) 



Numerical results
Basic activation mechanisms

Primary
Production

Primary
Production

Cushion
Gas

Gas 
Storage



Numerical results
Basic activation mechanisms

q Critical index on the bounding faults
vs the loading steps

q Fault thickness with c>0.8



Numerical results
Basic activation mechanisms

q Stress on a bounding fault during Primary Production, Cushion Gas e 
Gas Storage 



Numerical results
Sensitivity analysis results

q Modifying the mechanical and geometrical properties can anticipate or 
delay the fault activation, or increase the amount of slippage and the 
activated area

Ø the initial stress regime can play a major role: decreasing significantly 
the horizontal principal components favors an early fault reactivation, 
with a large area critically stressed and significant sliding

Ø factors increasing the activation risk: (1) a reduced friction angle; (2) 
an offset between producing blocks; (3) stiffness contrasts between 
reservoir, caprock, sideburden, and underburden; (4) uneven 
pressure change in adjacent compartments

Ø most critical configuration: 200-m compartment offset, a relatively 
small friction angle, and a viscous caprock



Conclusions…

q A 3D modeling study has been developed on a conceptual configuration 
representative of the Dutch UGS fields to evaluate how and when faults 
bounding a compartmentalized reservoir can be reactivated during the 
UGS activities

q The fault mechanics is simulated with the aid of a Lagrangian formulation 
with a non-linear weakening behavior for the friction angle, a viscous salt 
caprock and partially sealing faults

q The investigation has been carried out in detail on a reference 
benchmark and by changing mechanical and geometrical configurations 
in an extensive sensitivity analysis



… and preliminary practical indications

q Fault reactivation may occur “unexpectedly” during Cushion Gas and 
Underground Gas Storage stages, following more expected reactivations 
during Primary Production

q Activation during Primary Production leads to a stress redistribution and 
a new "equilibrated" configuration that is re-loaded, in the opposite 
direction, when the pressure variation changes the sign at the Cushion 
Gas injection

q The settings more prone to activation during Primary Production are also 
the most critical ones during Cashion Gas injection and Underground 
Gas Storage

q A preliminary indication may rely on limiting the pressure recovery during 
the storage operations if a reactivation has been already experienced 
during the Primary Production
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Linear solver
Preconditioning

q Solving a linear problem with a saddle-point matrix is a common issue in 
several applications, e.g., flow problems in mixed form, coupled 
consolidation, Navier-Stokes equations, etc.

q The most effective approach proceeds as follows:

Ø Solve for the incremental displacements du in the first equation

( ) ( )[ ]ldd FCEK --+= - fu 1

Ø Replace du in the second equation and solve for dl

( ) ( )[ ] ( ) f111 --- +-+= EKCFCEKC TTld

Ø Approximate the application of the inverse of 1,1 block (K+E) 
and the Schur complement S:

( ) ( )FCEKCS T -+= -1

Ø Use these equations to apply a «preconditioner» to J



Linear solver
Preconditioning

q Numerical ingredients to define an effective preconditioner for a Krylov 

subspace solver:

q Approximating the application of the inverse of (K+E) is not an issue and 

can be done in several different ways, e.g., Incomplete Factorizations, 

Sparse Approximate Inverses, Algebraic Multigrid

q The difficulty lies in approximating the Schur complement S and its 

inverse

q Three approaches:

Ø Approximation of (K+E)-1

Ø Approximation of S and of S-1

Ø Factored Sparse Approximate Inverse (FSAI)

Ø Block Diagonal Schur complement (BDS)

Ø Least-Square Commutator (LSC)



Linear solver
FSAI and BDS approach

q For the computation of S an explicit approximation of (K+E)-1 is required

q Since (K+E) is SPD, we can use an adaptive FSAI approximation [Janna et 

al. 2015]:

( ) ( ) HHFCGGCSGGEK TTTT »-»Þ»+ -            1

q The inverse of the Schur complement is then applied with a direct solver 

or another FSAI approximation

q From a physical point of view, dl ensures the continuity of the 

displacement through the fracture

q Such a continuity can be approximately prescribed on a node-by-node 

basis considering the local stiffness associated to each node only

Factored Sparse Approximate Inverse (FSAI)

