A Linearization Technique for Nonlinear Parabolic Problems in Porous Media

TU

Koondanibha Mitra (TU Eindhoven & Hasselt University)

joint work with

Iuliu Sorin Pop (Hasselt University & University of Bergen)

^{and} Xiulei Cao (York University)

Technische Universiteit **Eindhoven** University of Technology

Contents

Introduction	3
The Linearization Techniques	6
Modified L-scheme	10
General Problem	13
Numerical Study	15
Other Problems	22
Summary	25
References	26

Houston, March 2019

3/27

To solve f(x) = 0 Newton scheme

/ department of mathematics and computer science

To solve f(x) = 0 Newton scheme

/ department of mathematics and computer science

To solve f(x) = 0 Newton scheme

Takes initial guess x_0

Updates for all $i \in \mathbb{N}$

$$x_i = x_{i-1} - \frac{f(x_{i-1})}{f'(x_{i-1})}$$

The solution being $\lim x_i = \bar{x}$

To solve f(x) = 0 Newton scheme

Takes initial guess x_0

Updates for all $i \in \mathbb{N}$

$$x_i = x_{i-1} - \frac{f(x_{i-1})}{f'(x_{i-1})}$$

The solution being $\lim x_i = \bar{x}$

However, if x_0 is not close to \bar{x} then the scheme might not converge

If instead one uses the iteration

 $Lx_{i} = Lx_{i-1} - f(x_{i-1})$

for $L>\max_{x\in\mathbb{R}}\{f'(x)\}$, then

/ department of mathematics and computer science

If instead one uses the iteration

 $Lx_{i} = Lx_{i-1} - f(x_{i-1})$

for $L>\max_{x\in\mathbb{R}}\{f'(x)\}$, then

Iterations converge irrespective of initial guess

Errors decrease monotonically

However, the convergence is slower (linear)

/ department of mathematics and computer science

Learning from above we propose

 $L^{i}x_{i} = L^{i}x_{i-1} - f(x_{i-1})$

with $L^i = f'(x_{i-1}) + \mathfrak{M}$, $\mathfrak{M} > 0$ being a tolerance.

/ department of mathematics and computer science

Learning from above we propose

 $L^{i}x_{i} = L^{i}x_{i-1} - f(x_{i-1})$

with $L^i = f'(x_{i-1}) + \mathfrak{M}$, $\mathfrak{M} > 0$ being a tolerance.

Does their exists an $\mathfrak M$ such that

The errors decrease monotonically

The convergence is faster than L-scheme

Learning from above we propose

 $L^{i}x_{i} = L^{i}x_{i-1} - f(x_{i-1})$

with $L^i = f'(x_{i-1}) + \mathfrak{M}$, $\mathfrak{M} > 0$ being a tolerance.

Does their exists an $\mathfrak M$ such that

The errors decrease monotonically

The convergence is faster than L-scheme

We look for such a scheme for nonlinear PDEs in the study of porous flows

/ department of mathematics and computer science

$$\partial_t S_w = \nabla \cdot [k_w(S_w)(\nabla p - \rho_w \hat{g})], \quad -p = P_c(S_w)$$

/ department of mathematics and computer science

Richards Equation

$$\partial_t S_w = \nabla \cdot [k_w(S_w)(\nabla p - \rho_w \hat{g})], \quad -p = P_c(S_w)$$

The two-phase porous media equation

$$\partial_t S_\alpha = \nabla \cdot [k_\alpha(S_\alpha)(\nabla p_\alpha - \rho_\alpha \hat{g})], \ \alpha \in \{o, w\}$$

$$S_o + S_w = 1, \ p_o - p_w = P_c(S_w)$$

/ department of mathematics and computer science

Richards Equation

$$\partial_t S_w = \nabla \cdot [k_w(S_w)(\nabla p - \rho_w \hat{g})], \quad -p = P_c(S_w)$$

The two-phase porous media equation

$$\partial_t S_\alpha = \nabla \cdot [k_\alpha(S_\alpha)(\nabla p_\alpha - \rho_\alpha \hat{g})], \ \alpha \in \{o, w\}$$

$$S_o + S_w = 1, \ p_o - p_w = P_c(S_w)$$

Non-equilibrium effects: hysteresis and dynamic capillarity

 $-p \text{ or } p_o - p_w \in P_c(S_w) - \gamma(S_w) \operatorname{sign}(\partial_t S_w) - \mathcal{T}(S_w) \partial_t S_w$

/ department of mathematics and computer science

Richards Equation

$$\partial_t S_w = \nabla \cdot [k_w(S_w)(\nabla p - \rho_w \hat{g})], \quad -p = P_c(S_w)$$

The two-phase porous media equation

$$\begin{aligned} \partial_t S_\alpha &= \nabla \cdot [k_\alpha(S_\alpha)(\nabla p_\alpha - \rho_\alpha \hat{g})], \ \alpha \in \{o, w\}\\ S_o + S_w &= 1, \ p_o - p_w = P_c(S_w) \end{aligned}$$

Non-equilibrium effects: hysteresis and dynamic capillarity

$$-p \text{ or } p_o - p_w \in P_c(S_w) - \gamma(S_w) \operatorname{sign}(\partial_t S_w) - \mathcal{T}(S_w) \partial_t S_w$$

Domain decomposition schemes for unsaturated and two-phase cases (Seus *et al.* (2018))

Time-discrete solutions

Let us talk about the nonlinear advection diffusion equation

$$\partial_t b(u) + \nabla \cdot \mathbf{F}(\mathbf{x}, u) = \nabla \cdot [\mathcal{D}(\mathbf{x}, u) \nabla u] + r(\mathbf{x}, t, u)$$

How do we solve it numerically??

Time-discrete solutions

Let us talk about the nonlinear advection diffusion equation

$$\partial_t b(u) + \nabla \cdot \mathbf{F}(\mathbf{x}, u) = \nabla \cdot [\mathcal{D}(\mathbf{x}, u) \nabla u] + r(\mathbf{x}, t, u)$$

How do we solve it numerically??

Let $\Omega \in \mathbb{R}^d$ be a Lipschitz domain and $t \in [0,T]$, T>0

Time-discrete solutions

Let us talk about the nonlinear advection diffusion equation

$$\partial_t b(u) + \nabla \cdot \mathbf{F}(\mathbf{x}, u) = \nabla \cdot [\mathcal{D}(\mathbf{x}, u) \nabla u] + r(\mathbf{x}, t, u)$$

How do we solve it numerically??

