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To solve f (x) = 0 Newton scheme

Takes initial guess x0

Updates for all i ∈ N

xi = xi−1 −
f (xi−1)

f ′(xi−1)

The solution being limxi = x̄

However, if x0 is not close to x̄ then the
scheme might not converge
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If instead one uses the iteration

Lxi = Lxi−1 − f (xi−1)

for L > maxx∈R{f ′(x)}, then

Iterations converge irrespective of
initial guess

Errors decrease monotonically

However, the convergence is
slower (linear)
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Learning from above we propose

Lixi = Lixi−1 − f (xi−1)

with Li = f ′(xi−1) + M, M > 0 being
a tolerance.

Does their exists an M such that

The errors decrease monotonically

The convergence is faster than L-
scheme
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tan−1(Li)

We look for such a scheme for nonlinear PDEs in the study of porous flows

Introduction
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Richards Equation

∂tSw = ∇ · [kw(Sw)(∇p− ρwĝ)], −p = Pc(Sw)

The two-phase porous media equation

∂tSα = ∇ · [kα(Sα)(∇pα − ραĝ)], α ∈ {o, w}
So + Sw = 1, po − pw = Pc(Sw)

Non-equilibrium effects: hysteresis and dynamic capillarity

−p or po − pw ∈ Pc(Sw)− γ(Sw)sign(∂tSw)− T (Sw)∂tSw

Domain decomposition schemes for unsaturated and two-phase cases
(Seus et al. (2018) )

Equations
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Let us talk about the nonlinear advection diffusion equation

∂tb(u) +∇ · F(x, u) = ∇ · [D(x, u)∇u] + r(x, t, u)

How do we solve it numerically??

Let Ω ∈ Rd be a Lipschitz domain and t ∈ [0, T ], T > 0

ForN ∈ N define timestep size τ = T/N

Let u = u0 at t = 0 be the initial condition and u = g at ∂Ω be the bound-
ary condition

For any n ∈ {1, .., N} use backward Euler scheme for time discretization.
This leads to the following system of equation

b(un)− b(un−1) + τ∇ · F(x, un) = τ∇ · [D(x, un)∇un] + τr(x, nτ, un) in Ω

Solve using some linearization technique

Time-discrete solutions
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for a fixed n is an elliptic equation of the form

B(un) +∇ · F(x, un) = ∇ · [D(x, un)∇un] +R(x, un)

and consequently can be solved by following iterative linearization techniques

Local schemes

For example

Newton

Picard or modified-Picard

Jäger and Kačur

Global schemes

For example

L-scheme
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To solve

B(un) +∇ · F(x, un) = ∇ · [D(x, un)∇un] +R(x, un)

the local schemes use

Approximation of the nonlinearities using the last iteration

Generally they converge if the initial guess u0
n is close enough to un

Sufficient condition for convergence

For the original parabolic problem the schemes converge if u0
n = un−1 anda

τ < Chd

for some constantC > 0 and meshsize h
• A severe restriction: for d ≥ 2, for processes that involve large time scales
or fine mesh-resolution, e.g. reservoir modelling

aRadu et al. (2006)

The Local Schemes
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To solve

B(un) +∇ · F(x, un) = ∇ · [D(x, un)∇un] +R(x, un)

L-scheme uses iterations

Luin −∇ ·
[
Di−1
n ∇uin

]
= Lui−1

n − B(ui−1
n ) + [−∇ · Fi−1

n +Ri−1
n ]

where L is constanta

If B′ ≥ 0, L scheme converges unconditionally for L ≥ 1
2

max{B′}

Theorem

If B′ ≥ 0; ∂uR ≤ 0; D,Fi ∈ C1(Ω× R); 0 < Dm ≤ D ≤ DM then there ex-
ists a τ0 and L0 (independent of meshsize) s.t. for all τ < τ0 and L > L0,
L-scheme converges linearly inH1(Ω) irrespective of the initial guess.

