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Background
Introduction

COUPLED PROBLEM:

interface 0 .
Free flow <" Flow in the porous medium J

DIFFERENT APPROACHES to solve the coupled problem:

@ Domain Decomposition Methods:
Decoupling the global problem so that mainly independent
subproblems are to be solved.

@ Monolithic Methods:
Simultaneous solution of the coupled multi-physics system.
Preconditioners and Multigrid methods.



Problem Formulation

Basic equations
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" yn
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Figure: Geometry of the coupled Darcy/Stokes problem.

Porous medium description Free flow description:

K u/+vp’=0 inQ¢, Vo' =f inQ",
Voul=f" inQ’. vu'=0 inQ .
@ u? = (u9,v9) and p?. @ uf = (uf,v") and p'.
@ The hydraulic conductivity tensor @ of = —pf1+2uD(uf),
K = KI, K > 0. D(uf) = (Vuf + (Vuf)T)/2.




Problem Formulation

Interface conditions

f

We fix the normal vector to the interface to be n = nf = —n“ and we denote T

as the tangential unit vector at the interface I'.

@ Mass conservation:

@ Balance of normal stresses:
fn-af-n:pd onTl.
@ Beavers-Joseph-Saffman condition: (« is a parameter)

f f
au' -T+7-0 -n=0 onl,

No-slip condition:
u.r=0 onrl.



Discretization

Staggered grids
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Figure: Control volumes for u?/" (left), v¥/" (middle), p?/* (right).



Discretization

Discretization at the interface
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Figure: Staggered grid location of Qug — UV Zh/2 + = 2 1 =0
the unknowns for the interface
conditions.

@ Peiyao Luo, Carmen Rodrigo, Francisco J. Gaspar, Cornelis W.
Oosterlee, Uzawa smoother in multigrid for the coupled Porous
Medium and Stokes Flow System, SIAM Journal on Scientific
Computing, 2017.



Saddle point system
A BT u) (g
B 0 p )  \f

e BT: discrete gradient. B: minus discrete divergence.

@ A: discrete —vA for the Stokes equation.
discrete K~/ for the Darcy equation.

Coupled system

A 0 (BT 0 u? 0
0o A" R (BNHT of | | ff
BY R 0 0 pd | | 4|
0 Bf 0 0 pf 0

a=(% &) e=(% &) 7=("R @y)

where R contains the relations given by the interface discretization




Numerical Method

Introduction to Multigrid

Multigrid methods are among the fastest iterative methods for solving PDEs )

Two principles:

@ Smoothing property:

@ Coarse-grid correction principle

@ Choice of coarse grids and operators
@ Inter-grid transfer operators
Multigrid @ Type of cycle
@ Smoother
components o

Number of iterations of pre- and
post-smoothing



Numerical Method
Uzawa smoother
A BTN\ [ My [ Ma—A —BT
B 0 o B —wl/ —w™l ) J

@ w: some positive parameter.

@ Mj: Symmetric Gauss-Seidel for velocities
Ma = (Da + La)Dy*(Da + Ua)

The decoupled iteration can be described as:

(8 i) (5)= (" 220 ) (5)+ (%) |

@ apply smoother My to relax the system Au=g — B p;
ie, 0=u+M;'(g—Au—BTp);
@ update the pressure: p=p+ w(Bi —f).

o Optimal Parameter wep:?



Numerical Method

Comparison between LFA and asymptotic results

2 h?
(*] Darcy: wopt = W = 57
s
2
@ Stokes: Wopt = ﬁ =V
14 14
Darcy Stokes
v+, | K=1 [ K=10° | v=1] v=10"°
2 0.600 0.600 0.304 0.304
3 0.360 0.360 0.143 0.143
4 0.216 0.216 0.081 0.081

Table: Two-grid convergence factors, p predicted by LFA.

1 10°°
1 10°° 1 107°
059 | 059 | 059 | 0.59

0.36 0.36 0.36 0.36
0.21 0.21 0.21 0.21

Vi + 12

» W NY|X

Table: Asymptotic convergence factors, pp, for the coupled problem.



Numerical Method

Multiblock multigrid algorithm
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Multiblock two-grid algorithm:

(with only pre-smoothing)

o
(2]
o
(%]
(5]
o
Q
o

Relax velocity unknowns.
Stokes to Darcy: vi — v9 (o).
Update pressure unknowns.
Darcy to Stokes: p? — p (x).
Compute the residual.

Darcy to Stokes: r? — rf (o).
Restrict the residual.

Solve exactly the defect equation on
the coarsest grid.

@ Stokes to Darcy: ef — ef.

@ Interpolation and correction.




