A Linearization Technique for Nonlinear Parabolic Problems in Porous Media

Koondanibha Mitra

(TU Eindhoven \& Hasselt University)
joint work with
Iuliu Sorin Pop
(Hasselt University \& University of Bergen)
and
Xiulei Cao (York University)

Technische Universiteit Eindhoven
University of Technology

Contents

Introduction 3
The Linearization Techniques 6
Modified L-scheme 10
General Problem 13
Numerical Study 15
Other Problems 22
Summary 25
References 26

To solve $f(x)=0$ Newton scheme

To solve $f(x)=0$ Newton scheme

To solve $f(x)=0$ Newton scheme

4 Takes initial guess x_{0}
Updates for all $i \in \mathbb{N}$

$$
x_{i}=x_{i-1}-\frac{f\left(x_{i-1}\right)}{f^{\prime}\left(x_{i-1}\right)}
$$

The solution being $\lim x_{i}=\bar{x}$

Introduction

To solve $f(x)=0$ Newton scheme
Takes initial guess x_{0}
Updates for all $i \in \mathbb{N}$

$$
x_{i}=x_{i-1}-\frac{f\left(x_{i-1}\right)}{f^{\prime}\left(x_{i-1}\right)}
$$

The solution being $\lim x_{i}=\bar{x}$ However, if x_{0} is not close to \bar{x} then the
 scheme might not converge

Introduction

If instead one uses the iteration

$$
L x_{i}=L x_{i-1}-f\left(x_{i-1}\right)
$$

for $L>\max _{x \in \mathbb{R}}\left\{f^{\prime}(x)\right\}$, then

Introduction

If instead one uses the iteration

$$
L x_{i}=L x_{i-1}-f\left(x_{i-1}\right)
$$

for $L>\max _{x \in \mathbb{R}}\left\{f^{\prime}(x)\right\}$, then
(3) Iterations converge irrespective of initial guess

Errors decrease monotonically
However, the convergence is
 slower (linear)

Introduction

Learning from above we propose

$$
L^{i} x_{i}=L^{i} x_{i-1}-f\left(x_{i-1}\right)
$$

with $L^{i}=f^{\prime}\left(x_{i-1}\right)+\mathfrak{M}, \mathfrak{M}>0$ being a tolerance.

Introduction

Learning from above we propose

$$
L^{i} x_{i}=L^{i} x_{i-1}-f\left(x_{i-1}\right)
$$

with $L^{i}=f^{\prime}\left(x_{i-1}\right)+\mathfrak{M}, \mathfrak{M}>0$ being a tolerance.

Does their exists an \mathfrak{M} such that
The errors decrease monotonically
The convergence is faster than L -
 scheme

Introduction

Learning from above we propose

$$
L^{i} x_{i}=L^{i} x_{i-1}-f\left(x_{i-1}\right)
$$

with $L^{i}=f^{\prime}\left(x_{i-1}\right)+\mathfrak{M}, \mathfrak{M}>0$ being a tolerance.

Does their exists an \mathfrak{M} such that
3) The errors decrease monotonically
3) The convergence is faster than L-
 scheme

We look for such a scheme for nonlinear PDEs in the study of porous flows

Equations

Richards Equation

$$
\partial_{t} S_{w}=\nabla \cdot\left[k_{w}\left(S_{w}\right)\left(\nabla p-\rho_{w} \hat{g}\right)\right], \quad-p=P_{c}\left(S_{w}\right)
$$

Equations

Richards Equation

$$
\partial_{t} S_{w}=\nabla \cdot\left[k_{w}\left(S_{w}\right)\left(\nabla p-\rho_{w} \hat{g}\right)\right], \quad-p=P_{c}\left(S_{w}\right)
$$

The two-phase porous media equation

$$
\begin{aligned}
& \partial_{t} S_{\alpha}=\nabla \cdot\left[k_{\alpha}\left(S_{\alpha}\right)\left(\nabla p_{\alpha}-\rho_{\alpha} \hat{g}\right)\right], \alpha \in\{o, w\} \\
& S_{o}+S_{w}=1, p_{o}-p_{w}=P_{c}\left(S_{w}\right)
\end{aligned}
$$

Equations

Richards Equation

$$
\partial_{t} S_{w}=\nabla \cdot\left[k_{w}\left(S_{w}\right)\left(\nabla p-\rho_{w} \hat{g}\right)\right], \quad-p=P_{c}\left(S_{w}\right)
$$

The two-phase porous media equation

$$
\begin{aligned}
& \partial_{t} S_{\alpha}=\nabla \cdot\left[k_{\alpha}\left(S_{\alpha}\right)\left(\nabla p_{\alpha}-\rho_{\alpha} \hat{g}\right)\right], \alpha \in\{o, w\} \\
& S_{o}+S_{w}=1, p_{o}-p_{w}=P_{c}\left(S_{w}\right)
\end{aligned}
$$

Non-equilibrium effects: hysteresis and dynamic capillarity

$$
-p \text { or } p_{o}-p_{w} \in P_{c}\left(S_{w}\right)-\gamma\left(S_{w}\right) \operatorname{sign}\left(\partial_{t} S_{w}\right)-\mathcal{T}\left(S_{w}\right) \partial_{t} S_{w}
$$

Equations

Richards Equation

$$
\partial_{t} S_{w}=\nabla \cdot\left[k_{w}\left(S_{w}\right)\left(\nabla p-\rho_{w} \hat{g}\right)\right], \quad-p=P_{c}\left(S_{w}\right)
$$

The two-phase porous media equation

$$
\begin{aligned}
& \partial_{t} S_{\alpha}=\nabla \cdot\left[k_{\alpha}\left(S_{\alpha}\right)\left(\nabla p_{\alpha}-\rho_{\alpha} \hat{g}\right)\right], \alpha \in\{o, w\} \\
& S_{o}+S_{w}=1, p_{o}-p_{w}=P_{c}\left(S_{w}\right)
\end{aligned}
$$

Non-equilibrium effects: hysteresis and dynamic capillarity

$$
-p \text { or } p_{o}-p_{w} \in P_{c}\left(S_{w}\right)-\gamma\left(S_{w}\right) \operatorname{sign}\left(\partial_{t} S_{w}\right)-\mathcal{T}\left(S_{w}\right) \partial_{t} S_{w}
$$

4 Domain decomposition schemes for unsaturated and two-phase cases (Seus et al. (2018))

Time-discrete solutions

Let us talk about the nonlinear advection diffusion equation

$$
\partial_{t} b(u)+\nabla \cdot \mathbf{F}(\mathbf{x}, u)=\nabla \cdot[\mathcal{D}(\mathbf{x}, u) \nabla u]+r(\mathbf{x}, t, u)
$$

How do we solve it numerically??

Time-discrete solutions

Let us talk about the nonlinear advection diffusion equation

$$
\partial_{t} b(u)+\nabla \cdot \mathbf{F}(\mathbf{x}, u)=\nabla \cdot[\mathcal{D}(\mathbf{x}, u) \nabla u]+r(\mathbf{x}, t, u)
$$

How do we solve it numerically??
Let $\Omega \in \mathbb{R}^{d}$ be a Lipschitz domain and $t \in[0, T], T>0$

Time-discrete solutions

Let us talk about the nonlinear advection diffusion equation

$$
\partial_{t} b(u)+\nabla \cdot \mathbf{F}(\mathbf{x}, u)=\nabla \cdot[\mathcal{D}(\mathbf{x}, u) \nabla u]+r(\mathbf{x}, t, u)
$$

How do we solve it numerically??
Let $\Omega \in \mathbb{R}^{d}$ be a Lipschitz domain and $t \in[0, T], T>0$
For $N \in \mathbb{N}$ define timestep size $\tau=T / N$

Time-discrete solutions

Let us talk about the nonlinear advection diffusion equation

$$
\partial_{t} b(u)+\nabla \cdot \mathbf{F}(\mathbf{x}, u)=\nabla \cdot[\mathcal{D}(\mathbf{x}, u) \nabla u]+r(\mathbf{x}, t, u)
$$