The convergence speed is substantially lessb for L >> 1 or τ small
aPop et al. (2004)
bList and Radu. (2016)

The Global Scheme: L-scheme
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Observe that

The local estimates make the schemes faster but less stable

All the schemes mentioned above are designed for elliptic problems.
u0
n = un−1 remains relatively unused

Questions??
Can we design the M-scheme in this case so that it is both

fast

and stable

Observation
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Assumptions:

A1. The associated functions are smooth up to second derivative
A2. • b′ ≥ m ≥ 0

• ∂ur ≤ 0

• 0 < Dm ≤ D ≤ DM

• u0 ∈ H1(Ω), g ∈ H 1
2 (∂Ω), u0 = g at ∂Ω

A3. ‖un − un−1‖L∞(Ω) < Λτ for some Λ > 0

• Translates to
∥∥∂tu∥∥L∞(Ω×(0,T ])

<∞

• This holds for sufficiently regular domains, ICs and BCs: e.g. if u0 ∈ C2(Ω)

Modified L-scheme
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Consider the equation ∂tb(u)−∇ · (D(x)∇u) = r(x, t, u) discretized into

b(un)− b(un−1)− τ∇ · (D(x)∇un) = τr(x, nτ, un)

We propose the following scheme

Lin(x)uin − τ∇ · (D∇uin) = Lin(x)ui−1
n − (b(ui−1

n )− b(un−1)) + τr(x, nτ, uin)

with
Lin := max([b′(ui−1

n )− τ∂ur(x, nτ, ui−1
n ) + Mτ ], 2Mτ )

Lemma 1.1 With u0
n = un−1 and (A1)-(A3)

‖uin − un‖L∞(Ω) < Λτ

for all i ∈ N

Modified L-scheme
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Lin(x)uin − τ∇ · (D∇uin) = Lin(x)ui−1
n − (b(ui−1
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with
Lin := max([b′(ui−1

n )− τ∂ur(x, nτ, ui−1
n ) + Mτ ], 2Mτ )
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Lin(x)uin − τ∇ · (D∇uin) = Lin(x)ui−1
n − (b(ui−1

n )− b(un−1)) + τr(x, nτ, uin)
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with
Lin := max([b′(ui−1

n )− τ∂ur(x, nτ, ui−1
n ) + Mτ ], 2Mτ )

Theorem 1.1 With u0
n = un−1 and M > M0 = Λ maxu∈R{|b′′| + τ |∂uur|}

The M-scheme converges linearly in H1(Ω) ∩ L∞(Ω) for all τ > 0,
m ≥ 0 with convergence rate

α = sup

∥∥uin − un∥∥χ∥∥ui−1
n − un

∥∥
χ

≤
√

2M

2M + CΩDm

, χ ∈ {H1(Ω), L∞(Ω)}

Ifm > 0 and τ < τ0 = m
2M

then the convergence rate isO(τ )

Modified L-scheme
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Time-discrete equation

b(un)− b(un−1) + τ∇ · F(x, un) = τ∇ · [D(x, un)∇un] + τr(x, nτ, un)

The scheme reads
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(
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)
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n )− b(un−1)) + τ [ri−1
n −∇ · Fi−1

n ]

with
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n )− τ∂ur(ui−1
n ) + Mτ ], 2Mτ )

Assumptions:

A4. ‖∇un‖L∞(Ω) ≤ Λ1 for some Λ1 > 0

• Required also for proving convergence of L-scheme

General Problem
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Time-discrete equation

b(un)− b(un−1) + τ∇ · F(x, un) = τ∇ · [D(x, un)∇un] + τr(x, nτ, un)

The scheme reads

Lin(u
i
n − uin−1)− τ∇ ·

(
Di−1
n ∇uin

)
= −(b(ui−1

n )− b(un−1)) + τ [ri−1
n −∇ · Fi−1

n ]

with
Lin := max([b′(ui−1

n )− τ∂ur(ui−1
n ) + Mτ ], 2Mτ )