Let $\Omega \in \mathbb{R}^d$ be a Lipschitz domain and $t \in [0,T]$, T > 0

 ${igsident}$ For $N\in {\mathbb N}$ define timestep size au=T/N

Let us talk about the nonlinear advection diffusion equation

$$\partial_t b(u) + \nabla \cdot \mathbf{F}(\mathbf{x}, u) = \nabla \cdot [\mathcal{D}(\mathbf{x}, u) \nabla u] + r(\mathbf{x}, t, u)$$

How do we solve it numerically??

Let $\Omega \in \mathbb{R}^d$ be a Lipschitz domain and $t \in [0,T]$, T>0

For
$$N \in \mathbb{N}$$
 define timestep size $au = T/N$

3

Let $u=u_0$ at t=0 be the initial condition and u=g at $\partial\Omega$ be the boundary condition

Let us talk about the nonlinear advection diffusion equation

$$\partial_t b(u) + \nabla \cdot \mathbf{F}(\mathbf{x}, u) = \nabla \cdot [\mathcal{D}(\mathbf{x}, u) \nabla u] + r(\mathbf{x}, t, u)$$

How do we solve it numerically??

 ${igsimus}$ Let $\Omega\in {\mathbb R}^d$ be a Lipschitz domain and $t\in [0,T]$, T>0

 ${igsimus}$ For $N\in {\mathbb N}$ define timestep size au=T/N

Let $u = u_0$ at t = 0 be the initial condition and u = g at $\partial \Omega$ be the boundary condition

For any $n\in\{1,..,N\}$ use backward Euler scheme for time discretization. This leads to the following system of equation

 $b(u_n) - b(u_{n-1}) + \tau \nabla \cdot \mathbf{F}(\mathbf{x}, u_n) = \tau \nabla \cdot [\mathcal{D}(\mathbf{x}, u_n) \nabla u_n] + \tau r(\mathbf{x}, n\tau, u_n) \text{ in } \Omega$

5/27

/ department of mathematics and computer science

Let us talk about the nonlinear advection diffusion equation

$$\partial_t b(u) + \nabla \cdot \mathbf{F}(\mathbf{x}, u) = \nabla \cdot [\mathcal{D}(\mathbf{x}, u) \nabla u] + r(\mathbf{x}, t, u)$$

How do we solve it numerically??

Let $\Omega \in \mathbb{R}^d$ be a Lipschitz domain and $t \in [0,T]$, T > 0

 $igsquirin {igsquirin}$ For $N\in \mathbb{N}$ define timestep size au=T/N

 \blacksquare Let $u = u_0$ at t = 0 be the initial condition and u = g at $\partial \Omega$ be the boundary condition

For any $n \in \{1, .., N\}$ use backward Euler scheme for time discretization. This leads to the following system of equation

 $b(u_n) - b(u_{n-1}) + \tau \nabla \cdot \mathbf{F}(\mathbf{x}, u_n) = \tau \nabla \cdot \left[\mathcal{D}(\mathbf{x}, u_n) \nabla u_n \right] + \tau r(\mathbf{x}, n\tau, u_n) \text{ in } \Omega$

Solve using some linearization technique

$$b(u_n) - b(u_{n-1}) + \tau \nabla \cdot \mathbf{F}(\mathbf{x}, u_n) = \tau \nabla \cdot [\mathcal{D}(\mathbf{x}, u_n) \nabla u_n] + \tau r(\mathbf{x}, n\tau, u_n)$$

for a fixed n is an elliptic equation of the form

$$\mathcal{B}(u_n) + \nabla \cdot \mathbf{F}(\mathbf{x}, u_n) = \nabla \cdot \left[\mathcal{D}(\mathbf{x}, u_n) \nabla u_n \right] + \mathcal{R}(\mathbf{x}, u_n)$$

and consequently can be solved by following iterative linearization techniques

$$b(u_n) - b(u_{n-1}) + \tau \nabla \cdot \mathbf{F}(\mathbf{x}, u_n) = \tau \nabla \cdot [\mathcal{D}(\mathbf{x}, u_n) \nabla u_n] + \tau r(\mathbf{x}, n\tau, u_n)$$

for a fixed n is an elliptic equation of the form

$$\mathcal{B}(u_n) + \nabla \cdot \mathbf{F}(\mathbf{x}, u_n) = \nabla \cdot [\mathcal{D}(\mathbf{x}, u_n) \nabla u_n] + \mathcal{R}(\mathbf{x}, u_n)$$

and consequently can be solved by following iterative linearization techniques

Local schemes

$$b(u_n) - b(u_{n-1}) + \tau \nabla \cdot \mathbf{F}(\mathbf{x}, u_n) = \tau \nabla \cdot [\mathcal{D}(\mathbf{x}, u_n) \nabla u_n] + \tau r(\mathbf{x}, n\tau, u_n)$$

for a fixed n is an elliptic equation of the form

$$\mathcal{B}(u_n) +
abla \cdot \mathbf{F}(\mathbf{x}, u_n) =
abla \cdot [\mathcal{D}(\mathbf{x}, u_n)
abla u_n] + \mathcal{R}(\mathbf{x}, u_n)$$

and consequently can be solved by following iterative linearization techniques

6/27

/ department of mathematics and computer science

$$b(u_n) - b(u_{n-1}) + \tau \nabla \cdot \mathbf{F}(\mathbf{x}, u_n) = \tau \nabla \cdot [\mathcal{D}(\mathbf{x}, u_n) \nabla u_n] + \tau r(\mathbf{x}, n\tau, u_n)$$

for a fixed n is an elliptic equation of the form

 $\mathcal{B}(u_n) + \nabla \cdot \mathbf{F}(\mathbf{x}, u_n) = \nabla \cdot [\mathcal{D}(\mathbf{x}, u_n) \nabla u_n] + \mathcal{R}(\mathbf{x}, u_n)$

and consequently can be solved by following iterative linearization techniques

$$\mathcal{B}(u_n) + \nabla \cdot \mathbf{F}(\mathbf{x}, u_n) = \nabla \cdot [\mathcal{D}(\mathbf{x}, u_n) \nabla u_n] + \mathcal{R}(\mathbf{x}, u_n)$$

the local schemes use

Approximation of the nonlinearities using the last iteration

Generally they converge if the initial guess u_n^0 is close enough to u_n

$$\mathcal{B}(u_n) + \nabla \cdot \mathbf{F}(\mathbf{x}, u_n) = \nabla \cdot \left[\mathcal{D}(\mathbf{x}, u_n) \nabla u_n \right] + \mathcal{R}(\mathbf{x}, u_n)$$

the local schemes use

Approximation of the nonlinearities using the last iteration

Sufficient condition for convergence

For the original parabolic problem the schemes converge if $u_n^0 = u_{n-1}$ and

/ department of mathematics and computer science

$$\mathcal{B}(u_n) + \nabla \cdot \mathbf{F}(\mathbf{x}, u_n) = \nabla \cdot \left[\mathcal{D}(\mathbf{x}, u_n) \nabla u_n \right] + \mathcal{R}(\mathbf{x}, u_n)$$

the local schemes use

Approximation of the nonlinearities using the last iteration

Sufficient condition for convergence

For the original parabolic problem the schemes converge if $u_n^0 = u_{n-1}$ and a