How do we solve it numerically??
Let $\Omega \in \mathbb{R}^{d}$ be a Lipschitz domain and $t \in[0, T], T>0$
For $N \in \mathbb{N}$ define timestep size $\tau=T / N$
Let $u=u_{0}$ at $t=0$ be the initial condition and $u=g$ at $\partial \Omega$ be the boundary condition

Time-discrete solutions

Let us talk about the nonlinear advection diffusion equation

$$
\partial_{t} b(u)+\nabla \cdot \mathbf{F}(\mathbf{x}, u)=\nabla \cdot[\mathcal{D}(\mathbf{x}, u) \nabla u]+r(\mathbf{x}, t, u)
$$

How do we solve it numerically??
Let $\Omega \in \mathbb{R}^{d}$ be a Lipschitz domain and $t \in[0, T], T>0$
For $N \in \mathbb{N}$ define timestep size $\tau=T / N$
Let $u=u_{0}$ at $t=0$ be the initial condition and $u=g$ at $\partial \Omega$ be the boundary condition

For any $n \in\{1, . ., N\}$ use backward Euler scheme for time discretization. This leads to the following system of equation
$b\left(u_{n}\right)-b\left(u_{n-1}\right)+\tau \nabla \cdot \mathbf{F}\left(\mathbf{x}, u_{n}\right)=\tau \nabla \cdot\left[\mathcal{D}\left(\mathbf{x}, u_{n}\right) \nabla u_{n}\right]+\tau r\left(\mathbf{x}, n \tau, u_{n}\right)$ in Ω

Time-discrete solutions

Let us talk about the nonlinear advection diffusion equation

$$
\partial_{t} b(u)+\nabla \cdot \mathbf{F}(\mathbf{x}, u)=\nabla \cdot[\mathcal{D}(\mathbf{x}, u) \nabla u]+r(\mathbf{x}, t, u)
$$

How do we solve it numerically??
Let $\Omega \in \mathbb{R}^{d}$ be a Lipschitz domain and $t \in[0, T], T>0$
For $N \in \mathbb{N}$ define timestep size $\tau=T / N$
Let $u=u_{0}$ at $t=0$ be the initial condition and $u=g$ at $\partial \Omega$ be the boundary condition

For any $n \in\{1, . ., N\}$ use backward Euler scheme for time discretization.
This leads to the following system of equation
$b\left(u_{n}\right)-b\left(u_{n-1}\right)+\tau \nabla \cdot \mathbf{F}\left(\mathbf{x}, u_{n}\right)=\tau \nabla \cdot\left[\mathcal{D}\left(\mathbf{x}, u_{n}\right) \nabla u_{n}\right]+\tau r\left(\mathbf{x}, n \tau, u_{n}\right)$ in Ω
Solve using some linearization technique

The Linearization Techniques

The equation

$$
b\left(u_{n}\right)-b\left(u_{n-1}\right)+\tau \nabla \cdot \mathbf{F}\left(\mathbf{x}, u_{n}\right)=\tau \nabla \cdot\left[\mathcal{D}\left(\mathbf{x}, u_{n}\right) \nabla u_{n}\right]+\tau r\left(\mathbf{x}, n \tau, u_{n}\right)
$$

for a fixed n is an elliptic equation of the form

$$
\mathcal{B}\left(u_{n}\right)+\nabla \cdot \mathbf{F}\left(\mathbf{x}, u_{n}\right)=\nabla \cdot\left[\mathcal{D}\left(\mathbf{x}, u_{n}\right) \nabla u_{n}\right]+\mathcal{R}\left(\mathbf{x}, u_{n}\right)
$$

and consequently can be solved by following iterative linearization techniques

The Linearization Techniques

The equation

$$
b\left(u_{n}\right)-b\left(u_{n-1}\right)+\tau \nabla \cdot \mathbf{F}\left(\mathbf{x}, u_{n}\right)=\tau \nabla \cdot\left[\mathcal{D}\left(\mathbf{x}, u_{n}\right) \nabla u_{n}\right]+\tau r\left(\mathbf{x}, n \tau, u_{n}\right)
$$

for a fixed n is an elliptic equation of the form

$$
\mathcal{B}\left(u_{n}\right)+\nabla \cdot \mathbf{F}\left(\mathbf{x}, u_{n}\right)=\nabla \cdot\left[\mathcal{D}\left(\mathbf{x}, u_{n}\right) \nabla u_{n}\right]+\mathcal{R}\left(\mathbf{x}, u_{n}\right)
$$

and consequently can be solved by following iterative linearization techniques

Local schemes

The Linearization Techniques

The equation

$$
b\left(u_{n}\right)-b\left(u_{n-1}\right)+\tau \nabla \cdot \mathbf{F}\left(\mathbf{x}, u_{n}\right)=\tau \nabla \cdot\left[\mathcal{D}\left(\mathbf{x}, u_{n}\right) \nabla u_{n}\right]+\tau r\left(\mathbf{x}, n \tau, u_{n}\right)
$$

for a fixed n is an elliptic equation of the form

$$
\mathcal{B}\left(u_{n}\right)+\nabla \cdot \mathbf{F}\left(\mathbf{x}, u_{n}\right)=\nabla \cdot\left[\mathcal{D}\left(\mathbf{x}, u_{n}\right) \nabla u_{n}\right]+\mathcal{R}\left(\mathbf{x}, u_{n}\right)
$$

and consequently can be solved by following iterative linearization techniques

Local schemes

For example
Newton
Picard or modified-Picard
Jäger and Kačur

The Linearization Techniques

The equation

$$
b\left(u_{n}\right)-b\left(u_{n-1}\right)+\tau \nabla \cdot \mathbf{F}\left(\mathbf{x}, u_{n}\right)=\tau \nabla \cdot\left[\mathcal{D}\left(\mathbf{x}, u_{n}\right) \nabla u_{n}\right]+\tau r\left(\mathbf{x}, n \tau, u_{n}\right)
$$

for a fixed n is an elliptic equation of the form

$$
\mathcal{B}\left(u_{n}\right)+\nabla \cdot \mathbf{F}\left(\mathbf{x}, u_{n}\right)=\nabla \cdot\left[\mathcal{D}\left(\mathbf{x}, u_{n}\right) \nabla u_{n}\right]+\mathcal{R}\left(\mathbf{x}, u_{n}\right)
$$

and consequently can be solved by following iterative linearization techniques

Local schemes

For example
Newton
Picard or modified-Picard
Jäger and Kačur

Global schemes

For example
3 L-scheme

The Local Schemes

To solve

$$
\mathcal{B}\left(u_{n}\right)+\nabla \cdot \mathbf{F}\left(\mathbf{x}, u_{n}\right)=\nabla \cdot\left[\mathcal{D}\left(\mathbf{x}, u_{n}\right) \nabla u_{n}\right]+\mathcal{R}\left(\mathbf{x}, u_{n}\right)
$$

the local schemes use
Approximation of the nonlinearities using the last iteration
Generally they converge if the initial guess u_{n}^{0} is close enough to u_{n}

The Local Schemes

To solve

$$
\mathcal{B}\left(u_{n}\right)+\nabla \cdot \mathbf{F}\left(\mathbf{x}, u_{n}\right)=\nabla \cdot\left[\mathcal{D}\left(\mathbf{x}, u_{n}\right) \nabla u_{n}\right]+\mathcal{R}\left(\mathbf{x}, u_{n}\right)
$$

the local schemes use
Approximation of the nonlinearities using the last iterationGenerally they converge if the initial guess u_{n}^{0} is close enough to u_{n}

Sufficient condition for convergence

For the original parabolic problem the schemes converge if $u_{n}^{0}=u_{n-1}$ and

