
Data Assimilation for State Estimation of Fault Behavior

Shiran Levy, Femke Vossepoel (TU Delft), Marie Bocher (ETH Zürich) and Ylona van
Dinther (ETH Zürich and Utrecht University)

13 March 2019

1 / 15



Overview

I Introduction: Data assimilation in a seismo-thermo-mechanical model
I Methodology: Use of a time-lag particle filter
I Results: ensemble generation and state updates
I Preliminary conclusions
I Recommendations/ongoing work

Building on work of van Dinther et al. (GJI, 2019)

https://www.dropbox.com/s/6zp3zva2bzxvydc/ggz063.pdf?dl=0
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Seismo-Thermo-Mechanical (STM) model

I Seismic cycle simulator that can be configured on a range of scales
I 2D domain for laboratory experiment, as described in van Dinther et al. (2013a,b)
I Conservation equations and rheological constitutive equations
I Continuum-mechanics-based approach for visco-elasto-plastic material
I Rate-dependent friction coe�cient, adaptive time-stepping
I Characteristic-based Lagrangian marker-in-cell method of Gerya & Yuen (2007)
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Seismo-Thermo-Mechanical (STM) model setup

I Setup representing laboratory scale
I 701x136 nodes
I Air (white), Gelatin (orange), Fault (red- seismic and gray- aseismic zones), backstop

wall (magenta)
I Marker-in-cell of interest: surface (GPS) markers (light blue) borehole location (black)

and fault markers (blue)
I Assuming observations available at borehole location
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Data assimilation concept (Ensemble Kalman Filtering)
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Figure 1. Schematic diagram explaining the concept of Ensemble Kalman Filters. (a) Temporal evolution of a true (black), forecasted (green), analysed (blue)
and observed (red) state variable with ensemble data assimilation at each Assimilation Step (AS). The goal is to bring the forecast, propagated based on a
physical model, in line with the truth. The concept of the (b) propagation and (d) update steps is illustrated for many ensemble members forming a probability
density function of the (b) prior pf(x), (c) data likelihood p(y|x) and (d) analysis pa(x|y) for an observed velocity vχ at the surface (at grey grid node 2) and
a hidden stress σχ , ψ at the fault (at grid node 21). In (d) note that each ensemble member is moved by the coloured arrows to form a posterior, which is the
multiplication of the transparent prior and data likelihood. This possibly non-Gaussian posterior ideally approximates the truth (black bar).

as illustrated in Werner et al. 2011), or the measurement relation
between the observable and the unknown state is too nonlinear.

2.2 Kalman filter

To understand an EnKF, the derivation of the equations, assump-
tions and challenges for a regular Kalman Filter are explained in
Appendix C. In summary, we additionally assume model and mea-
surement errors have a Gaussian distribution with zero mean. Along
with a Gaussian initial distribution, this leads to a prior or fore-
cast PDF that is Gaussian with mean xf and covariance C f

xx . This
model error covariance matrix contains how each component of the
state vector covaries with each other component in the state vec-
tor (εxεT

x ). The measurement PDF p(x|y) is Gaussian with mean
Mxand covariance Cyy . The measurement error covariance matrix
Cyy is defined as εyεT

y .
By multiplying the prior and measurement Gaussian densities

as in Bayes’ theorem and then finding the maximum likelihood
estimate xa (Appendix C and D) one obtains

xa = xf + K(y− Mxf ), (4)

where matrix K is usually called the Kalman gain

K = C f
xx MT (MC f

xx MT + Cyy)−1. (5)

The Kalman gain is also used to calculate the analysis error covari-
ance matrix Ca

xx (eq. C7).
These equations show how to update the forecasted mean of each

state variable based on the data misfit or innovation y− Mxf for
each measurement. The Kalman gain is a matrix weighting two

terms, which together determine the size of the correction by the
data misfit. The first term is a transpose of the influence functions
MC f

xx (size S× S), which quantifies how each state variable relates
to the observation. The second term contains the Kalman weights
(each of size O × O), or inverted error covariances, which weigh the
update for each measurement as a function of the level of confidence
in both the model and the measurement. This thus means that update
is small if (i) the model forecast at the measurement location lies
close to the data, and/or (ii) the Kalman weights are low. The inverted
covariance weights are relatively low when either (i) the data error
for that measurement is large (i.e. it is better to ignore a deviation of
this measurement) and/or (ii) the model spread (or error/variance)
for a certain state variable–measurement combination is large (i.e.
the model does not know how the state and observation are related
and thus how to update the state). However, if the dynamics of
the physical processes is very nonlinear, it becomes very difficult
to forward propagate the entries into the forecasted model error
covariance matrix C f

xx in particular.