Assumptions:

A4. ‖∇un‖L∞(Ω) ≤ Λ1 for some Λ1 > 0

• Required also for proving convergence of L-scheme
• Holds if u0 ∈ W 2,2q(Ω), q ∈ N, 2q > d

General Problem
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Lin(u
i
n − uin−1)− τ∇ ·

(
Di−1
n ∇uin

)
= −(b(ui−1

n )− b(un−1)) + τ [ri−1
n −∇ · Fi−1

n ]

with
Lin := max([b′(ui−1

n )− τ∂ur(ui−1
n ) + Mτ ], 2Mτ )

Theorem 2.1
For u0

n = un−1, M > M0 and τ < τ0 assume (A1)-(A4)*. Then
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Lin(u
i
n − uin−1)− τ∇ ·

(
Di−1
n ∇uin

)
= −(b(ui−1

n )− b(un−1)) + τ [ri−1
n −∇ · Fi−1

n ]

with
Lin := max([b′(ui−1

n )− τ∂ur(ui−1
n ) + Mτ ], 2Mτ )

Theorem 2.1
For u0

n = un−1, M > M0 and τ < τ0 assume (A1)-(A4)*. Then

The M-scheme converges inH1(Ω) for allm ≥ 0

The M-scheme converges linearly inH1(Ω) ifm > 0

Form > 0 the convergence rate is α = O(
√
τ )

General Problem
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Numerical Study



15/27

/ department of mathematics and computer science Houston, March 2019

Richards equation in 2-D

∂tSw(p) = ∇ · [kw(Sw(p))(∇p− ρwĝ)] + f on (0, 1)× (0, 1)

Take van Genuchten parametersa: form = 2
3
, n = 1

1−m

Sw(p) =


1

(1 + (−p)n)m
if p < 0

1 if p ≥ 0

kw(S) =
√
S(1− (1− S 1

m)m)2

Numerical Study
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Richards equation in 2-D

∂tSw(p) = ∇ · [kw(Sw(p))(∇p− ρwĝ)] + f on (0, 1)× (0, 1)

Take van Genuchten parametersa: form = 2
3
, n = 1

1−m

Sw(p) =


1

(1 + (−p)n)m
if p < 0

1 if p ≥ 0

kw(S) =
√
S(1− (1− S 1

m)m)2

Assumed initial and boundary conditions with p̃(x, y, t) = 1− (1 + t2)(1 + x2 + y2),

IC t = 0 p(x, y, 0) = p̃(x, y, 0) on Ω

BC x = 0 : p(0, y, t) = p̃(0, y, t), x = 1 : p(1, y, t) = p̃(1, y, t),

y = 0 : ∂yp = 0, y = 1 : k(S(p))∂yp = k(S(p̃(x, 1, t))∂yp̃(x, 1, t).

avan Genuchten. (1980)

Numerical Study
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• For t = 0.5, M = 10, L = 1

number of iterations
5 10 15 20

lo
g
1
0
(‖
p
i n
−
p
i−

1
n

‖
L
2
(Ω

))

-10

-8

-6

-4

-2
MS h = .1

PS h = .1

LS h = .1

NS h = .1

MS h = .05

PS h = .05

LS h = .05

NS h = .05

MS h = .02

PS h = .02

LS h = .02

NS h = .02

τ = 0.01
number of iterations

2 4 6 8 10

lo
g
1
0
(‖
p
i n
−

p
i−

1
n

‖ L
2
(Ω

))

-10

-8

-6

-4

-2
MS h = .1

PS h = .1

LS h = .1

NS h = .1

MS h = .05

PS h = .05

LS h = .05

NS h = .05

MS h = .02

PS h = .02

LS h = .02

NS h = .02

τ = 0.001

Mesh Study
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• For t = 0.5, M = 10, L = 1

number of iterations
5 10 15 20

lo
g
1
0
(‖
p
i n
−
p
i−

1
n

‖ L
2
(Ω

))

