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Description of the Problems

Two 3D fluids, one above the other, separated by a sharp interface.

Horizontally, doubly periodic. Vertically, of infinite extent.

Fluid velocities given by Darcy’s Law: Vi = −Ki∇(pi + ρigz).

Incompressible: ∇ ·Vi = 0.

V1 · n̂ = V2 · n̂, but there is a jump in the tangential velocity.

p1 − p2 = σκ

We let the free surface be given by X(α, β, t). We write
Xt = U n̂ + V1t̂

1 + V2t̂
2.

Putting this together, we have that Xt is like three derivatives of
X, so we can expect a third-order stiffness constraint from an
explicit numerical method.
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A Little History

In 2D, Hou, Lowengrub, and Shelley (HLS) introduced a nonstiff
method (’94, ’97) for interfacial flow with surface tension.

The HLS method for 2D problems was shown to converge
(Ceniceros-Hou ’98). Related convergence proofs by
Beale-Hou-Lowengrub ’96, Beale ’01, Hou-Zhang ’02.

Using the HLS formulation, analysis was performed, showing
well-posedness of the same initial value problems (A ’03, ’04,
A-Masmoudi ’05 and others).

This was then generalized to analysis for the 3D initial value
problems (A ’07, A-Masmoudi ’07, ’09, and others such as
Cordoba-Cordoba-Gancedo ’13).

Lessons learned from the analysis were then applied to devise a
numerical method for the 3D problems (A-Siegel ’12,
A-Siegel-Tlupova ’13).

We have shown that a version of the 3D method converges
(A-Liu-Siegel ’17).
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The Hou-Lowengrub-Shelley Method (2D)

HLS introduced a non-stiff numerical method for 2D interfacial
flow with surface tension.

This involves making an arclength parameterization of the free
surface, and computing using (θ, sα) instead of Cartesian
coordinates (x, y) :

θ = tan−1

(
yα
xα

)
, s2α = x2α + y2α.

The free surface has velocity (x, y)t = U n̂ + V t̂; from this,
evolution equations for θ and sα can be inferred.

U is determined by physics, but V is chosen to maintain a
favorable parameterization (e.g., arclength) from the equation
sαt = Vα − θαU.
U is decomposed as its most singular part plus a remainder.

With these choices, HLS are able to use a semi-implicit
timestepping scheme and remove the stiffness constraint.
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3D Numerical Method

We replace the arclength parameterization with an isothermal
parameterization:

E = Xα ·Xα = Xβ ·Xβ = G; F = Xα ·Xβ = 0.

The tangential velocities, V1 and V2, are chosen to maintain the
isothermal parameterization; an elliptic system, which can be
solved spectrally, is satisfied by the tangential velocities.

The Birkhoff-Rott integral must be computed; we use Ewald
summation.

We make a Small-Scale Decomposition of the evolution equations,
separating out the most singular terms.

We then use a semi-implicit timestepping method.
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The Small-Scale Decomposition and Timestepping

We write

Xn+1 −∆t
(
Un+1
s n̂n + V n+1

1s t̂1n + V n+1
2s t̂2n

)
= Xn

+ ∆t
(
(Un − Uns )n̂n + (V n

1 − V n
1s)̂t

1n + (V n
2 − V n

2s)̂t
2n
)
.

Here, Un+1
s , V n+1

1s , and V n+1
2s are the most singular parts of the

velocities. For example:

Un+1
s = −1

2

(
H1

(
µn+1
α√
En

)
+H2

(
µn+1
β√
En

))
,

µn+1 = −B

(
Xn+1
αα · n̂n + Xn+1

ββ · n̂
n

2En

)
−Wzn+1.

We have a linear system for Xn+1, which we solve with
preconditioned GMRES.
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Results: Removing the Stiffness

The above timestepping scheme is first-order in time; higher-order
schemes are available, and we have also implemented a
second-order version.

Using our small-scale decomposition, we are able to effectively
remove the stiffness from the problem.