 $\tau < Ch^d$

for some constant C > 0 and meshsize h

7/27

$$\mathcal{B}(u_n) + \nabla \cdot \mathbf{F}(\mathbf{x}, u_n) = \nabla \cdot \left[\mathcal{D}(\mathbf{x}, u_n) \nabla u_n \right] + \mathcal{R}(\mathbf{x}, u_n)$$

the local schemes use

Approximation of the nonlinearities using the last iteration

Generally they converge if the initial guess u_n^0 is close enough to u_n

Sufficient condition for convergence

For the original parabolic problem the schemes converge if $u_n^0 = u_{n-1}$ and a

 $\tau < Ch^d$

for some constant C > 0 and meshsize h• A severe restriction: for $d \ge 2$, for processes that involve large time scales or fine mesh-resolution, e.g. reservoir modelling

^aRadu *et al.* (2006)

/ department of mathematics and computer science

The Global Scheme: L-scheme

To solve

$$\mathcal{B}(u_n) + \nabla \cdot \mathbf{F}(\mathbf{x}, u_n) = \nabla \cdot \left[\mathcal{D}(\mathbf{x}, u_n) \nabla u_n \right] + \mathcal{R}(\mathbf{x}, u_n)$$

L-scheme uses iterations

/ department of mathematics and computer science

$$\mathcal{B}(u_n) + \nabla \cdot \mathbf{F}(\mathbf{x}, u_n) = \nabla \cdot \left[\mathcal{D}(\mathbf{x}, u_n) \nabla u_n \right] + \mathcal{R}(\mathbf{x}, u_n)$$

L-scheme uses iterations

$$Lu_n^i - \nabla \cdot \left[\mathcal{D}_n^{i-1} \nabla u_n^i \right] = Lu_n^{i-1} - \mathcal{B}(u_n^{i-1}) + \left[-\nabla \cdot \mathbf{F}_n^{i-1} + \mathcal{R}_n^{i-1} \right]$$

where L is constant^a

8/27

/ department of mathematics and computer science

$$\mathcal{B}(u_n) + \nabla \cdot \mathbf{F}(\mathbf{x}, u_n) = \nabla \cdot [\mathcal{D}(\mathbf{x}, u_n) \nabla u_n] + \mathcal{R}(\mathbf{x}, u_n)$$

L-scheme uses iterations

$$Lu_n^i - \nabla \cdot \left[\mathcal{D}_n^{i-1} \nabla u_n^i \right] = Lu_n^{i-1} - \mathcal{B}(u_n^{i-1}) + \left[-\nabla \cdot \mathbf{F}_n^{i-1} + \mathcal{R}_n^{i-1} \right]$$

where L is constant^a

If $\mathcal{B}' \ge 0$, L scheme converges unconditionally for $L \ge \frac{1}{2} \max\{\mathcal{B}'\}$

8/27

/ department of mathematics and computer science

$$\mathcal{B}(u_n) + \nabla \cdot \mathbf{F}(\mathbf{x}, u_n) = \nabla \cdot [\mathcal{D}(\mathbf{x}, u_n) \nabla u_n] + \mathcal{R}(\mathbf{x}, u_n)$$

L-scheme uses iterations

$$Lu_n^i - \nabla \cdot \left[\mathcal{D}_n^{i-1} \nabla u_n^i \right] = Lu_n^{i-1} - \mathcal{B}(u_n^{i-1}) + \left[-\nabla \cdot \mathbf{F}_n^{i-1} + \mathcal{R}_n^{i-1} \right]$$

where L is constant^a

If $\mathcal{B}' \ge 0$, L scheme converges unconditionally for $L \ge \frac{1}{2} \max\{\mathcal{B}'\}$

Theorem

If $\mathcal{B}' \geq 0$; $\partial_u \mathcal{R} \leq 0$; $\mathcal{D}, \mathbf{F}_i \in C^1(\Omega \times \mathbb{R})$; $0 < \mathcal{D}_m \leq \mathcal{D} \leq \mathcal{D}_M$ then there exists a τ_0 and L_0 (independent of meshsize) s.t. for all $\tau < \tau_0$ and $L > L_0$, L-scheme converges linearly in $H^1(\Omega)$ irrespective of the initial guess.

8/27

/ department of mathematics and computer science

$$\mathcal{B}(u_n) + \nabla \cdot \mathbf{F}(\mathbf{x}, u_n) = \nabla \cdot [\mathcal{D}(\mathbf{x}, u_n) \nabla u_n] + \mathcal{R}(\mathbf{x}, u_n)$$

L-scheme uses iterations

$$Lu_n^i - \nabla \cdot \left[\mathcal{D}_n^{i-1} \nabla u_n^i \right] = Lu_n^{i-1} - \mathcal{B}(u_n^{i-1}) + \left[-\nabla \cdot \mathbf{F}_n^{i-1} + \mathcal{R}_n^{i-1} \right]$$

where L is constant^a

If $\mathcal{B}' \ge 0$, L scheme converges unconditionally for $L \ge \frac{1}{2} \max\{\mathcal{B}'\}$

Theorem

If $\mathcal{B}' \geq 0$; $\partial_u \mathcal{R} \leq 0$; $\mathcal{D}, \mathbf{F}_i \in C^1(\Omega \times \mathbb{R})$; $0 < \mathcal{D}_m \leq \mathcal{D} \leq \mathcal{D}_M$ then there exists a τ_0 and L_0 (independent of meshsize) s.t. for all $\tau < \tau_0$ and $L > L_0$, L-scheme converges linearly in $H^1(\Omega)$ irrespective of the initial guess.