The Local Schemes

To solve

$$
\mathcal{B}\left(u_{n}\right)+\nabla \cdot \mathbf{F}\left(\mathbf{x}, u_{n}\right)=\nabla \cdot\left[\mathcal{D}\left(\mathbf{x}, u_{n}\right) \nabla u_{n}\right]+\mathcal{R}\left(\mathbf{x}, u_{n}\right)
$$

the local schemes use
Approximation of the nonlinearities using the last iteration
4. Generally they converge if the initial guess u_{n}^{0} is close enough to u_{n}

Sufficient condition for convergence

For the original parabolic problem the schemes converge if $u_{n}^{0}=u_{n-1}$ and a

$$
\tau<C h^{d}
$$

for some constant $C>0$ and meshsize h

The Local Schemes

To solve

$$
\mathcal{B}\left(u_{n}\right)+\nabla \cdot \mathbf{F}\left(\mathbf{x}, u_{n}\right)=\nabla \cdot\left[\mathcal{D}\left(\mathbf{x}, u_{n}\right) \nabla u_{n}\right]+\mathcal{R}\left(\mathbf{x}, u_{n}\right)
$$

the local schemes use
Approximation of the nonlinearities using the last iteration
4. Generally they converge if the initial guess u_{n}^{0} is close enough to u_{n}

Sufficient condition for convergence

For the original parabolic problem the schemes converge if $u_{n}^{0}=u_{n-1}$ and a

$$
\tau<C h^{d}
$$

for some constant $C>0$ and meshsize h

- A severe restriction: for $d \geq 2$, for processes that involve large time scales or fine mesh-resolution, e.g. reservoir modelling

The Global Scheme: L-scheme

To solve

$$
\mathcal{B}\left(u_{n}\right)+\nabla \cdot \mathbf{F}\left(\mathbf{x}, u_{n}\right)=\nabla \cdot\left[\mathcal{D}\left(\mathbf{x}, u_{n}\right) \nabla u_{n}\right]+\mathcal{R}\left(\mathbf{x}, u_{n}\right)
$$

L-scheme uses iterations

The Global Scheme: L-scheme

To solve

$$
\mathcal{B}\left(u_{n}\right)+\nabla \cdot \mathbf{F}\left(\mathbf{x}, u_{n}\right)=\nabla \cdot\left[\mathcal{D}\left(\mathbf{x}, u_{n}\right) \nabla u_{n}\right]+\mathcal{R}\left(\mathbf{x}, u_{n}\right)
$$

L-scheme uses iterations

$$
L u_{n}^{i}-\nabla \cdot\left[\mathcal{D}_{n}^{i-1} \nabla u_{n}^{i}\right]=L u_{n}^{i-1}-\mathcal{B}\left(u_{n}^{i-1}\right)+\left[-\nabla \cdot \mathbf{F}_{n}^{i-1}+\mathcal{R}_{n}^{i-1}\right]
$$

where L is constant ${ }^{a}$

The Global Scheme: L-scheme

To solve

$$
\mathcal{B}\left(u_{n}\right)+\nabla \cdot \mathbf{F}\left(\mathbf{x}, u_{n}\right)=\nabla \cdot\left[\mathcal{D}\left(\mathbf{x}, u_{n}\right) \nabla u_{n}\right]+\mathcal{R}\left(\mathbf{x}, u_{n}\right)
$$

L-scheme uses iterations

$$
L u_{n}^{i}-\nabla \cdot\left[\mathcal{D}_{n}^{i-1} \nabla u_{n}^{i}\right]=L u_{n}^{i-1}-\mathcal{B}\left(u_{n}^{i-1}\right)+\left[-\nabla \cdot \mathbf{F}_{n}^{i-1}+\mathcal{R}_{n}^{i-1}\right]
$$

where L is constant ${ }^{a}$
If $\mathcal{B}^{\prime} \geq 0, L$ scheme converges unconditionally for $L \geq \frac{1}{2} \max \left\{\mathcal{B}^{\prime}\right\}$

The Global Scheme: L-scheme

To solve

$$
\mathcal{B}\left(u_{n}\right)+\nabla \cdot \mathbf{F}\left(\mathbf{x}, u_{n}\right)=\nabla \cdot\left[\mathcal{D}\left(\mathbf{x}, u_{n}\right) \nabla u_{n}\right]+\mathcal{R}\left(\mathbf{x}, u_{n}\right)
$$

L-scheme uses iterations

$$
L u_{n}^{i}-\nabla \cdot\left[\mathcal{D}_{n}^{i-1} \nabla u_{n}^{i}\right]=L u_{n}^{i-1}-\mathcal{B}\left(u_{n}^{i-1}\right)+\left[-\nabla \cdot \mathbf{F}_{n}^{i-1}+\mathcal{R}_{n}^{i-1}\right]
$$

where L is constant ${ }^{a}$
If $\mathcal{B}^{\prime} \geq 0, L$ scheme converges unconditionally for $L \geq \frac{1}{2} \max \left\{\mathcal{B}^{\prime}\right\}$

Theorem

If $\mathcal{B}^{\prime} \geq 0 ; \partial_{u} \mathcal{R} \leq 0 ; \mathcal{D}, \mathbf{F}_{i} \in C^{1}(\Omega \times \mathbb{R}) ; 0<\mathcal{D}_{m} \leq \mathcal{D} \leq \mathcal{D}_{M}$ then there exists a τ_{0} and L_{0} (independent of meshsize) s.t. for all $\tau<\tau_{0}$ and $L>L_{0}$, L-scheme converges linearly in $H^{1}(\Omega)$ irrespective of the initial guess.

The Global Scheme: L-scheme

To solve

$$
\mathcal{B}\left(u_{n}\right)+\nabla \cdot \mathbf{F}\left(\mathbf{x}, u_{n}\right)=\nabla \cdot\left[\mathcal{D}\left(\mathbf{x}, u_{n}\right) \nabla u_{n}\right]+\mathcal{R}\left(\mathbf{x}, u_{n}\right)
$$

L-scheme uses iterations

$$
L u_{n}^{i}-\nabla \cdot\left[\mathcal{D}_{n}^{i-1} \nabla u_{n}^{i}\right]=L u_{n}^{i-1}-\mathcal{B}\left(u_{n}^{i-1}\right)+\left[-\nabla \cdot \mathbf{F}_{n}^{i-1}+\mathcal{R}_{n}^{i-1}\right]
$$

where L is constant ${ }^{a}$
If $\mathcal{B}^{\prime} \geq 0, L$ scheme converges unconditionally for $L \geq \frac{1}{2} \max \left\{\mathcal{B}^{\prime}\right\}$

Theorem

If $\mathcal{B}^{\prime} \geq 0 ; \partial_{u} \mathcal{R} \leq 0 ; \mathcal{D}, \mathbf{F}_{i} \in C^{1}(\Omega \times \mathbb{R}) ; 0<\mathcal{D}_{m} \leq \mathcal{D} \leq \mathcal{D}_{M}$ then there exists a τ_{0} and L_{0} (independent of meshsize) s.t. for all $\tau<\tau_{0}$ and $L>L_{0}$, L-scheme converges linearly in $H^{1}(\Omega)$ irrespective of the initial guess.

The convergence speed is substantially less ${ }^{b}$ for $L \gg 1$ or τ small

[^0]${ }^{b}$ List and Radu. (2016)

Observation

Observe that

3 The local estimates make the schemes faster but less stable

Observation

Observe that

The local estimates make the schemes faster but less stable
All the schemes mentioned above are designed for elliptic problems. $u_{n}^{0}=u_{n-1}$ remains relatively unused

Observation

Observe that
3 The local estimates make the schemes faster but less stable
All the schemes mentioned above are designed for elliptic problems. $u_{n}^{0}=u_{n-1}$ remains relatively unused

Questions??

Can we design the \mathfrak{M}-scheme in this case so that it is both

Observation

Observe that

(3) The local estimates make the schemes faster but less stable

All the schemes mentioned above are designed for elliptic problems. $u_{n}^{0}=u_{n-1}$ remains relatively unused

Questions??