A fully explicit method would have a third-order stiffness
constraint. We instead face only a first-order stiffness constraint.
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Results: A Relaxing Surface

A = 0.5, W = 0, N = 1282, ∆t = .0025. Final time is t = 1.
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Results: A Growing Finger

A = 0.1, W = 10, N = 2562, ∆t = 10−3 at first, and
∆t = 5× 10−4 later.
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Convergence Analysis

We want to prove convergence of (a version of) the numerical
method.

In 2D, there are convergence proofs of the HLS method
(Ceniceros-Hou) and of a boundary integral method for water
waves (Beale-Hou-Lowengrub).

In 3D, there are convergence proofs for boundary integral methods
for water waves (Beale; Hou-Zhang).

We are unaware of such a proof of convergence for a 3D boundary
integral method for interfacial flow with surface tension.

To show convergence, we need to show consistency and stability.

Consistency is fairly straightforward.
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About Stability

So, we want to prove stability for a version of our numerical
scheme.

This means that if we have a continuous surface X, and a
computed, discretized surface Xh, we need to prove an estimate
for the growth of X−Xh.

We actually do this for the semi-discrete system (continuous in
time, spatially discrete).

The required estimates are very much like the energy estimates
that we prove for continuous problems. However, for the
continuous problem, the best quantity to estimate is κ, the mean
curvature.
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Summary So Far

For computing, we can develop a small-scale decomposition for
evolution of the free surface.

Analytically, we get good estimates for curvature, but of course we
need the surface as well; we went through a complicated procedure
reconstructing a surface based on the curvature at each iteration.

In the numerical analysis, we have a problem, then: we could make
good estimates for curvature, but we are evolving the surface itself.

Our goal is to find a version of the numerical method for which we
can make the desired estimates; we would like the method to be as
close as possible to what was implemented, but the main goal is to
prove convergence of a boundary integral method for 3D
interfacial flow with surface tension.
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Important Ideas for Stability

To prove stability, we prove energy estimates for the difference of
the continuous solution, X, and the computed solution, Xh.

These energy estimates are similar to the estimates of Ambrose
and Ambrose-Masmoudi for related problems.

Things are more difficult in the discrete setting since relationships
may not hold exactly.

Also, estimates work well for κ, but we need to evolve X. Idea:
decouple X and κ, before discretizing.

With this key idea, plus the framework for estimates from
Ambrose and Ambrose-Masmoudi, we are able to close the
stability estimates.
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Discretized System

We have an evolution equation for Xh :

dXh

dt
= V0h(Xh, κh),

with
V0h = Uhn̂h + V1hXαh + V2hXβh,

where the velocities are defined in terms of Xh and κh.

We also have an evolution equation for κh :
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About the Stability Estimate

In the continuous case, if X ∈ H0 and κ ∈ Hs, then we can show
X ∈ Hs+2.

In the discretized problem, we have broken the link between Xh

and κh, and we can no longer draw this inference.

This can be important, as the κh evolution equation will have Xh

occuring, and we need certain regularity on Xh to complete the
estimate.

We have a solution to this: we replace Xh on the right-hand sides,
where necessary, with

∆−1
h (2κhn̂h) + (αh, βh, 0),

where
n̂h = Xαh ×Xβh.

With this substitution, we still have consistency, and this allows
the estimates to close.
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The Main Theorem

We have the main theorem of A-Liu-Siegel ’17:

Theorem

Suppose the problem is well-posed and has a sufficiently smooth
solution X up to time T > 0. In addition we assume that X is
nonsingular and satisfies certain bounds. Then the modified point
vortex method is stable and 3rd-order accurate. More precisely, there
exists a positive number h0(T ) such that for all 0 < h < h0(T ), we have

‖X−Xh‖L2
h
≤ C(T )h3, (1)

where ‖·‖L2
h

is the discrete l2 norm over a period of α, i.e.,

‖x‖2
L2
h

=
∑N/2

i,j=−N/2+1 |xi,j |
2h2, and C(T ) > 0 is a constant that does

not depend on h.
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Current and Future Work

Allow for adaptive mesh refinement via overlapping coordinate
patches.

Parallelize the computation of the Birkhoff-Rott integral.

Apply these tools to other physical problems (including computing,
numerical analysis, and analysis); for example, hydroelastic waves.
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Thanks for your attention.
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