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Introduction

» Preconditioning or regularization method often applied to a misfit
function

» to stabilize ill-posed inverse problems
» to retrieve and preserve desired features of model parameters

» |f edges of the model or if the model is blocky, often an
edge-preserving regularization method is used: Total Variation (TV)

» TV regularization method provides high-resolution images of
the subsurface where edges and discontinuities are properly
preserved

» However, finding proper parameters that control nonlinearity of
the model that associated with its implementations is
cumbersome & is time-consuming to adapt for full waveform
Inversion
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Total Variation Regularization

» Total Variation Regularization (Osher et al., 1992)
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J(u) = Ellﬂu—zlihrﬁﬁ(")a (3)

where u is true image, z is noisy image and A is forward modelling

operator.
R(u) = f IV uldxdz = f V12 + u2dxdz. (4)
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» Image restoration problem
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» if [Vu| = 0, then the first-order condition cannot be satisfied, and
also the second-order (in the Newton's method)



» We perturb the TV norm functional:- Primal problem
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where 3 is a small positive parameter.

» Then, image restoration can be performed using a time marching
scheme

—aV. ( \/|‘U’?u; T ffﬂ) + A" (Au—2z) =0 (8)

: X *(Au — z u( x = z(x
ut_w.(\/lmlzw)um ) ux0)=2()  (9)

Effect of 3

» if 3 is too small, a solution to the image restoration with the
first- or second-order condition will yield a wrong solution or it
might fail

» if 3 is too large, it will smear the edges of u



Primal-Dual Total Variation

» The term, V. (1‘%) is high nonlinear and is the source of
numerical problems

» In the primal-dual TV problem, a unitary vector w is introduced to
linearize the problem

v (;EJ ) ( mvji ¥ ﬁ) | =
> Then, the image restoration problem yields the following system of
equations
—aV.w+A*(Au—z) =0 (11)
wy/|Vul2 + 8 — Vu=0, (12)

where solution to the above equations is solved with |w|, <1
bound condition
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Solution often convergence even if 3 = 1019 or small, and is stable



Primal-Dual Total Variation

» For simple denoising problem, A = [/, the primal-dual problem
becomes

1
min max /—L‘tu‘?.w dxdz + §||u—z||2, (13)
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where u becomes
ulw) =z+aV.w (14)

» After some simplifications, the dual problem is equivalent to solving

1
m;gl EII"? w + —zH (15)

» Once the dual problem is solved, the solution to the primal problem
s followed by updating u with

u(w) =z+aV.w (16)

Note that w is the dual variable and u is the primal variable. Hence
the problem is viewed as a primal-dual problem.



Regularization by Denoising (RED)

» Elad et al 2016 proposed the following regularization term for image

denoising problem

p(m) = ST [m — F(m)]. (17)

where f(.) is any arbitrary denoising engine of choice and m is
model parameter.

» Conditions and properties f(m)
» For small positive scaling parameter ¢, f(m) is local

homogeneous
f(cm) = cf(m) (18)

- leads to the following simple expression
f(m) = Vmf(m)m (19)

» The Jacobian V,,f(m) of a denoising algorithm is stable and
satisfies the condition

|[f(m)]| < [|m]| (20)

» With the above conditions, the gradient of the regularization term
leads to the following simple equation

Vmp(m) = m — f(m) (21)



Regularization by Denoising (RED) ...

» |n the case of regularized FWI, we minimize J(m) using constrained
optimization
minimize  J(m)
m (22)
subject to p(m) < ¢

» Then constrained optimization leads to the following

J(m) = [ldops — d(m) > + Sm [m — F(m)] (23)
A T
J(m) = Jo(m) + 5m [m — f(m)] (24)

» The gradient of the misift function becomes
VmJ(m) = Vmdo(m) + Am — g [f(m) 4+ Vmf(m)m] (25)

» From the second condition of RED, we have

Vmf(m)m = f(m) (26)



Regularization by Denoising (RED) ...

» Then, the gradient of misfit function of the regularized FWI
becomes
VmJ(m) = VnJo(m) + A(m — f(m)) (27)

» Then, model building via regularization by denoising is carried out
iterative as

My — My — (vakJﬂ(mk) . /\(m;, — f(mk_]_)) (28)

Newton's Method!

» In the case of Newton's method or second-order optimization
techniques, the model perturbation update will be

dm = —V2 Jo(m) + A\ - —2%) (29)



FWI via RED scheme
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Surface acquisition, free surface
»  Number of shots:- 100

»  Number of receivers:- 298
In order to introducing artifacts in the model, we used simultaneous source techniques via source-encoding
techniques

P 4 super-shots are created, where each super-shot contains 25 individual monochromatic sources
Multi-scale time domain FWI (Bunks et al., 1995)

»  invert model with 6 frequency bands (0.0-5.0Hz, 0.0-7.0Hz, 0.0-9.0Hz, 0.0-12.0Hz, 0.0-15.0Hz,
0.0-23.0Hz)

Maximum number of iteration for each frequency group is 30 (CG)




Reconstructed model via RED - Prime-Dual TV (23.0Hz)
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Vertical velocity profiles
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Comparison of vertical velocity profiles. The depth velocity profiles are extracted at (5.50 Km,0
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Lateral velocity profiles
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Lateral velocity profiles are extracted at depths 2.2 Km & 3.8 Km




Misfit function
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Summary

» The aim of this work is to feasibility and advantage of incorporating an
edge-preserving denoising algorithm via regularization by denoising (RED)
technique in full waveform inversion for velocity model buildings with strong
velocity contrasts and sharp discontinuities.

» One advantage of the regularization by denoising algorithm in FWI is the
easiness of implementation. The regularization by denoising technique only
requires an image denoising engine to handle the structure of the inverse
problems.

» The primary objective of the Primal-Dual Total Variation denoising technique is
to remove some of the singularity caused by the non-differentiability of the L,
TV norm and is performed by applying a linearization technique.

» The known edge-preserving, for example, additive or the TV-norm constraint
method requires a cumbersome work in finding optimal parameters that control
the nonlinearity properties of the model to impose and retrieve desired features
on subsurface images.
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