Can we design the \mathfrak{M}-scheme in this case so that it is both
fast

Observation

Observe that

(3) The local estimates make the schemes faster but less stable

All the schemes mentioned above are designed for elliptic problems. $u_{n}^{0}=u_{n-1}$ remains relatively unused

Questions??

Can we design the \mathfrak{M}-scheme in this case so that it is both
fast
and stable

Modified L-scheme

Assumptions:

A1. The associated functions are smooth up to second derivative

Modified L-scheme

Assumptions:

A1. The associated functions are smooth up to second derivative
A2. $\cdot b^{\prime} \geq m \geq 0$

- $\partial_{u} r \leq 0$
- $0<\mathcal{D}_{m} \leq \mathcal{D} \leq \mathcal{D}_{M}$
- $u_{0} \in H^{1}(\Omega), g \in H^{\frac{1}{2}}(\partial \Omega), u_{0}=g$ at $\partial \Omega$

Modified L-scheme

Assumptions:

A1. The associated functions are smooth up to second derivative
A2. $\cdot b^{\prime} \geq m \geq 0$

- $\partial_{u} r \leq 0$
- $0<\mathcal{D}_{m} \leq \mathcal{D} \leq \mathcal{D}_{M}$
- $u_{0} \in H^{1}(\Omega), g \in H^{\frac{1}{2}}(\partial \Omega), u_{0}=g$ at $\partial \Omega$

A3. $\left\|u_{n}-u_{n-1}\right\|_{L^{\infty}(\Omega)}<\Lambda \tau$ for some $\Lambda>0$

Modified L-scheme

Assumptions:

A1. The associated functions are smooth up to second derivative
A2. $\cdot b^{\prime} \geq m \geq 0$

- $\partial_{u} r \leq 0$
- $0<\mathcal{D}_{m} \leq \mathcal{D} \leq \mathcal{D}_{M}$
- $u_{0} \in H^{1}(\Omega), g \in H^{\frac{1}{2}}(\partial \Omega), u_{0}=g$ at $\partial \Omega$

A3. $\left\|u_{n}-u_{n-1}\right\|_{L^{\infty}(\Omega)}<\Lambda \tau$ for some $\Lambda>0$

- Translates to $\left\|\partial_{t} u\right\|_{L^{\infty}(\Omega \times(0, T])}<\infty$

Modified L-scheme

Assumptions:

A1. The associated functions are smooth up to second derivative
A2. $\cdot b^{\prime} \geq m \geq 0$

- $\partial_{u} r \leq 0$
- $0<\mathcal{D}_{m} \leq \mathcal{D} \leq \mathcal{D}_{M}$
- $u_{0} \in H^{1}(\Omega), g \in H^{\frac{1}{2}}(\partial \Omega), u_{0}=g$ at $\partial \Omega$

A3. $\left\|u_{n}-u_{n-1}\right\|_{L^{\infty}(\Omega)}<\Lambda \tau$ for some $\Lambda>0$

- Translates to $\left\|\partial_{t} u\right\|_{L^{\infty}(\Omega \times(0, T])}<\infty$
- This holds for sufficiently regular domains, ICs and BCs: e.g. if $u_{0} \in \mathcal{C}^{2}(\Omega)$

Modified L-scheme

Consider the equation $\partial_{t} b(u)-\nabla \cdot(\mathcal{D}(\mathbf{x}) \nabla u)=r(\mathbf{x}, t, u)$

Modified L-scheme

Consider the equation $\partial_{t} b(u)-\nabla \cdot(\mathcal{D}(\mathbf{x}) \nabla u)=r(\mathbf{x}, t, u)$ discretized into

$$
b\left(u_{n}\right)-b\left(u_{n-1}\right)-\tau \nabla \cdot\left(\mathcal{D}(\mathbf{x}) \nabla u_{n}\right)=\tau r\left(\mathbf{x}, n \tau, u_{n}\right)
$$

Modified L-scheme

Consider the equation $\partial_{t} b(u)-\nabla \cdot(\mathcal{D}(\mathbf{x}) \nabla u)=r(\mathbf{x}, t, u)$ discretized into

$$
b\left(u_{n}\right)-b\left(u_{n-1}\right)-\tau \nabla \cdot\left(\mathcal{D}(\mathbf{x}) \nabla u_{n}\right)=\tau r\left(\mathbf{x}, n \tau, u_{n}\right)
$$

We propose the following scheme

$$
L_{n}^{i}(\mathbf{x}) u_{n}^{i}-\tau \nabla \cdot\left(\mathcal{D} \nabla u_{n}^{i}\right)=L_{n}^{i}(\mathbf{x}) u_{n}^{i-1}-\left(b\left(u_{n}^{i-1}\right)-b\left(u_{n-1}\right)\right)+\tau r\left(\mathbf{x}, n \tau, u_{n}^{i}\right)
$$

Modified L-scheme

Consider the equation $\partial_{t} b(u)-\nabla \cdot(\mathcal{D}(\mathbf{x}) \nabla u)=r(\mathbf{x}, t, u)$ discretized into

$$
b\left(u_{n}\right)-b\left(u_{n-1}\right)-\tau \nabla \cdot\left(\mathcal{D}(\mathbf{x}) \nabla u_{n}\right)=\tau r\left(\mathbf{x}, n \tau, u_{n}\right)
$$

We propose the following scheme
$L_{n}^{i}(\mathbf{x}) u_{n}^{i}-\tau \nabla \cdot\left(\mathcal{D} \nabla u_{n}^{i}\right)=L_{n}^{i}(\mathbf{x}) u_{n}^{i-1}-\left(b\left(u_{n}^{i-1}\right)-b\left(u_{n-1}\right)\right)+\tau r\left(\mathbf{x}, n \tau, u_{n}^{i}\right)$
with

$$
L_{n}^{i}:=\max \left(\left[b^{\prime}\left(u_{n}^{i-1}\right)-\tau \partial_{u} r\left(\mathbf{x}, n \tau, u_{n}^{i-1}\right)+\mathfrak{M} \tau\right], 2 \mathfrak{M} \tau\right)
$$

Modified L-scheme

Consider the equation $\partial_{t} b(u)-\nabla \cdot(\mathcal{D}(\mathbf{x}) \nabla u)=r(\mathbf{x}, t, u)$ discretized into

$$
b\left(u_{n}\right)-b\left(u_{n-1}\right)-\tau \nabla \cdot\left(\mathcal{D}(\mathbf{x}) \nabla u_{n}\right)=\tau r\left(\mathbf{x}, n \tau, u_{n}\right)
$$

We propose the following scheme
$L_{n}^{i}(\mathbf{x}) u_{n}^{i}-\tau \nabla \cdot\left(\mathcal{D} \nabla u_{n}^{i}\right)=L_{n}^{i}(\mathbf{x}) u_{n}^{i-1}-\left(b\left(u_{n}^{i-1}\right)-b\left(u_{n-1}\right)\right)+\tau r\left(\mathbf{x}, n \tau, u_{n}^{i}\right)$
with

$$
L_{n}^{i}:=\max \left(\left[b^{\prime}\left(u_{n}^{i-1}\right)-\tau \partial_{u} r\left(\mathbf{x}, n \tau, u_{n}^{i-1}\right)+\mathfrak{M} \tau\right], 2 \mathfrak{M} \tau\right)
$$

Lemma 1.1 With $u_{n}^{0}=u_{n-1}$ and (A1)-(A3)

$$
\left\|u_{n}^{i}-u_{n}\right\|_{L^{\infty}(\Omega)}<\Lambda \tau
$$

for all $i \in \mathbb{N}$

Modified L-scheme

The scheme

$L_{n}^{i}(\mathbf{x}) u_{n}^{i}-\tau \nabla \cdot\left(\mathcal{D} \nabla u_{n}^{i}\right)=L_{n}^{i}(\mathbf{x}) u_{n}^{i-1}-\left(b\left(u_{n}^{i-1}\right)-b\left(u_{n-1}\right)\right)+\tau r\left(\mathbf{x}, n \tau, u_{n}^{i}\right)$
with

$$
L_{n}^{i}:=\max \left(\left[b^{\prime}\left(u_{n}^{i-1}\right)-\tau \partial_{u} r\left(\mathbf{x}, n \tau, u_{n}^{i-1}\right)+\mathfrak{M} \tau\right], 2 \mathfrak{M} \tau\right)
$$