2.3 Ensemble Kalman filter

Forward propagation of nonlinear dynamics is tackled in an EnKF
through representing the forecast and analysis distributions by en-
sembles (Evensen 1994; Burgers et al. 1998). In the propagation
step, every member (or particle or evolving Markov Chain targeting
pa(x)) of the previous analysis ensemble is forward propagated ac-
cording to the nonlinear partial differential equations (Figs 1a and
b and Section 2.4) to form the forecast ensemble X f (or xf

n with n =
1, ..., N). The forecast ensemble can then be used to approximate the

Figure taken from van Dinther et al. (2019)

5 / 15



Data assimilation improves forecasting skills
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Results with EnKF

I Assimilated data obtained from the borehole location at intervals of 30 time steps
(time step ≈ 60 ms; one cycle varies around 20-25 s)

I using a straightforward EnKF implementation with a limited ensemble size (20
members)

I correcting all nodal values for five physical variables (i.e. vχ, vψ , σχ′χ, σχ′ψ and P )

I In velocity, seismic events well captured. Dynamic stress increase due to approaching
rupture front not well captured. Pressure remains uncertain.

I When dynamics are strongly nonlinear, the use of a particle filter may be more
appropriate
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Particle Filter in a Seismo-Thermo-Mechanical model

Estimate the dynamic state variable ψ given data d use Bayes’ theory to find the posterior:

p(ψ0:t |d1:t) =
p(d1:t |ψ0:t)p(ψ0:t)

p(d1:t)
, (1)

Representing prior pdf by particles xi (dropping subscript t):

p(ψ) = ΣN
i=1

1
N
δ(ψ − ψi), (2)

and using (1) gives
p(ψ|d) = ΣN

i=1wiδ(ψ − ψi), (3)

with wi given by

wi =
p(d|ψi)

ΣN
j=1p(d|ψj)

. (4)
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Particle Filter in a Seismo-Thermo-Mechanical model

For variable vχ,2 the prior, likelihood and posterior could look like this:

Ψ
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Setup of the perfect model test

I simulate "true" model evolution and sample synthetic observations at the borehole;
add noise

I generate 300 initial conditions to simulate ensemble members for the particle filter
I at each assimilation step, assimilate the synthetic observations
I in the particle filter, this is done by multiplying likelihood with prior, in e�ect:

calculating weight for each realisation
I misfit of ensemble mean with truth is an indicator of the performance of the

data-assimilation approach
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Time-lagged sampling for ensemble generation

Particles are generated by sampling the model evolution at di�erent times. This approach is
similar to the "lagged average forecasting" approach of Ho�man & Kalnay (1983):

p(ψ|d) =

Ns∑
i=1

wiδ(ψ − ψt+i∆t).
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Results
I Ensemble of 300 particles,
I Varying time lag ∆t
I Increasing ∆t results in a larger ensemble spread for σii , σij and P , but not for v
I red: synthetic observations for a specific state variable (without noise), blue:

observations with noise and black: variance of the observational error
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Results

I Present implementation of the PF results in an ensemble spread with su�cient
variability

I Generally speaking, fit to the data is less good than in the EnKF implementation
I At borehole location, stresses and pressure are reasonably well captured
I In seismogenic zone, stresses and pressure are poorly captured, velocity somewhat

better

a) b)

Figure: Analysis at a) the borehole b) the middle of the seismogenic zone. Light
background is a collection of 300 particles’ paths.
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Preliminary conclusions

I Use of particle filter for data assimilation in STM requires further investigation.
I Sampling an evolution of an STM model at lagged time intervals is an e�ective way to

generate an ensemble for particle filtering.
I The assimilation of noisy observations into a perfect model suggests that the particle

filter is able to reconstruct the state space of the STM model.
I Strong correlation in variables likely limits solution space.
I Further refinement of the ensemble generation approach should lead to a better

ensemble coverage of the state space.
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Recommendations/ongoing work

I Explore methodology

I Use time-lag approach in combination with additional perturbances
(e.g. perturb location of Gauss-point markers) for ensemble generation

I Increase filter e�ciency: investigate use of proposal density function in
particle filter

I Investigate parameter updates with particle filter

I Di�erent model setup

I Di�erent laboratory experiments
I Induced seismicity due to gas extraction

Interested in this project? We have a number of PhD positions in Delft and
Utrecht; please email me at f.c.vossepoel@tudelft.nl
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Thank you!
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