Numerical Experiment

Beavers-Joseph-Saffman interface condition

Analytical solution
d
d [ u(x,y) \ _ [ —Ke¥cosx
“ (X’y)< va(x,y) )( —KeYsinx )’

p?(x,y) = € sinx,

o= () )= (e )

X,y
p'(x,y) =0,
K
where A(y) = K—2—+( ﬁ + 5

Q:(O,l)x(—l,l),Qd:(O7 ) x (=1,0), Qf = (0,1) x (0,1).
Interface ' = (0,1) x {0}.
Free flow: Dirichlet conditions for uf and v at the outer boundaries.

Porous medium: fixed pd at the bottom, Dirichlet conditions for u?
and v at the lateral walls.



Numerical Experiment

Beavers-Joseph-Saffman interface condition

64 x 128 128 x 256 | 256 x 512
1.42x 1075 [ 3.63x10°° [ 9.19x 107
4,00 x107° | 1.19 x 1075 | 3.38 x 10~°
9.11x107° | 2.32x 107% | 5.84 x 10~
1.21 x 107> | 3.06 x 107° | 7.71 x 107
2.97 x107° | 7.66 x 107° | 1.95 x 10~°
474 %1073 | 2.38x 1073 | 1.19 x 1073
Table: Maximum norm errors of variables u/*, v¢/f, p?/ for different

grid-sizes, by considering fixed values ¥ =1 and K = 1 and prescribing the
Beavers-Joseph-Saffman condition at the interface with o = 1.
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Numerical Experiment

Beavers-Joseph-Saffman interface condition
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Figure: History of the convergence of the W(2,2)—multigrid method for
different values of the physical parameters.




Numerical Experiment

Realistic problem: cross-flow membrane filtration model

f_oJ =
0.007 u =0v' =0 e
Edit 0% Z ¢
xy =
Block2 Block3 qf Blocké4
uf = 0.1
vi=o uf =0
Vi =0
r
0.00:
NEE uf =vi =0
Block1 J
LY =0 Q LY =0
0 0.00375  pd =0 0.01125  0.015 X

Figure: Geometry of the coupled problem.

@ 4 blocks, K =0.1or K=10"°% v =10"°.
@ Beavers-Joseph-Saffman interface condition.
@ Communications on each level.

@ Excellent multigrid convergence factor 0.2 for W(2,2)-cycle for the
coupled system.




Numerical Experiment

Realistic problem: cross-flow membrane filtration model

o 2107 velocity vector o 2107 velocity vector

v
v
'

0 0.005 0.01 0.015 0 0002 o 10012 0014 0016

(a) K =0.1 (b) K =106

Figure: Velocity vectors over the cross-flow filtration domain with different
values of permeability.



Numerical Experiment

Heterogeneity test

To simulate heterogeneity in the porous medium, a Gaussian model
characterized by parameters A\, and ag is considered, i.e.,

C(dg) = or; exp f)\—g ,
g

where d, is the distance between two points, Az defines the correlation
length and aé represents the variance.

0.0025

_

Figure: Example of random field of hydraulic conductivity K in log-scale, with
parameters A\, = 0.3 and o*; =1.

o
0.00375 0.01125



Numerical Experiment

Heterogeneity test

@ Two different values for parameter \,: Ay, = 0.1 denotes a more
heterogeneous porous medium than Az = 0.3.

@ 50 realizations of the random field are generated and we record the
multigrid convergence factors of the W(2,2)-cycle.

AT [ 2\, =03] A\, =01
25600 | 0.19 0.20
12800 | 0.19 0.21
6400 | 0.20 0.29

Table: Mean value of the multigrid convergence factors after 50 realizations.




Numerical Experiment

Coupled Stokes and Deformable Porous Medium System

QP
fn’ 7 | °
me dn T
Qf
Deformable Porous Media Stokes Flow
—V.-oP =P in QP Su o )
— V.o =f" inQ
%(v-uP)Jrv-qP:fp in QP P ot 7 n
f L of
uf = Q
4" = —KVpP in QP V-u 0 in
o uP = (uP,vP) and pP o uf = (v, vf) and p’
e of =of — prl o of = —pfl+2vD(uf)
o oE(uP) = 2uD(uP) + Atr(D(uP))l o D(u) = (Vu" + (Vu')7)/2

4



Numerical Experiment

Interface conditions

@ Mass conservation:

@ Conservation of momentum:

n-ofn—n-6Pn=0

and
f

T-o'n—7-0°n=0
@ Beavers-Joseph-Saffman interface condition:

P
—T~afn:[3(uf—aai)-~r

@ No-slip condition:
F o OuP

=T



Numerical Experiment
Saddle point structure

T
At each time step: (g fc)(;>:(%>

e BT and B = discrete gradient and the negative discrete divergence

@ For the poroelastic system:
o Ais —puA — V(A + p)V- and C corresponds to —7V - (KVp)

o For the Stokes system:
o A represents 21 _ VA and Cis a zero block

o,

Af RT (Bf)T (R/)T uf ff
R A 0 (B”)T w | | P
Bf 0 0 0 pf | | O
R B> 0  —CP pP fP

AT RT B 0 0 0
(5 W) (% 5) (0 &)

wheere R and R’ contain the coupling at and near the interface.