Theorem 1.1 With $u_{n}^{0}=u_{n-1}$ and $\mathfrak{M}>\mathfrak{M}_{0}=\Lambda \max _{u \in \mathbb{R}}\left\{\left|b^{\prime \prime}\right|+\tau\left|\partial_{u u} r\right|\right\}$

Modified L-scheme

The scheme

$L_{n}^{i}(\mathbf{x}) u_{n}^{i}-\tau \nabla \cdot\left(\mathcal{D} \nabla u_{n}^{i}\right)=L_{n}^{i}(\mathbf{x}) u_{n}^{i-1}-\left(b\left(u_{n}^{i-1}\right)-b\left(u_{n-1}\right)\right)+\tau r\left(\mathbf{x}, n \tau, u_{n}^{i}\right)$
with

$$
L_{n}^{i}:=\max \left(\left[b^{\prime}\left(u_{n}^{i-1}\right)-\tau \partial_{u} r\left(\mathbf{x}, n \tau, u_{n}^{i-1}\right)+\mathfrak{M} \tau\right], 2 \mathfrak{M} \tau\right)
$$

Theorem 1.1 With $u_{n}^{0}=u_{n-1}$ and $\mathfrak{M}>\mathfrak{M}_{0}=\Lambda \max _{u \in \mathbb{R}}\left\{\left|b^{\prime \prime}\right|+\tau\left|\partial_{u u} r\right|\right\}$

The \mathfrak{M}-scheme converges linearly in $H^{1}(\Omega) \cap L^{\infty}(\Omega)$ for all $\tau>0$, $m \geq 0$ with convergence rate

$$
\alpha=\sup \frac{\left\|u_{n}^{i}-u_{n}\right\|_{\chi}}{\left\|u_{n}^{i-1}-u_{n}\right\|_{\chi}} \leq \sqrt{\frac{2 \mathfrak{M}}{2 \mathfrak{M}+C_{\Omega} \mathcal{D}_{m}}}, \quad \chi \in\left\{H^{1}(\Omega), L^{\infty}(\Omega)\right\}
$$

Modified L-scheme

The scheme

$L_{n}^{i}(\mathbf{x}) u_{n}^{i}-\tau \nabla \cdot\left(\mathcal{D} \nabla u_{n}^{i}\right)=L_{n}^{i}(\mathbf{x}) u_{n}^{i-1}-\left(b\left(u_{n}^{i-1}\right)-b\left(u_{n-1}\right)\right)+\tau r\left(\mathbf{x}, n \tau, u_{n}^{i}\right)$
with

$$
L_{n}^{i}:=\max \left(\left[b^{\prime}\left(u_{n}^{i-1}\right)-\tau \partial_{u} r\left(\mathbf{x}, n \tau, u_{n}^{i-1}\right)+\mathfrak{M} \tau\right], 2 \mathfrak{M} \tau\right)
$$

Theorem 1.1 With $u_{n}^{0}=u_{n-1}$ and $\mathfrak{M}>\mathfrak{M}_{0}=\Lambda \max _{u \in \mathbb{R}}\left\{\left|b^{\prime \prime}\right|+\tau\left|\partial_{u u} r\right|\right\}$
(4) The \mathfrak{M}-scheme converges linearly in $H^{1}(\Omega) \cap L^{\infty}(\Omega)$ for all $\tau>0$, $m \geq 0$ with convergence rate

$$
\alpha=\sup \frac{\left\|u_{n}^{i}-u_{n}\right\|_{\chi}}{\left\|u_{n}^{i-1}-u_{n}\right\|_{\chi}} \leq \sqrt{\frac{2 \mathfrak{M}}{2 \mathfrak{M}+C_{\Omega} \mathcal{D}_{m}}}, \quad \chi \in\left\{H^{1}(\Omega), L^{\infty}(\Omega)\right\}
$$

If $m>0$ and $\tau<\tau_{0}=\frac{m}{2 \mathfrak{M}}$ then the convergence rate is $\mathcal{O}(\tau)$

General Problem

Time-discrete equation

$$
b\left(u_{n}\right)-b\left(u_{n-1}\right)+\tau \nabla \cdot \mathbf{F}\left(\mathbf{x}, u_{n}\right)=\tau \nabla \cdot\left[\mathcal{D}\left(\mathbf{x}, u_{n}\right) \nabla u_{n}\right]+\tau r\left(\mathbf{x}, n \tau, u_{n}\right)
$$

General Problem

Time-discrete equation

$$
b\left(u_{n}\right)-b\left(u_{n-1}\right)+\tau \nabla \cdot \mathbf{F}\left(\mathbf{x}, u_{n}\right)=\tau \nabla \cdot\left[\mathcal{D}\left(\mathbf{x}, u_{n}\right) \nabla u_{n}\right]+\tau r\left(\mathbf{x}, n \tau, u_{n}\right)
$$

The scheme reads

$$
L_{n}^{i}\left(u_{n}^{i}-u_{n-1}^{i}\right)-\tau \nabla \cdot\left(\mathcal{D}_{n}^{i-1} \nabla u_{n}^{i}\right)=-\left(b\left(u_{n}^{i-1}\right)-b\left(u_{n-1}\right)\right)+\tau\left[r_{n}^{i-1}-\nabla \cdot \mathbf{F}_{n}^{i-1}\right]
$$

with

$$
L_{n}^{i}:=\max \left(\left[b^{\prime}\left(u_{n}^{i-1}\right)-\tau \partial_{u} r\left(u_{n}^{i-1}\right)+\mathfrak{M} \tau\right], 2 \mathfrak{M} \tau\right)
$$

General Problem

Time-discrete equation

$$
b\left(u_{n}\right)-b\left(u_{n-1}\right)+\tau \nabla \cdot \mathbf{F}\left(\mathbf{x}, u_{n}\right)=\tau \nabla \cdot\left[\mathcal{D}\left(\mathbf{x}, u_{n}\right) \nabla u_{n}\right]+\tau r\left(\mathbf{x}, n \tau, u_{n}\right)
$$

The scheme reads
$L_{n}^{i}\left(u_{n}^{i}-u_{n-1}^{i}\right)-\tau \nabla \cdot\left(\mathcal{D}_{n}^{i-1} \nabla u_{n}^{i}\right)=-\left(b\left(u_{n}^{i-1}\right)-b\left(u_{n-1}\right)\right)+\tau\left[r_{n}^{i-1}-\nabla \cdot \mathbf{F}_{n}^{i-1}\right]$ with

$$
L_{n}^{i}:=\max \left(\left[b^{\prime}\left(u_{n}^{i-1}\right)-\tau \partial_{u} r\left(u_{n}^{i-1}\right)+\mathfrak{M} \tau\right], 2 \mathfrak{M} \tau\right)
$$

Assumptions:
A4. $\left\|\nabla u_{n}\right\|_{L^{\infty}(\Omega)} \leq \Lambda_{1}$ for some $\Lambda_{1}>0$

General Problem

Time-discrete equation

$$
b\left(u_{n}\right)-b\left(u_{n-1}\right)+\tau \nabla \cdot \mathbf{F}\left(\mathbf{x}, u_{n}\right)=\tau \nabla \cdot\left[\mathcal{D}\left(\mathbf{x}, u_{n}\right) \nabla u_{n}\right]+\tau r\left(\mathbf{x}, n \tau, u_{n}\right)
$$