-7

-6

-5

-4

-3

-2

-1

MS h = .1

PS h = .1

MS h = .05

PS h = .05

MS h = .02

PS h = .02

LS h = .05

NS h = .05

τ = 0.1

Mesh Study
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• For t = .5, h = 0.05, M = 10

log10(τ)

-3 -2.5 -2 -1.5 -1

lo
g
1
0
(α

)

-1

-0.8

-0.6

-0.4

-0.2

0
h = 0.05, t = 0.5

Timestep Study
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number of iterations
5 10 15 20

lo
g
1
0
(‖
p
i n
−
p
i−

1
n

‖ L
2
(Ω

))

-10

-8

-6

-4

-2

t = 0.5, τ = 0.01, h = 0.05

M = 0
M = 1
M = 5
M = 10
M = 20
M = 50
L = 1

Effect of M
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number of iterations
5 10 15 20

lo
g
1
0
(‖
p
i n
−
p
i−

1
n

‖ L
2
(Ω

))

-7

-6

-5

-4

-3

-2

-1 t = 0.5, τ = 0.1, h = 0.05

M = 0
M = 1
M = 5
M = 10
M = 20
M = 50
L = 1

Effect of M
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see
Mitra, K. & Pop, I. S. (2018). A modified L-scheme for nonlinear

parabolic equations. Computers & Mathematics With Applications .

For details
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Two Phase Equation: The M-scheme given as

−(Siw,n − Sw,n−1) = τ∇ · [ko(1− Si−1
w,n)(∇pio,n − ρoĝ)]

(Siw,n − Sw,n−1) = τ∇ · [kw(Si−1
w,n)(∇piw,n − ρwĝ)]

pio,n − piw,n = Pc(S
i−1
w,n)− Lin(Siw,n − Si−1

w,n)

with Lin := −Pc′(Si−1
w,n) + Mτ

Theorem 3.1 With (p0
o,n, p

0
w,n) = (po,n−1, pw,n−1) define

ein = ‖piw,n − pw,n‖H1(Ω) + ‖pio,n − po,n‖H1(Ω) + ‖Siw,n − Sw,n‖L2(Ω).

Assume for i ∈ N, pn ∈ W 1,∞(Ω) and ‖Sin − Sn‖L∞(Ω) < Λτ for some
Λ > 0. Then ein → 0 as i→∞ for τ small enough and M large enough.
Moreover, if Pc

′(S) < 0 and Pc ∈ C2(R) then for small enough τ

ein
ei−1
n

= O(
√
τ ).

Other Problems
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Capillary Hysteresis (play-type) and Dynamic Capillarity

Richards equation: ∂tSw = ∇ · [k(Sw)(∇p− ρwĝ)]
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Capillary Hysteresis (play-type) and Dynamic Capillarity

Richards equation: ∂tSw = ∇ · [k(Sw)(∇p− ρwĝ)]

Closure relation: −p = Pc(Sw)− γ(Sw)sign(∂tSw)− T (Sw)∂tSw
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Capillary Hysteresis (play-type) and Dynamic Capillarity

Richards equation: ∂tSw = ∇ · [k(Sw)(∇p− ρwĝ)]

Closure relation: −p = Pc(Sw)− γ(Sw)sign(∂tSw)− T (Sw)∂tSw

This can be simplified to

∂tSw = F(Sw, p) :=
1

T (Sw)


Pc(Sw)− γ(Sw) + p if p < Pc(Sw)− γ(Sw)

0 if p ∈ [Pc − γ, Pc + γ](Sw)

Pc(Sw) + γ(Sw) + p if p > Pc(Sw) + γ(Sw)
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Capillary Hysteresis (play-type) and Dynamic Capillarity

Richards equation: ∂tSw = ∇ · [k(Sw)(∇p− ρwĝ)]