For the convergence speed is substantially less b for L>>1 or au small

^aPop *et al.* (2004) ^bList and Radu. (2016) / department of mathematics and computer science

8/27

Observation

Observe that

The local estimates make the schemes faster but less stable

/ department of mathematics and computer science

Observation

Observe that

The local estimates make the schemes faster but less stable

All the schemes mentioned above are designed for elliptic problems. $u_n^0 = u_{n-1}$ remains relatively unused

Observation

Observe that

The local estimates make the schemes faster but less stable

All the schemes mentioned above are designed for elliptic problems. $u_n^0 = u_{n-1}$ remains relatively unused

Questions?? Can we design the \mathfrak{M} -scheme in this case so that it is both

Observation

Observe that

The local estimates make the schemes faster but less stable

All the schemes mentioned above are designed for elliptic problems. $u_n^0 = u_{n-1}$ remains relatively unused

Questions?? Can we design the \mathfrak{M} -scheme in this case so that it is both

Observation

Observe that

The local estimates make the schemes faster but less stable

All the schemes mentioned above are designed for elliptic problems. $u_n^0 = u_{n-1}$ remains relatively unused

Questions?? Can we design the \mathfrak{M} -scheme in this case so that it is both

Assumptions:

A1. The associated functions are smooth up to second derivative

10/27

/ department of mathematics and computer science

Assumptions:

A1. The associated functions are smooth up to second derivative

- A2. $b' \ge m \ge 0$
 - $\partial_u r \leq 0$
 - $0 < \mathcal{D}_m \le \mathcal{D} \le \mathcal{D}_M$
 - $u_0 \in H^1(\Omega)$, $g \in H^{\frac{1}{2}}(\partial \Omega)$, $u_0 = g$ at $\partial \Omega$

Assumptions:

A1. The associated functions are smooth up to second derivative

- A2. $b' \ge m \ge 0$
 - $\partial_u r \leq 0$
 - $0 < \mathcal{D}_m \le \mathcal{D} \le \mathcal{D}_M$
 - $u_0 \in H^1(\Omega)$, $g \in H^{\frac{1}{2}}(\partial \Omega)$, $u_0 = g$ at $\partial \Omega$

A3. $\|u_n - u_{n-1}\|_{L^{\infty}(\Omega)} < \Lambda \tau$ for some $\Lambda > 0$

Assumptions:

A1. The associated functions are smooth up to second derivative

- A2. $b' \ge m \ge 0$
 - $\partial_u r \leq 0$
 - $0 < \mathcal{D}_m \leq \mathcal{D} \leq \mathcal{D}_M$
 - $u_0 \in H^1(\Omega)$, $g \in H^{\frac{1}{2}}(\partial \Omega)$, $u_0 = g$ at $\partial \Omega$
- A3. $\|u_n u_{n-1}\|_{L^{\infty}(\Omega)} < \Lambda \tau$ for some $\Lambda > 0$
 - Translates to $\left\|\partial_t u\right\|_{L^\infty(\Omega\times(0,T])}<\infty$

Assumptions:

A1. The associated functions are smooth up to second derivative

- A2. $b' \ge m \ge 0$
 - $\partial_u r \leq 0$
 - $0 < \mathcal{D}_m \le \mathcal{D} \le \mathcal{D}_M$
 - $u_0 \in H^1(\Omega)$, $g \in H^{\frac{1}{2}}(\partial \Omega)$, $u_0 = g$ at $\partial \Omega$
- A3. $\|u_n u_{n-1}\|_{L^{\infty}(\Omega)} < \Lambda \tau$ for some $\Lambda > 0$
 - Translates to $\left\|\partial_t u\right\|_{L^\infty(\Omega\times(0,T])}<\infty$
 - This holds for sufficiently regular domains, ICs and BCs: e.g. if $u_0 \in \mathcal{C}^2(\Omega)$

Consider the equation $\partial_t b(u) - \nabla \cdot (\mathcal{D}(\mathbf{x}) \nabla u) = r(\mathbf{x}, t, u)$

11/27

/ department of mathematics and computer science

Consider the equation $\partial_t b(u) - \nabla \cdot (\mathcal{D}(\mathbf{x}) \nabla u) = r(\mathbf{x}, t, u)$ discretized into

$$b(u_n) - b(u_{n-1}) - \tau \nabla \cdot (\mathcal{D}(\mathbf{x}) \nabla u_n) = \tau r(\mathbf{x}, n\tau, u_n)$$

11/27

Consider the equation $\partial_t b(u) - \nabla \cdot (\mathcal{D}(\mathbf{x}) \nabla u) = r(\mathbf{x}, t, u)$ discretized into

$$b(u_n) - b(u_{n-1}) - \tau \nabla \cdot (\mathcal{D}(\mathbf{x}) \nabla u_n) = \tau r(\mathbf{x}, n\tau, u_n)$$

We propose the following scheme

 $L_n^i(\mathbf{x})u_n^i - \tau \nabla \cdot (\mathcal{D}\nabla u_n^i) = L_n^i(\mathbf{x})u_n^{i-1} - (b(u_n^{i-1}) - b(u_{n-1})) + \tau r(\mathbf{x}, n\tau, u_n^i)$

Consider the equation $\partial_t b(u) - \nabla \cdot (\mathcal{D}(\mathbf{x}) \nabla u) = r(\mathbf{x}, t, u)$ discretized into

$$b(u_n) - b(u_{n-1}) - \tau \nabla \cdot (\mathcal{D}(\mathbf{x}) \nabla u_n) = \tau r(\mathbf{x}, n\tau, u_n)$$

We propose the following scheme

$$\begin{split} L_n^i(\mathbf{x})u_n^i &- \tau \nabla \cdot (\mathcal{D}\nabla u_n^i) = L_n^i(\mathbf{x})u_n^{i-1} - (b(u_n^{i-1}) - b(u_{n-1})) + \tau r(\mathbf{x}, n\tau, u_n^i) \\ \text{with} \\ L_n^i &:= \max([b'(u_n^{i-1}) - \tau \partial_u r(\mathbf{x}, n\tau, u_n^{i-1}) + \mathfrak{M}\tau], 2\mathfrak{M}\tau) \end{split}$$

Consider the equation $\partial_t b(u) - \nabla \cdot (\mathcal{D}(\mathbf{x}) \nabla u) = r(\mathbf{x}, t, u)$ discretized into

$$b(u_n) - b(u_{n-1}) - \tau \nabla \cdot (\mathcal{D}(\mathbf{x}) \nabla u_n) = \tau r(\mathbf{x}, n\tau, u_n)$$

We propose the following scheme

$$L_n^i(\mathbf{x})u_n^i - \tau \nabla \cdot (\mathcal{D}\nabla u_n^i) = L_n^i(\mathbf{x})u_n^{i-1} - (b(u_n^{i-1}) - b(u_{n-1})) + \tau r(\mathbf{x}, n\tau, u_n^i)$$
with

$$L_n^i := \max([b'(u_n^{i-1}) - \tau \partial_u r(\mathbf{x}, n\tau, u_n^{i-1}) + \mathfrak{M}\tau], 2\mathfrak{M}\tau)$$