The scheme reads
$L_{n}^{i}\left(u_{n}^{i}-u_{n-1}^{i}\right)-\tau \nabla \cdot\left(\mathcal{D}_{n}^{i-1} \nabla u_{n}^{i}\right)=-\left(b\left(u_{n}^{i-1}\right)-b\left(u_{n-1}\right)\right)+\tau\left[r_{n}^{i-1}-\nabla \cdot \mathbf{F}_{n}^{i-1}\right]$
with

$$
L_{n}^{i}:=\max \left(\left[b^{\prime}\left(u_{n}^{i-1}\right)-\tau \partial_{u} r\left(u_{n}^{i-1}\right)+\mathfrak{M} \tau\right], 2 \mathfrak{M} \tau\right)
$$

Assumptions:

A4. $\left\|\nabla u_{n}\right\|_{L^{\infty}(\Omega)} \leq \Lambda_{1}$ for some $\Lambda_{1}>0$

- Required also for proving convergence of L-scheme

General Problem

Time-discrete equation

$$
b\left(u_{n}\right)-b\left(u_{n-1}\right)+\tau \nabla \cdot \mathbf{F}\left(\mathbf{x}, u_{n}\right)=\tau \nabla \cdot\left[\mathcal{D}\left(\mathbf{x}, u_{n}\right) \nabla u_{n}\right]+\tau r\left(\mathbf{x}, n \tau, u_{n}\right)
$$

The scheme reads

$$
L_{n}^{i}\left(u_{n}^{i}-u_{n-1}^{i}\right)-\tau \nabla \cdot\left(\mathcal{D}_{n}^{i-1} \nabla u_{n}^{i}\right)=-\left(b\left(u_{n}^{i-1}\right)-b\left(u_{n-1}\right)\right)+\tau\left[r_{n}^{i-1}-\nabla \cdot \mathbf{F}_{n}^{i-1}\right]
$$

with

$$
L_{n}^{i}:=\max \left(\left[b^{\prime}\left(u_{n}^{i-1}\right)-\tau \partial_{u} r\left(u_{n}^{i-1}\right)+\mathfrak{M} \tau\right], 2 \mathfrak{M} \tau\right)
$$

Assumptions:

A4. $\left\|\nabla u_{n}\right\|_{L^{\infty}(\Omega)} \leq \Lambda_{1}$ for some $\Lambda_{1}>0$

- Required also for proving convergence of L-scheme
- Holds if $u_{0} \in W^{2,2 q}(\Omega), q \in \mathbb{N}, 2 q>d$

General Problem

$L_{n}^{i}\left(u_{n}^{i}-u_{n-1}^{i}\right)-\tau \nabla \cdot\left(\mathcal{D}_{n}^{i-1} \nabla u_{n}^{i}\right)=-\left(b\left(u_{n}^{i-1}\right)-b\left(u_{n-1}\right)\right)+\tau\left[r_{n}^{i-1}-\nabla \cdot \mathbf{F}_{n}^{i-1}\right]$ with

$$
L_{n}^{i}:=\max \left(\left[b^{\prime}\left(u_{n}^{i-1}\right)-\tau \partial_{u} r\left(u_{n}^{i-1}\right)+\mathfrak{M} \tau\right], 2 \mathfrak{M} \tau\right)
$$

Theorem 2.1

For $u_{n}^{0}=u_{n-1}, \mathfrak{M}>\mathfrak{M}_{0}$ and $\tau<\tau_{0}$ assume (A1)-(A4)*. Then

General Problem

$L_{n}^{i}\left(u_{n}^{i}-u_{n-1}^{i}\right)-\tau \nabla \cdot\left(\mathcal{D}_{n}^{i-1} \nabla u_{n}^{i}\right)=-\left(b\left(u_{n}^{i-1}\right)-b\left(u_{n-1}\right)\right)+\tau\left[r_{n}^{i-1}-\nabla \cdot \mathbf{F}_{n}^{i-1}\right]$
with

$$
L_{n}^{i}:=\max \left(\left[b^{\prime}\left(u_{n}^{i-1}\right)-\tau \partial_{u} r\left(u_{n}^{i-1}\right)+\mathfrak{M} \tau\right], 2 \mathfrak{M} \tau\right)
$$

Theorem 2.1

For $u_{n}^{0}=u_{n-1}, \mathfrak{M}>\mathfrak{M}_{0}$ and $\tau<\tau_{0}$ assume (A1)-(A4)*. Then
(4) The \mathfrak{M}-scheme converges in $H^{1}(\Omega)$ for all $m \geq 0$

General Problem

$L_{n}^{i}\left(u_{n}^{i}-u_{n-1}^{i}\right)-\tau \nabla \cdot\left(\mathcal{D}_{n}^{i-1} \nabla u_{n}^{i}\right)=-\left(b\left(u_{n}^{i-1}\right)-b\left(u_{n-1}\right)\right)+\tau\left[r_{n}^{i-1}-\nabla \cdot \mathbf{F}_{n}^{i-1}\right]$
with

$$
L_{n}^{i}:=\max \left(\left[b^{\prime}\left(u_{n}^{i-1}\right)-\tau \partial_{u} r\left(u_{n}^{i-1}\right)+\mathfrak{M} \tau\right], 2 \mathfrak{M} \tau\right)
$$

Theorem 2.1

For $u_{n}^{0}=u_{n-1}, \mathfrak{M}>\mathfrak{M}_{0}$ and $\tau<\tau_{0}$ assume (A1)-(A4)*. Then

4 The \mathfrak{M}-scheme converges in $H^{1}(\Omega)$ for all $m \geq 0$
(3) The \mathfrak{M}-scheme converges linearly in $H^{1}(\Omega)$ if $m>0$

General Problem

$L_{n}^{i}\left(u_{n}^{i}-u_{n-1}^{i}\right)-\tau \nabla \cdot\left(\mathcal{D}_{n}^{i-1} \nabla u_{n}^{i}\right)=-\left(b\left(u_{n}^{i-1}\right)-b\left(u_{n-1}\right)\right)+\tau\left[r_{n}^{i-1}-\nabla \cdot \mathbf{F}_{n}^{i-1}\right]$
with

$$
L_{n}^{i}:=\max \left(\left[b^{\prime}\left(u_{n}^{i-1}\right)-\tau \partial_{u} r\left(u_{n}^{i-1}\right)+\mathfrak{M} \tau\right], 2 \mathfrak{M} \tau\right)
$$

Theorem 2.1

For $u_{n}^{0}=u_{n-1}, \mathfrak{M}>\mathfrak{M}_{0}$ and $\tau<\tau_{0}$ assume (A1)-(A4)*. Then

The \mathfrak{M}-scheme converges in $H^{1}(\Omega)$ for all $m \geq 0$
The \mathfrak{M}-scheme converges linearly in $H^{1}(\Omega)$ if $m>0$
For $m>0$ the convergence rate is $\alpha=\mathcal{O}(\sqrt{\tau})$

Numerical Study

Richards equation in 2-D

Numerical Study

Richards equation in 2-D

$$
\partial_{t} S_{w}(p)=\nabla \cdot\left[k_{w}\left(S_{w}(p)\right)\left(\nabla p-\rho_{w} \hat{g}\right)\right]+f \text { on }(0,1) \times(0,1)
$$

Numerical Study

Richards equation in 2-D

$$
\partial_{t} S_{w}(p)=\nabla \cdot\left[k_{w}\left(S_{w}(p)\right)\left(\nabla p-\rho_{w} \hat{g}\right)\right]+f \text { on }(0,1) \times(0,1)
$$

Take van Genuchten parameters ${ }^{a}$: for $m=\frac{2}{3}, n=\frac{1}{1-m}$

$$
\begin{aligned}
& S_{w}(p)= \begin{cases}\frac{1}{\left(1+(-p)^{n}\right)^{m}} & \text { if } p<0 \\
1 & \text { if } p \geq 0\end{cases} \\
& k_{w}(S)=\sqrt{S}\left(1-\left(1-S^{\frac{1}{m}}\right)^{m}\right)^{2}
\end{aligned}
$$