Block Diagonal Schur complement (BDS)



Linear solver
BDS approach

q From a purely algebraic point of view, this means considering the 
restrictions (K+E)(k) of (K+E) corresponding to the entries related to DoFs 
of the elements sharing the k-th node: 
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Linear solver
LSC approach

Least-Square Commutator (LSC)

q This approach was originally introduced for Navier-Stokes problems in 
order to avoid the inversion of the 1,1 block for approximating the inverse 
of S [Elman et al. 2006]

q The objective is to find a commutator Kp such that:
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pp +=Þ»+

-1           
q From the previous approximation it follows also that:
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Linear solver
LSC approach

q The advantage of the LSC approach is that the inverse of S is directly 

available using the blocks of J and (K+E)-1 is not needed

q In our fault/fracture formulation, CTC is diagonal, so that the computation 

and application of its inverse is totally inexpensive

q The final Schur complement inverse can be also seen as:

( ) TCEKCS ,11 +-+- +»
where C+ is the pseudo-inverse of C according to the Moore-Penrose 

definition

q Theorem. The eigenvalues l of S-1S, where S-1 is approximated by the 

LSC, are bounded from below by 1: 

HP 211 +££ l
with P and H matrices that depend on the SVD decomposition of C and 

on K



Numerical results
Test case

h # u dofs # l dofs
l/2 615 120
l/4 3,267 432
l/8 20,451 1,632

l/16 142,659 6,336
l/32 1,060,995 24,960

Iteration count
to converge 
vs. the mesh

size

l/h FSAI(5,.01) FSAI(20,.01) BDS LSC
2 22 20 27 22
4 29 25 34 27
8 35 20 40 32

16 42 36 48 39
32 49 43 56 46



Numerical results
Test case

(K+E)-1 # iter Time [s] # iter Time [s] # iter Time [s] # iter Time [s]
FSAI 409 96.5 428 80.7 482 68.1 866 161.6
IC 229 73.5 227 67.9 574 80.6 407 77.8

exact 100 -- 92 -- 268 -- 99 --

FSAI + DIR FSAI + FSAI BDS LSC

# u dofs # l dofs Ratio
379,983 167,799 0.442

Multiple fractured elastic
medium with 15 discontinuities



Numerical results
Real-world applications

# u dofs # l dofs # tot dofs Nnz(K+E) Nnz(C-F) Nnz(CT)
Case A 171,150 12,027 183,177 7,313,814 72,162 72,162
Case B 69,909 2,757 72,666 2,946,915 16,542 16,542
Case C 1,142,655 38,109 1,180,764 49,858,749 228,654 228,654

A - Mexico B - China C - Italy



Numerical results
Real-world applications

(K+E)-1 # iter Time [s] # iter Time [s] # iter Time [s] # iter Time [s]
FSAI 123 9.6 126 9.1 255 13.0 175 12.3
IC 98 10.3 97 10.1 240 12.2 59 6.8

exact 35 -- 34 -- 126 -- 23 --

FSAI + DIR FSAI + FSAI BDS LSC

A - Mexico

(K+E)-1 # iter Time [s] # iter Time [s] # iter Time [s] # iter Time [s]
FSAI 72 1.7 73 2.0 371 5.5 77 2.6
IC 34 1.6 34 1.8 189 3.0 24 0.8

exact 21 -- 24 -- 129 -- 12 --

FSAI + DIR FSAI + FSAI BDS LSC

B - China



Numerical results
Real-world applications

(K+E)-1 # iter Time [s] # iter Time [s] # iter Time [s] # iter Time [s]
FSAI 496 156.5 623 172.7 -- -- 768 287.1
IC 194 116.1 195 128.3 -- -- 125 73.2

exact 50 -- 50 -- 276 -- 35 --

FSAI + DIR FSAI + FSAI BDS LSC

C - Italy