Closure relation: −p = Pc(Sw)− γ(Sw)sign(∂tSw)− T (Sw)∂tSw

This can be simplified to

∂tSw = F(Sw, p) :=
1

T (Sw)


Pc(Sw)− γ(Sw) + p if p < Pc(Sw)− γ(Sw)

0 if p ∈ [Pc − γ, Pc + γ](Sw)

Pc(Sw) + γ(Sw) + p if p > Pc(Sw) + γ(Sw)

p

F(Sw, p)

Pc(Sw)− γ(Sw)

Pc(Sw) + γ(Sw)

Other Problems
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Time-discrete version

S-equation: Sw,n = Sw,n−1 + τF(Sw,n, pn)

p-equation: ∇ · [k(Sw,n)(∇pn − 1)] = F(Sw,n, pn)
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Time-discrete version

S-equation: Sw,n = Sw,n−1 + τF(Sw,n, pn)

p-equation: ∇ · [k(Sw,n)(∇pn − 1)] = F(Sw,n, pn)

Solution strategy: M-scheme

Update: Siw,n = Sw,n−1 + τF(Si−1
w,n , p

i−1
n )

Solve: Linp
i
n −∇ · [k(Siw,n)(∇pin − 1)] = Linp

i−1
n −F(Siw,n, p

i−1
n )

With Lin := ∂pF(Siw,n, p
i−1
n ) + Mτ

Other Problems
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Time-discrete version

S-equation: Sw,n = Sw,n−1 + τF(Sw,n, pn)

p-equation: ∇ · [k(Sw,n)(∇pn − 1)] = F(Sw,n, pn)

Solution strategy: M-scheme

Update: Siw,n = Sw,n−1 + τF(Si−1
w,n , p

i−1
n )

Solve: Linp
i
n −∇ · [k(Siw,n)(∇pin − 1)] = Linp

i−1
n −F(Siw,n, p

i−1
n )

With Lin := ∂pF(Siw,n, p
i−1
n ) + Mτ

Theorem 4.1 For small enough τ , large enough M, pn ∈ W 1,∞(Ω), there
exists a α = O(τ/T ) such that∥∥Siw,n − Sw,n∥∥W 1,∞ +

∥∥pin − pn∥∥W 1,∞ ≤ α[
∥∥Si−1

w,n − Sw,n
∥∥
W 1,∞ +

∥∥pi−1
n − pn

∥∥
W 1,∞]

Other Problems
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Time-discrete version

S-equation: Sw,n = Sw,n−1 + τF(Sw,n, pn)

p-equation: ∇ · [k(Sw,n)(∇pn − 1)] = F(Sw,n, pn)

Solution strategy: M-scheme

Update: Siw,n = Sw,n−1 + τF(Si−1
w,n , p

i−1
n )

Solve: Linp
i
n −∇ · [k(Siw,n)(∇pin − 1)] = Linp

i−1
n −F(Siw,n, p

i−1
n )

With Lin := ∂pF(Siw,n, p
i−1
n ) + Mτ

Theorem 4.2 If T > 0 then there exists τ̂ > 0 independent of T such that
for τ < τ̂ and large enough M, (Siw,n, p

i
n) converges inH1(Ω)

Other Problems
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• Fora T = .1, L = 100, M = 1, h = .1, τ = .001, t = 10

iterations
2 4 6 8 10

lo
g
1
0
‖u

i n
−
u
n
‖

-10

-9

-8

-7

-6

-5

-4

ML-scheme

L-scheme

M-scheme α ≈ .15
avan Duijn, Mitra and Pop. (2018)

Numerical Results
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The linearization schemes are faster if local estimations are taken but are
less stable

Using u0
n = un−1 and local estimations one can have a scheme that has

the following properties

– It is simple and converges unconditionally for small enough timestep
sizes independent of meshsize

– The convergence rate improves as the timestep size decreases

The ideas were validated with numerical experiments

The ideas are extended to pseudo parabolic equations

Summary
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and Thank You for listening

Thanks to
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