Numerical Study

Richards equation in 2-D

$$
\partial_{t} S_{w}(p)=\nabla \cdot\left[k_{w}\left(S_{w}(p)\right)\left(\nabla p-\rho_{w} \hat{g}\right)\right]+f \text { on }(0,1) \times(0,1)
$$

Take van Genuchten parameters ${ }^{a}$: for $m=\frac{2}{3}, n=\frac{1}{1-m}$

$$
\begin{aligned}
& S_{w}(p)= \begin{cases}\frac{1}{\left(1+(-p)^{n}\right)^{m}} & \text { if } p<0 \\
1 & \text { if } p \geq 0\end{cases} \\
& k_{w}(S)=\sqrt{S}\left(1-\left(1-S^{\frac{1}{m}}\right)^{m}\right)^{2}
\end{aligned}
$$

Assumed initial and boundary conditions with $\tilde{p}(x, y, t)=1-\left(1+t^{2}\right)\left(1+x^{2}+y^{2}\right)$,

IC	$t=0$	$p(x, y, 0)=\tilde{p}(x, y, 0)$	on Ω	
$\mathbf{B C}$	$x=0:$	$p(0, y, t)=\tilde{p}(0, y, t)$,	$x=1:$	$p(1, y, t)=\tilde{p}(1, y, t)$,
	$y=0:$	$\partial_{y} p=0$,	$y=1:$	$k(S(p)) \partial_{y} p=k\left(S(\tilde{p}(x, 1, t)) \partial_{y} \tilde{p}(x, 1, t)\right.$.

[^1]
Mesh Study

- For $t=0.5, \mathfrak{M}=10, L=1$

$$
\tau=0.01
$$

$$
\tau=0.001
$$

Mesh Study

- For $t=0.5, \mathfrak{M}=10, L=1$

$$
\tau=0.1
$$

Timestep Study

- For $t=.5, h=0.05, \mathfrak{M}=10$

Effect of \mathfrak{M}

Effect of \mathfrak{M}

For details

see

Mitra, K. \& Pop, I. S. (2018). A modified L-scheme for nonlinear parabolic equations. Computers \& Mathematics With Applications.

Other Problems

Two Phase Equation: The \mathfrak{M}-scheme given as

$$
\begin{gathered}
-\left(S_{w, n}^{i}-S_{w, n-1}\right)=\tau \nabla \cdot\left[k_{o}\left(1-S_{w, n}^{i-1}\right)\left(\nabla p_{o, n}^{i}-\rho_{o} \hat{g}\right)\right] \\
\left(S_{w, n}^{i}-S_{w, n-1}\right)=\tau \nabla \cdot\left[k_{w}\left(S_{w, n}^{i-1}\left(\nabla p_{w, n}^{i}-\rho_{w} \hat{g}\right)\right]\right. \\
p_{o, n}^{i}-p_{w, n}^{i}=P_{c}\left(S_{w, n}^{i-1}\right)-L_{n}^{i}\left(S_{w, n}^{i}-S_{w, n}^{i-1}\right)
\end{gathered}
$$

with $L_{n}^{i}:=-P_{c}^{\prime}\left(S_{w, n}^{i-1}\right)+\mathfrak{M} \tau$
Theorem 3.1 With $\left(p_{o, n}^{0}, p_{w, n}^{0}\right)=\left(p_{o, n-1}, p_{w, n-1}\right)$ define

$$
e_{n}^{i}=\left\|p_{w, n}^{i}-p_{w, n}\right\|_{H^{1}(\Omega)}+\left\|p_{o, n}^{i}-p_{o, n}\right\|_{H^{1}(\Omega)}+\left\|S_{w, n}^{i}-S_{w, n}\right\|_{L^{2}(\Omega)}
$$

Assume for $i \in \mathbb{N}, p_{n} \in W^{1, \infty}(\Omega)$ and $\left\|S_{n}^{i}-S_{n}\right\|_{L^{\infty}(\Omega)}<\Lambda \tau$ for some $\Lambda>0$. Then $e_{n}^{i} \rightarrow 0$ as $i \rightarrow \infty$ for τ small enough and \mathfrak{M} large enough. Moreover, if $P_{c}^{\prime}(S)<0$ and $P_{c} \in C^{2}(\mathbb{R})$ then for small enough τ

$$
\frac{e_{n}^{i}}{e_{n}^{i-1}}=\mathcal{O}(\sqrt{\tau})
$$

Other Problems

Capillary Hysteresis (play-type) and Dynamic Capillarity

Richards equation: $\partial_{t} S_{w}=\nabla \cdot\left[k\left(S_{w}\right)\left(\nabla p-\rho_{w} \hat{g}\right)\right]$

Other Problems

Capillary Hysteresis (play-type) and Dynamic Capillarity

Richards equation: $\partial_{t} S_{w}=\nabla \cdot\left[k\left(S_{w}\right)\left(\nabla p-\rho_{w} \hat{g}\right)\right]$
Closure relation: $-p=P_{c}\left(S_{w}\right)-\gamma\left(S_{w}\right) \operatorname{sign}\left(\partial_{t} S_{w}\right)-\mathcal{T}\left(S_{w}\right) \partial_{t} S_{w}$

Other Problems

Capillary Hysteresis (play-type) and Dynamic Capillarity

Richards equation: $\partial_{t} S_{w}=\nabla \cdot\left[k\left(S_{w}\right)\left(\nabla p-\rho_{w} \hat{g}\right)\right]$
Closure relation: $-p=P_{c}\left(S_{w}\right)-\gamma\left(S_{w}\right) \operatorname{sign}\left(\partial_{t} S_{w}\right)-\mathcal{T}\left(S_{w}\right) \partial_{t} S_{w}$
This can be simplified to

$$
\partial_{t} S_{w}=\mathcal{F}\left(S_{w}, p\right):=\frac{1}{\mathcal{T}\left(S_{w}\right)} \begin{cases}P_{c}\left(S_{w}\right)-\gamma\left(S_{w}\right)+p & \text { if } p<P_{c}\left(S_{w}\right)-\gamma\left(S_{w}\right) \\ 0 & \text { if } p \in\left[P_{c}-\gamma, P_{c}+\gamma\right]\left(S_{w}\right) \\ P_{c}\left(S_{w}\right)+\gamma\left(S_{w}\right)+p & \text { if } p>P_{c}\left(S_{w}\right)+\gamma\left(S_{w}\right)\end{cases}
$$

Other Problems

Capillary Hysteresis (play-type) and Dynamic Capillarity

Richards equation: $\partial_{t} S_{w}=\nabla \cdot\left[k\left(S_{w}\right)\left(\nabla p-\rho_{w} \hat{g}\right)\right]$
Closure relation: $-p=P_{c}\left(S_{w}\right)-\gamma\left(S_{w}\right) \operatorname{sign}\left(\partial_{t} S_{w}\right)-\mathcal{T}\left(S_{w}\right) \partial_{t} S_{w}$
This can be simplified to

$$
\partial_{t} S_{w}=\mathcal{F}\left(S_{w}, p\right):=\frac{1}{\mathcal{T}\left(S_{w}\right)} \begin{cases}P_{c}\left(S_{w}\right)-\gamma\left(S_{w}\right)+p & \text { if } p<P_{c}\left(S_{w}\right)-\gamma\left(S_{w}\right) \\ 0 & \text { if } p \in\left[P_{c}-\gamma, P_{c}+\gamma\right]\left(S_{w}\right) \\ P_{c}\left(S_{w}\right)+\gamma\left(S_{w}\right)+p & \text { if } p>P_{c}\left(S_{w}\right)+\gamma\left(S_{w}\right)\end{cases}
$$

Other Problems

Time-discrete version

S-equation: $S_{w, n}=S_{w, n-1}+\tau \mathcal{F}\left(S_{w, n}, p_{n}\right)$
p-equation: $\nabla \cdot\left[k\left(S_{w, n}\right)\left(\nabla p_{n}-1\right)\right]=\mathcal{F}\left(S_{w, n}, p_{n}\right)$