Lemma 1.1 With $u_n^0 = u_{n-1}$ and (A1)-(A3)

$$\|u_n^i - u_n\|_{L^{\infty}(\Omega)} < \Lambda \tau$$

for all $i \in \mathbb{N}$

The scheme

$$L_n^i(\mathbf{x})u_n^i - \tau \nabla \cdot (\mathcal{D}\nabla u_n^i) = L_n^i(\mathbf{x})u_n^{i-1} - (b(u_n^{i-1}) - b(u_{n-1})) + \tau r(\mathbf{x}, n\tau, u_n^i)$$

with

$$L_n^i := \max([b'(u_n^{i-1}) - \tau \partial_u r(\mathbf{x}, n\tau, u_n^{i-1}) + \mathfrak{M}\tau], 2\mathfrak{M}\tau)$$

Theorem 1.1 With $u_n^0 = u_{n-1}$ and $\mathfrak{M} > \mathfrak{M}_0 = \Lambda \max_{u \in \mathbb{R}} \{ |b''| + \tau |\partial_{uu}r| \}$

The scheme

$$L_n^i(\mathbf{x})u_n^i - \tau \nabla \cdot (\mathcal{D}\nabla u_n^i) = L_n^i(\mathbf{x})u_n^{i-1} - (b(u_n^{i-1}) - b(u_{n-1})) + \tau r(\mathbf{x}, n\tau, u_n^i)$$

with

$$L_n^i := \max([b'(u_n^{i-1}) - \tau \partial_u r(\mathbf{x}, n\tau, u_n^{i-1}) + \mathfrak{M}\tau], 2\mathfrak{M}\tau)$$

Theorem 1.1 With $u_n^0 = u_{n-1}$ and $\mathfrak{M} > \mathfrak{M}_0 = \Lambda \max_{u \in \mathbb{R}} \{ |b''| + \tau |\partial_{uu}r| \}$

The \mathfrak{M} -scheme converges linearly in $H^1(\Omega) \cap L^{\infty}(\Omega)$ for all $\tau > 0$, $m \ge 0$ with convergence rate

$$\alpha = \sup \frac{\left\| u_n^i - u_n \right\|_{\chi}}{\left\| u_n^{i-1} - u_n \right\|_{\chi}} \le \sqrt{\frac{2\mathfrak{M}}{2\mathfrak{M} + C_\Omega \mathcal{D}_m}}, \quad \chi \in \{H^1(\Omega), L^\infty(\Omega)\}$$

12/27

/ department of mathematics and computer science

The scheme

$$L_n^i(\mathbf{x})u_n^i - \tau \nabla \cdot (\mathcal{D}\nabla u_n^i) = L_n^i(\mathbf{x})u_n^{i-1} - (b(u_n^{i-1}) - b(u_{n-1})) + \tau r(\mathbf{x}, n\tau, u_n^i)$$

with

$$L_n^i := \max([b'(u_n^{i-1}) - \tau \partial_u r(\mathbf{x}, n\tau, u_n^{i-1}) + \mathfrak{M}\tau], 2\mathfrak{M}\tau)$$

Theorem 1.1 With $u_n^0 = u_{n-1}$ and $\mathfrak{M} > \mathfrak{M}_0 = \Lambda \max_{u \in \mathbb{R}} \{ |b''| + \tau |\partial_{uu}r| \}$

The \mathfrak{M} -scheme converges linearly in $H^1(\Omega) \cap L^\infty(\Omega)$ for all $\tau > 0$, $m \ge 0$ with convergence rate

$$\alpha = \sup \frac{\left\| u_n^i - u_n \right\|_{\chi}}{\left\| u_n^{i-1} - u_n \right\|_{\chi}} \le \sqrt{\frac{2\mathfrak{M}}{2\mathfrak{M} + C_\Omega \mathcal{D}_m}}, \quad \chi \in \{H^1(\Omega), L^\infty(\Omega)\}$$

If m>0 and $au< au_0=rac{m}{2\mathfrak{M}}$ then the convergence rate is $\mathcal{O}(au)$

Time-discrete equation

$$b(u_n) - b(u_{n-1}) + \tau \nabla \cdot \mathbf{F}(\mathbf{x}, u_n) = \tau \nabla \cdot [\mathcal{D}(\mathbf{x}, u_n) \nabla u_n] + \tau r(\mathbf{x}, n\tau, u_n)$$

/ department of mathematics and computer science

Time-discrete equation

$$b(u_n) - b(u_{n-1}) + \tau \nabla \cdot \mathbf{F}(\mathbf{x}, u_n) = \tau \nabla \cdot [\mathcal{D}(\mathbf{x}, u_n) \nabla u_n] + \tau r(\mathbf{x}, n\tau, u_n)$$

The scheme reads

$$\begin{split} L_n^i(u_n^i - u_{n-1}^i) - \tau \nabla \cdot \left(\mathcal{D}_n^{i-1} \nabla u_n^i\right) &= -(b(u_n^{i-1}) - b(u_{n-1})) + \tau [r_n^{i-1} - \nabla \cdot \mathbf{F}_n^{i-1}] \end{split}$$
 with

$$L_n^i := \max([b'(u_n^{i-1}) - \tau \partial_u r(u_n^{i-1}) + \mathfrak{M}\tau], 2\mathfrak{M}\tau)$$

Time-discrete equation

$$b(u_n) - b(u_{n-1}) + \tau \nabla \cdot \mathbf{F}(\mathbf{x}, u_n) = \tau \nabla \cdot [\mathcal{D}(\mathbf{x}, u_n) \nabla u_n] + \tau r(\mathbf{x}, n\tau, u_n)$$

The scheme reads

$$L_{n}^{i}(u_{n}^{i}-u_{n-1}^{i})-\tau\nabla\cdot\left(\mathcal{D}_{n}^{i-1}\nabla u_{n}^{i}\right)=-(b(u_{n}^{i-1})-b(u_{n-1}))+\tau[r_{n}^{i-1}-\nabla\cdot\mathbf{F}_{n}^{i-1}]$$

with

$$L_n^i := \max([b'(u_n^{i-1}) - \tau \partial_u r(u_n^{i-1}) + \mathfrak{M}\tau], 2\mathfrak{M}\tau)$$

Assumptions:

A4. $\|
abla u_n\|_{L^{\infty}(\Omega)} \leq \Lambda_1$ for some $\Lambda_1 > 0$

13/27

/ department of mathematics and computer science

Time-discrete equation

$$b(u_n) - b(u_{n-1}) + \tau \nabla \cdot \mathbf{F}(\mathbf{x}, u_n) = \tau \nabla \cdot [\mathcal{D}(\mathbf{x}, u_n) \nabla u_n] + \tau r(\mathbf{x}, n\tau, u_n)$$