Numerical Experiment

Monolithic multigrid

@ Uzawa smoother

@ Optimal relaxation parameter
o Poroelasticity system:

WP = h2(>‘+2ﬂ)
5KT(A+2u) + h?

o Stokes system:
2
f_ ph
we=vE 8t

Relaxation parameters do not only depend on the model coefficients but
also on the grid size and on time step 7, thus w” and w’ are different on
each grid of the hierarchy in the multigrid method




Numerical Experiment

Analytical test. No-slip condition

Analytical solution

o =P = (2~ y)e!

vi=vP =0

pi=lpai=te

Q=(0,1) x (0,2), Qf = (0,1) x (0,1), Q7 = (0,1) x (1,2)
Interface ' = (0,1) x {1}

Dirichlet boundary conditions for displacements and pressure at the
lateral boundaries of QP.

Stress conditions at the top of QP, where the fluid pressure is fixed

In Qf, stress conditions at both inlet and outlet, while a symmetric
boundary condition is imposed at the bottom.

Interface conditions with the simplified no-slip interface condition



Numerical Experiment

Analytical test. No-slip condition

64 x 128 x 4 | 128 x 256 x 8 | 256 x 512 x 16
uf [2.01x107% [973x10° [ 476x10°°
vl [ 120 x107*% | 447 x107° 231 x107°
pF [316x1073 [ 1.63x1073 7.95 x 1074
uP | 6.77 x 1073 [ 3.46 x 1073 1.75 x 1073
vP [6.38x10% [3.26x10~* | 1.65x 10~*
p? | 3.87 x 1073 | 1.68 x 1073 7.75x 1074

Table: Maximum norm errors of variables u/?, v//? and p//? for different grid

sizes with parameters K =1, A\=1, u=1, v=1and p=1.




Numerical Experiment

Analytical test. No-slip condition
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Figure: History of the convergence of the W(2,2)—multigrid method for
different values of the physical parameters



Numerical Experiment
Multi-block realistic test

Y
05 oy =03, =0
uP =vPl=0 Qr uP=vP =0
0.4 Block4
' Uf:Vf::O I_ Uf:Vf:O O’)CX:J)inO
of #0 uf = vf =0
XX Block1l Block? Block3
O')iy =0
Qf
0 02 o/ _of _o' _o 038 1 "x
dy — 9y — 9Oy

o Fluid inflow in Qf: of = —20000
@ Small exit at the right vertical boundary (stress-free boundary)
e K=10"% A=10° p =25 x10% v =0.0035 and p = 1.



Numerical Experiment

Drained conditions on the exterior of Q2P

@ Drained conditions (pP = 0) for pressure on the exterior of QP

velocity vectors (t=0.0025) 200025

velocity vector:

05 EEEEEENEEENEEN 08
G
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Ny
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Numerical Experiment

Impermeable conditions on the exterior of (2P

@ Impermeable conditions on the exterior of QP

K =0.01 K=10"*

velocity vectors (t=0.0025) velocity vectors (t=0.0025)




Conclusions

Conclusions

@ A coupled model based on the Darcy equation and the Stokes
equations with appropriate internal interface conditions is
formulated.

@ An efficient monolithic multigrid solution technique with a
decoupled Uzawa smoother is employed for the coupled system.

@ LFA smoothing analysis is applied to determine the optimal
parameters in the smoother.

@ The proposed method is independent from the physical parameters,
which is more robust than other existing strategies.

@ Same idea applied for a more complicated coupled model based on
Deformable porous media and Stokes equations.
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Conclusions

@ A coupled model based on the Darcy equation and the Stokes
equations with appropriate internal interface conditions is
formulated.

@ An efficient monolithic multigrid solution technique with a
decoupled Uzawa smoother is employed for the coupled system.

@ LFA smoothing analysis is applied to determine the optimal
parameters in the smoother.

@ The proposed method is independent from the physical parameters,
which is more robust than other existing strategies.

@ Same idea applied for a more complicated coupled model based on
Deformable porous media and Stokes equations.

THANK YOU FOR YOUR ATTENTION!! )
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