Other Problems

Time-discrete version

S-equation: $S_{w, n}=S_{w, n-1}+\tau \mathcal{F}\left(S_{w, n}, p_{n}\right)$
p-equation: $\nabla \cdot\left[k\left(S_{w, n}\right)\left(\nabla p_{n}-1\right)\right]=\mathcal{F}\left(S_{w, n}, p_{n}\right)$
Solution strategy: \mathfrak{M}-scheme
Update: $S_{w, n}^{i}=S_{w, n-1}+\tau \mathcal{F}\left(S_{w, n}^{i-1}, p_{n}^{i-1}\right)$
Solve: $L_{n}^{i} p_{n}^{i}-\nabla \cdot\left[k\left(S_{w, n}^{i}\right)\left(\nabla p_{n}^{i}-1\right)\right]=L_{n}^{i} p_{n}^{i-1}-\mathcal{F}\left(S_{w, n}^{i}, p_{n}^{i-1}\right)$
With $L_{n}^{i}:=\partial_{p} \mathcal{F}\left(S_{w, n}^{i}, p_{n}^{i-1}\right)+\mathfrak{M} \tau$

Other Problems

Time-discrete version

S-equation: $S_{w, n}=S_{w, n-1}+\tau \mathcal{F}\left(S_{w, n}, p_{n}\right)$
p-equation: $\nabla \cdot\left[k\left(S_{w, n}\right)\left(\nabla p_{n}-1\right)\right]=\mathcal{F}\left(S_{w, n}, p_{n}\right)$
Solution strategy: \mathfrak{M}-scheme
Update: $S_{w, n}^{i}=S_{w, n-1}+\tau \mathcal{F}\left(S_{w, n}^{i-1}, p_{n}^{i-1}\right)$
Solve: $L_{n}^{i} p_{n}^{i}-\nabla \cdot\left[k\left(S_{w, n}^{i}\right)\left(\nabla p_{n}^{i}-1\right)\right]=L_{n}^{i} p_{n}^{i-1}-\mathcal{F}\left(S_{w, n}^{i}, p_{n}^{i-1}\right)$
With $L_{n}^{i}:=\partial_{p} \mathcal{F}\left(S_{w, n}^{i}, p_{n}^{i-1}\right)+\mathfrak{M} \tau$
Theorem 4.1 For small enough τ, large enough $\mathfrak{M}, p_{n} \in W^{1, \infty}(\Omega)$, there exists a $\alpha=\mathcal{O}(\tau / \mathcal{T})$ such that $\left\|S_{w, n}^{i}-S_{w, n}\right\|_{W^{1, \infty}}+\left\|p_{n}^{i}-p_{n}\right\|_{W^{1, \infty}} \leq \alpha\left[\left\|S_{w, n}^{i-1}-S_{w, n}\right\|_{W^{1, \infty}}+\left\|p_{n}^{i-1}-p_{n}\right\|_{W^{1, \infty}}\right]$

Other Problems

Time-discrete version

S-equation: $S_{w, n}=S_{w, n-1}+\tau \mathcal{F}\left(S_{w, n}, p_{n}\right)$
p-equation: $\nabla \cdot\left[k\left(S_{w, n}\right)\left(\nabla p_{n}-1\right)\right]=\mathcal{F}\left(S_{w, n}, p_{n}\right)$
Solution strategy: \mathfrak{M}-scheme
Update: $S_{w, n}^{i}=S_{w, n-1}+\tau \mathcal{F}\left(S_{w, n}^{i-1}, p_{n}^{i-1}\right)$
Solve: $L_{n}^{i} p_{n}^{i}-\nabla \cdot\left[k\left(S_{w, n}^{i}\right)\left(\nabla p_{n}^{i}-1\right)\right]=L_{n}^{i} p_{n}^{i-1}-\mathcal{F}\left(S_{w, n}^{i}, p_{n}^{i-1}\right)$
With $L_{n}^{i}:=\partial_{p} \mathcal{F}\left(S_{w, n}^{i}, p_{n}^{i-1}\right)+\mathfrak{M} \tau$
Theorem 4.2 If $\mathcal{T}>0$ then there exists $\hat{\tau}>0$ independent of \mathcal{T} such that for $\tau<\hat{\tau}$ and large enough $\mathfrak{M},\left(S_{w, n}^{i}, p_{n}^{i}\right)$ converges in $H^{1}(\Omega)$

Numerical Results

- For $^{a} \mathcal{T}=.1, L=100, \mathfrak{M}=1, h=.1, \tau=.001, t=10$

\mathfrak{M}-scheme $\alpha \approx .15$
${ }^{a}$ van Duijn, Mitra and Pop. (2018)

The linearization schemes are faster if local estimations are taken but are less stable

Summary

The linearization schemes are faster if local estimations are taken but are less stable

Using $u_{n}^{0}=u_{n-1}$ and local estimations one can have a scheme that has the following properties

Summary

The linearization schemes are faster if local estimations are taken but are less stable

Using $u_{n}^{0}=u_{n-1}$ and local estimations one can have a scheme that has the following properties

- It is simple and converges unconditionally for small enough timestep sizes independent of meshsize

Summary

The linearization schemes are faster if local estimations are taken but are less stable

Using $u_{n}^{0}=u_{n-1}$ and local estimations one can have a scheme that has the following properties

- It is simple and converges unconditionally for small enough timestep sizes independent of meshsize
- The convergence rate improves as the timestep size decreases

Summary

The linearization schemes are faster if local estimations are taken but are less stable

Using $u_{n}^{0}=u_{n-1}$ and local estimations one can have a scheme that has the following properties

- It is simple and converges unconditionally for small enough timestep sizes independent of meshsize
- The convergence rate improves as the timestep size decreases

3) The ideas were validated with numerical experiments

Summary

The linearization schemes are faster if local estimations are taken but are less stable

Using $u_{n}^{0}=u_{n-1}$ and local estimations one can have a scheme that has the following properties

- It is simple and converges unconditionally for small enough timestep sizes independent of meshsize
- The convergence rate improves as the timestep size decreases

The ideas were validated with numerical experiments
The ideas are extended to pseudo parabolic equations

References

- W. Jäger and J. Kačur. Solution of doubly nonlinear and degenerate parabolic problems by relaxation schemes. ESAIM: Mathematical Modelling and Numerical Analysis, 29(5), 1995.
- F. List and F.A. Radu. A study on iterative methods for solving richards' equation. Computational Geosciences, 20(2), 2004.
- I. S. Pop, F. Radu, and P. Knabner. Mixed finite elements for the Richards equation: linearization procedure. Journal of Computational and Applied Mathematics, 168(1), 2004.
- F.A. Radu, I.S. Pop, and P. Knabner. Newton-type methods for the mixed finite element discretization of some degenerate parabolic equations. In Numerical Mathematics and Advanced Applications, 2006.
- M. Celia, E.T. Bouloutas, and R. L. Zarba. General mass-conservative numerical solution for the unsaturated ow equation. Water Resources Research, 26(7), 1990.
- D. Seus, K. Mitra, I.S. Pop, F. Radu, and C. Rohde. A linear domain decomposition method for partially saturated flow in porous media. arXiv preprint arXiv:1708.03224, 2017.
- F. Lehmann and P.H. Ackerer. Comparison of iterative methods for improved solutions of the fluid flow equation in partially saturated porous media. Transport in Porous Media, 31(3), 1998.
- L. Bergamaschi and M. Putti. Mixed finite elements and newton-type linearizations for the solution of Richards' equation. International Journal for Numerical Methods in Engineering, 45(8), 1999.

Thanks to

$\stackrel{\square}{\square}$

and Thank You for listening

[^0]: ${ }^{\text {a Pop et al. (2004) }}$

[^1]: ${ }^{\text {a }}$ van Genuchten. (1980)