The scheme reads

$$L_{n}^{i}(u_{n}^{i}-u_{n-1}^{i})-\tau\nabla\cdot\left(\mathcal{D}_{n}^{i-1}\nabla u_{n}^{i}\right)=-(b(u_{n}^{i-1})-b(u_{n-1}))+\tau[r_{n}^{i-1}-\nabla\cdot\mathbf{F}_{n}^{i-1}]$$

with

$$L_n^i := \max([b'(u_n^{i-1}) - \tau \partial_u r(u_n^{i-1}) + \mathfrak{M}\tau], 2\mathfrak{M}\tau)$$

Assumptions:

A4. $\|
abla u_n\|_{L^{\infty}(\Omega)} \leq \Lambda_1$ for some $\Lambda_1 > 0$

• Required also for proving convergence of *L*-scheme

13/27

/ department of mathematics and computer science

Time-discrete equation

$$b(u_n) - b(u_{n-1}) + \tau \nabla \cdot \mathbf{F}(\mathbf{x}, u_n) = \tau \nabla \cdot [\mathcal{D}(\mathbf{x}, u_n) \nabla u_n] + \tau r(\mathbf{x}, n\tau, u_n)$$

The scheme reads

$$L_{n}^{i}(u_{n}^{i}-u_{n-1}^{i})-\tau\nabla\cdot\left(\mathcal{D}_{n}^{i-1}\nabla u_{n}^{i}\right)=-(b(u_{n}^{i-1})-b(u_{n-1}))+\tau[r_{n}^{i-1}-\nabla\cdot\mathbf{F}_{n}^{i-1}]$$

with

$$L_n^i := \max([b'(u_n^{i-1}) - \tau \partial_u r(u_n^{i-1}) + \mathfrak{M}\tau], 2\mathfrak{M}\tau)$$

Assumptions:

A4.
$$\|\nabla u_n\|_{L^{\infty}(\Omega)} \leq \Lambda_1$$
 for some $\Lambda_1 > 0$

- Required also for proving convergence of *L*-scheme
- Holds if $u_0 \in W^{2,2q}(\Omega), \ q \in \mathbb{N}, \ 2q > d$

$$\begin{split} L_n^i(u_n^i - u_{n-1}^i) &- \tau \nabla \cdot \left(\mathcal{D}_n^{i-1} \nabla u_n^i \right) = -(b(u_n^{i-1}) - b(u_{n-1})) + \tau [r_n^{i-1} - \nabla \cdot \mathbf{F}_n^{i-1}] \\ \text{with} \\ L_n^i &:= \max([b'(u_n^{i-1}) - \tau \partial_u r(u_n^{i-1}) + \mathfrak{M}\tau], 2\mathfrak{M}\tau) \end{split}$$

Theorem 2.1
For
$$u_n^0 = u_{n-1}$$
, $\mathfrak{M} > \mathfrak{M}_0$ and $au < au_0$ assume (A1)-(A4)*. Then

14/27

/ department of mathematics and computer science

$$\begin{split} L_{n}^{i}(u_{n}^{i}-u_{n-1}^{i}) &- \tau \nabla \cdot \left(\mathcal{D}_{n}^{i-1} \nabla u_{n}^{i}\right) = -(b(u_{n}^{i-1}) - b(u_{n-1})) + \tau [r_{n}^{i-1} - \nabla \cdot \mathbf{F}_{n}^{i-1}] \\ \text{with} \\ L_{n}^{i} &:= \max([b'(u_{n}^{i-1}) - \tau \partial_{u}r(u_{n}^{i-1}) + \mathfrak{M}\tau], 2\mathfrak{M}\tau) \end{split}$$

Theorem 2.1 For $u_n^0 = u_{n-1}$, $\mathfrak{M} > \mathfrak{M}_0$ and $\tau < \tau_0$ assume (A1)-(A4)*. Then

The \mathfrak{M} -scheme converges in $H^1(\Omega)$ for all $m \geq 0$

14/27

/ department of mathematics and computer science

$$\begin{split} L_n^i(u_n^i - u_{n-1}^i) &- \tau \nabla \cdot \left(\mathcal{D}_n^{i-1} \nabla u_n^i \right) = -(b(u_n^{i-1}) - b(u_{n-1})) + \tau [r_n^{i-1} - \nabla \cdot \mathbf{F}_n^{i-1}] \\ \text{with} \\ L_n^i &:= \max([b'(u_n^{i-1}) - \tau \partial_u r(u_n^{i-1}) + \mathfrak{M}\tau], 2\mathfrak{M}\tau) \end{split}$$

Theorem 2.1 For $u_n^0 = u_{n-1}$, $\mathfrak{M} > \mathfrak{M}_0$ and $\tau < \tau_0$ assume (A1)-(A4)*. Then

The \mathfrak{M} -scheme converges in $H^1(\Omega)$ for all $m \geq 0$

The \mathfrak{M} -scheme converges linearly in $H^1(\Omega)$ if m>0

14/27

/ department of mathematics and computer science

$$L_n^i(u_n^i - u_{n-1}^i) - \tau \nabla \cdot \left(\mathcal{D}_n^{i-1} \nabla u_n^i \right) = -(b(u_n^{i-1}) - b(u_{n-1})) + \tau [r_n^{i-1} - \nabla \cdot \mathbf{F}_n^{i-1}]$$

with

$$L_n^i := \max([b'(u_n^{i-1}) - \tau \partial_u r(u_n^{i-1}) + \mathfrak{M}\tau], 2\mathfrak{M}\tau)$$

Richards equation in 2-D

/ department of mathematics and computer science

Richards equation in 2-D

$$\partial_t S_w(p) = \nabla \cdot [k_w(S_w(p))(\nabla p - \rho_w \hat{g})] + f \text{ on } (0,1) \times (0,1)$$

/ department of mathematics and computer science

Houston, March 2019

Richards equation in 2-D

 $\partial_t S_w(p) = \nabla \cdot [k_w(S_w(p))(\nabla p - \rho_w \hat{g})] + f \text{ on } (0,1) \times (0,1)$ Take van Genuchten parameters^a: for $m = \frac{2}{3}, n = \frac{1}{1-m}$

$$S_w(p) = \begin{cases} \frac{1}{(1+(-p)^n)^m} & \text{if } p < 0\\ 1 & \text{if } p \ge 0 \end{cases}$$
$$k_w(S) = \sqrt{S}(1-(1-S^{\frac{1}{m}})^m)^2$$

Richards equation in 2-D

 $\partial_t S_w(p) = \nabla \cdot [k_w(S_w(p))(\nabla p - \rho_w \hat{g})] + f \text{ on } (0,1) \times (0,1)$ Take van Genuchten parameters^a: for $m = \frac{2}{3}, n = \frac{1}{1-m}$

$$S_w(p) = \begin{cases} \frac{1}{(1+(-p)^n)^m} & \text{if } p < 0\\ 1 & \text{if } p \ge 0 \end{cases}$$
$$k_w(S) = \sqrt{S}(1-(1-S^{\frac{1}{m}})^m)^2$$

Assumed initial and boundary conditions with $\tilde{p}(x, y, t) = 1 - (1 + t^2)(1 + x^2 + y^2)$,ICt = 0 $p(x, y, 0) = \tilde{p}(x, y, 0)$ on Ω BCx = 0: $p(0, y, t) = \tilde{p}(0, y, t)$,x = 1: $p(1, y, t) = \tilde{p}(1, y, t)$,y = 0: $\partial_y p = 0$,y = 1: $k(S(p))\partial_y p = k(S(\tilde{p}(x, 1, t))\partial_y \tilde{p}(x, 1, t))$.

^avan Genuchten. (1980)

/ department of mathematics and computer science

Mesh Study

/ department of mathematics and computer science

Houston, March 2019

Mesh Study

• For t = 0.5, $\mathfrak{M} = 10$, L = 1

/ department of mathematics and computer science

Houston, March 2019

Timestep Study

• For t = .5, h = 0.05, $\mathfrak{M} = 10$

/ department of mathematics and computer science

Houston, March 2019

Effect of M

/ department of mathematics and computer science

Effect of M

/ department of mathematics and computer science

Houston, March 2019

For details

21/27

see

Mitra, K. & Pop, I. S. (2018). A modified L-scheme for nonlinear parabolic equations. *Computers & Mathematics With Applications*.

Other Problems

Two Phase Equation: The \mathfrak{M} -scheme given as

$$-(S_{w,n}^{i} - S_{w,n-1}) = \tau \nabla \cdot [k_{o}(1 - S_{w,n}^{i-1})(\nabla p_{o,n}^{i} - \rho_{o}\hat{g})]$$

$$(S_{w,n}^{i} - S_{w,n-1}) = \tau \nabla \cdot [k_{w}(S_{w,n}^{i-1})(\nabla p_{w,n}^{i} - \rho_{w}\hat{g})]$$

$$p_{o,n}^{i} - p_{w,n}^{i} = P_{c}(S_{w,n}^{i-1}) - L_{n}^{i}(S_{w,n}^{i} - S_{w,n}^{i-1})$$

with $L_n^i:=-P_c{'}(S_{w,n}^{i-1})+\mathfrak{M}\tau$

Theorem 3.1 With
$$(p_{o,n}^0, p_{w,n}^0) = (p_{o,n-1}, p_{w,n-1})$$
 define
 $e_n^i = \|p_{w,n}^i - p_{w,n}\|_{H^1(\Omega)} + \|p_{o,n}^i - p_{o,n}\|_{H^1(\Omega)} + \|S_{w,n}^i - S_{w,n}\|_{L^2(\Omega)}.$

Assume for $i \in \mathbb{N}$, $p_n \in W^{1,\infty}(\Omega)$ and $||S_n^i - S_n||_{L^{\infty}(\Omega)} < \Lambda \tau$ for some $\Lambda > 0$. Then $e_n^i \to 0$ as $i \to \infty$ for τ small enough and \mathfrak{M} large enough. Moreover, if $P_c'(S) < 0$ and $P_c \in C^2(\mathbb{R})$ then for small enough τ

$$\frac{e_n^i}{e_n^{i-1}} = \mathcal{O}(\sqrt{\tau}).$$

/ department of mathematics and computer science

Capillary Hysteresis (play-type) and Dynamic Capillarity

Richards equation: $\partial_t S_w = \nabla \cdot [k(S_w)(\nabla p - \rho_w \hat{g})]$

/ department of mathematics and computer science

Capillary Hysteresis (play-type) and Dynamic Capillarity

Richards equation: $\partial_t S_w = \nabla \cdot [k(S_w)(\nabla p - \rho_w \hat{g})]$

Closure relation: $-p = P_c(S_w) - \gamma(S_w) \operatorname{sign}(\partial_t S_w) - \mathcal{T}(S_w) \partial_t S_w$

23/27

/ department of mathematics and computer science

Capillary Hysteresis (play-type) and Dynamic Capillarity

Richards equation: $\partial_t S_w = \nabla \cdot [k(S_w)(\nabla p - \rho_w \hat{g})]$

Closure relation: $-p = P_c(S_w) - \gamma(S_w) sign(\partial_t S_w) - \mathcal{T}(S_w) \partial_t S_w$ This can be simplified to

$$\partial_t S_w = \mathcal{F}(S_w, p) := \frac{1}{\mathcal{T}(S_w)} \begin{cases} P_c(S_w) - \gamma(S_w) + p & \text{ if } p < P_c(S_w) - \gamma(S_w) \\ 0 & \text{ if } p \in [P_c - \gamma, P_c + \gamma](S_w) \\ P_c(S_w) + \gamma(S_w) + p & \text{ if } p > P_c(S_w) + \gamma(S_w) \end{cases}$$

Capillary Hysteresis (play-type) and Dynamic Capillarity

Richards equation: $\partial_t S_w = \nabla \cdot [k(S_w)(\nabla p - \rho_w \hat{g})]$

Closure relation: $-p = P_c(S_w) - \gamma(S_w) sign(\partial_t S_w) - \mathcal{T}(S_w) \partial_t S_w$ This can be simplified to

$$\partial_t S_w = \mathcal{F}(S_w, p) := \frac{1}{\mathcal{T}(S_w)} \begin{cases} P_c(S_w) - \gamma(S_w) + p & \text{if } p < P_c(S_w) - \gamma(S_w) \\ 0 & \text{if } p \in [P_c - \gamma, P_c + \gamma](S_w) \\ P_c(S_w) + \gamma(S_w) + p & \text{if } p > P_c(S_w) + \gamma(S_w) \end{cases}$$

$$\begin{array}{c} \mathcal{F}(S_w, p) \\ \hline P_c(S_w) - \gamma(S_w) \\ \hline P_c(S_w) + \gamma(S_w) \end{array} p \\ \end{array}$$

TU/e Eindhoven University of Technolog

/ department of mathematics and computer science

Time-discrete version

S-equation: $S_{w,n} = S_{w,n-1} + \tau \mathcal{F}(S_{w,n}, p_n)$

p-equation: $\nabla \cdot [k(S_{w,n})(\nabla p_n - 1)] = \mathcal{F}(S_{w,n}, p_n)$

/ department of mathematics and computer science

Time-discrete version

S-equation:
$$S_{w,n} = S_{w,n-1} + \tau \mathcal{F}(S_{w,n}, p_n)$$

p-equation: $\nabla \cdot [k(S_{w,n})(\nabla p_n - 1)] = \mathcal{F}(S_{w,n}, p_n)$

Solution strategy: M-scheme

Update: $S_{w,n}^{i} = S_{w,n-1} + \tau \mathcal{F}(S_{w,n}^{i-1}, p_{n}^{i-1})$ Solve: $L_{n}^{i}p_{n}^{i} - \nabla \cdot [k(S_{w,n}^{i})(\nabla p_{n}^{i} - 1)] = L_{n}^{i}p_{n}^{i-1} - \mathcal{F}(S_{w,n}^{i}, p_{n}^{i-1})$ With $L_{n}^{i} := \partial_{p}\mathcal{F}(S_{w,n}^{i}, p_{n}^{i-1}) + \mathfrak{M}\tau$

Time-discrete version

S-equation:
$$S_{w,n} = S_{w,n-1} + \tau \mathcal{F}(S_{w,n}, p_n)$$

p-equation: $\nabla \cdot [k(S_{w,n})(\nabla p_n - 1)] = \mathcal{F}(S_{w,n}, p_n)$

Solution strategy: M-scheme

Update: $S_{w,n}^{i} = S_{w,n-1} + \tau \mathcal{F}(S_{w,n}^{i-1}, p_{n}^{i-1})$ Solve: $L_{n}^{i}p_{n}^{i} - \nabla \cdot [k(S_{w,n}^{i})(\nabla p_{n}^{i} - 1)] = L_{n}^{i}p_{n}^{i-1} - \mathcal{F}(S_{w,n}^{i}, p_{n}^{i-1})$

With $L_n^i := \partial_p \mathcal{F}(S_{w,n}^i, p_n^{i-1}) + \mathfrak{M} \tau$

Theorem 4.1 For small enough τ , large enough \mathfrak{M} , $p_n \in W^{1,\infty}(\Omega)$, there exists a $\alpha = \mathcal{O}(\tau/\mathcal{T})$ such that $\|S_{w,n}^i - S_{w,n}\|_{W^{1,\infty}} + \|p_n^i - p_n\|_{W^{1,\infty}} \leq \alpha [\|S_{w,n}^{i-1} - S_{w,n}\|_{W^{1,\infty}} + \|p_n^{i-1} - p_n\|_{W^{1,\infty}}]$

Time-discrete version

S-equation:
$$S_{w,n} = S_{w,n-1} + \tau \mathcal{F}(S_{w,n}, p_n)$$

p-equation: $\nabla \cdot [k(S_{w,n})(\nabla p_n - 1)] = \mathcal{F}(S_{w,n}, p_n)$

Solution strategy: M-scheme

Update: $S_{w,n}^{i} = S_{w,n-1} + \tau \mathcal{F}(S_{w,n}^{i-1}, p_n^{i-1})$ Solve: $L_n^{i} p_n^{i} - \nabla \cdot [k(S_{w,n}^{i})(\nabla p_n^{i} - 1)] = L_n^{i} p_n^{i-1} - \mathcal{F}(S_{w,n}^{i}, p_n^{i-1})$

With $L_n^i := \partial_p \mathcal{F}(S_{w,n}^i, p_n^{i-1}) + \mathfrak{M} \tau$

Theorem 4.2 If $\mathcal{T} > 0$ then there exists $\hat{\tau} > 0$ independent of \mathcal{T} such that for $\tau < \hat{\tau}$ and large enough \mathfrak{M} , $(S_{w,n}^i, p_n^i)$ converges in $H^1(\Omega)$

Numerical Results

• For^a T = .1, L = 100, $\mathfrak{M} = 1$, h = .1, $\tau = .001$, t = 10

/ department of mathematics and computer science

Houston, March 2019

TU/e Technische Universiteit Eindhoven University of Technology

The linearization schemes are faster if local estimations are taken but are less stable

3

The linearization schemes are faster if local estimations are taken but are less stable

Using $u_n^0 = u_{n-1}$ and local estimations one can have a scheme that has the following properties

3

The linearization schemes are faster if local estimations are taken but are less stable

Using $u_n^0 = u_{n-1}$ and local estimations one can have a scheme that has the following properties

 It is simple and converges unconditionally for small enough timestep sizes independent of meshsize

3

The linearization schemes are faster if local estimations are taken but are less stable

Using $u_n^0 = u_{n-1}$ and local estimations one can have a scheme that has the following properties

- It is simple and converges unconditionally for small enough timestep sizes independent of meshsize
- The convergence rate improves as the timestep size decreases

6

The linearization schemes are faster if local estimations are taken but are less stable

Using $u_n^0 = u_{n-1}$ and local estimations one can have a scheme that has the following properties

- It is simple and converges unconditionally for small enough timestep sizes independent of meshsize
- The convergence rate improves as the timestep size decreases

The ideas were validated with numerical experiments

6

The linearization schemes are faster if local estimations are taken but are less stable

Using $u_n^0 = u_{n-1}$ and local estimations one can have a scheme that has the following properties

- It is simple and converges unconditionally for small enough timestep sizes independent of meshsize
- The convergence rate improves as the timestep size decreases

The ideas were validated with numerical experiments

The ideas are extended to pseudo parabolic equations

References

- W. Jäger and J. Kačur. Solution of doubly nonlinear and degenerate parabolic problems by relaxation schemes. ESAIM: Mathematical Modelling and Numerical Analysis, 29(5), 1995.
- F. List and F.A. Radu. A study on iterative methods for solving richards' equation. Computational Geosciences, 20(2), 2004.
- I. S. Pop, F. Radu, and P. Knabner. Mixed finite elements for the Richards equation: linearization procedure. Journal of Computational and Applied Mathematics, 168(1), 2004.
- F.A. Radu, I.S. Pop, and P. Knabner. Newton-type methods for the mixed finite element discretization of some degenerate parabolic equations. In Numerical Mathematics and Advanced Applications, 2006.
- M. Celia, E.T. Bouloutas, and R. L. Zarba. General mass-conservative numerical solution for the unsaturated ow equation. Water Resources Research, 26(7), 1990.
- D. Seus, K. Mitra, I.S. Pop, F. Radu, and C. Rohde. A linear domain decomposition method for partially saturated flow in porous media. arXiv preprint arXiv:1708.03224, 2017.
- F. Lehmann and P.H. Ackerer. Comparison of iterative methods for improved solutions of the fluid flow equation in partially saturated porous media. Transport in Porous Media, 31(3), 1998.
- L. Bergamaschi and M. Putti. Mixed finite elements and newton-type linearizations for the solution of Richards' equation. International Journal for Numerical Methods in Engineering, 45(8), 1999.

Thanks to

and Thank You for listening

/ department of mathematics and computer science