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Motivation

Goal:
Q parallel simulation of network

@ couple rainfall with the current tools of storm
surge simulation, ADCIRC

Current models:

O HEC-RAS, implicit solver

O GSSHA, Manning’s equation
Computational challenges:

@ establish an explicit method to solve the
Shallow water Equations

@ include physical characteristics (e.g., infiltration
rates, friction coefficients, etc.) and the
geometrical characteristics (e.g., bathymetry
and topography)

Q algorithmic performance, parallel simulation

Poursartip & Dawson Network simulation

River network

March 11, 2019 2/31



Outline

@ Mathematical framework: flow in a single reach
o 1D Shallow Water Equations
@ Source term

@ Verification
o Flow over a bump

@ River network simulation
@ Junction simulation
o Flow in a synthetic channels

@ Conclusions and remarks
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Mathematical framework: flow in a single reach 1D Shallow Water Equations

Q Mathematical framework: flow in a single reach
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Mathematical framework: flow in a single reach 1D Shallow Water Equations

Governing equations

One-dimensional shallow water equation in the conservative form

Oh  O(uh) _R-1I
Stur) P5h + 0.50m%)

u u .59

ot 62 9h(So = 5y)

F f
ree surface § R

1D Shallow Water Equation
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z: distance

t: time

h = h(z,t height

u=u(z,t): velocity

R: Rainfall

I Infiltration

g: ground acceleration

z=b(z): bottom surface elevation

Sp = o slope of the bottom
Oz

Sy = n2u4|u| friction slope
h3

n: Manning’s number
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Mathematical framework: flow in a single reach
Governing equations

In the compact form, (unknown: w(z, t))
ow(z,t) N of(w; z,t)

ot 5. s(w;z,t)

where, w&f&s:RxR— R™2
h uh R—-1T }

wie )= [n et = |y o] semen = 87T
Using the chain rule, to linearize the system:

of(w,z,t) Of(w,z,t) 0w A@w

oz ow 8z = 0Oz
where,
0 1
A(z,t) = [c2 2 2u] , c=+/gh
Finally:
ow(z,t) ow
T = A6—$+S(W,$,t)
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Finite Volume Method

@ Uniform discretization of the z — ¢t domain: Az = 2,11 — z;, At =tp41 — iy
@ A mesh cell C; denoted by (z;,t,), bounded by z; 13, Zi11/2 (Tit1/2 = z; + 5T)
O Discretize the eq. by integrating it over space-time rectangle [z;_1/2, Tit1/2], [tn, tnt1]:

ow of
ZL(E + % = s)da:dt

/W(m,tn+1)dm:/W(z,tn)dm—|—/(f(mi+1/2,tn)—f(zi_l/g,tn))dt+//sdmdt
T T t tJz

Finite volume discretization a single reach
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Finite Volume Method

Now, we express the variables in terms of spatial and temporal mean value of w and f:

1 Tit1/2
U= [ et

- E Ti-1/2
1 tnt1
F(UTi+1/2) = —/ F(2is12, t)dt.

D

U oF U

Bt ap TS AG TS

Final equation based on fluxes:
n+1 n At . .
Uyttt =107 - E(F(U,z +1/2) - F(U,1—1/2)) + S

How to choose F?
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First-order method

Upwind method (Low resolution)
Flow to the right:

F1+1/2 =F;
urtl =ur - ~ (AU? — AUZ )

Flow to the left:
F1+1/2 - Fl+1

" At
U = Uy - — (AU}, - AUY)
@ Pros: no oscillation near a discontinuity, convergence

@ Cons: only a first-order method, highly diffusive, less accurate

i+
various flow conditions
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Mathematical framework: flow in a single reach 1D Shallow Water Equations

Second-order method

@ Pros: High-resolution method,
O Cons: Solution is oscillatory at the discontinuities.

Taylor expansion of U for each cell C; = (z;_1/2, Tit1/2):

ou At? 52U
n+l _ yn g 20 (2 =y
Ui - Uz +At( ot )z + 2 ( 52 )z
We have from the SWE: 5U 5U
ot~ A TS
0°U 0 ,0U 0 @ 0°F

oS

5 — oot~ 5t o T T "aem T o

__0FoU 58
T 8z'8U bt ot
8, ,0U_ B8(AS) 6S
%) " e T

Poursartip & Dawson Network simulation March 11, 2019 10/ 31



Mathematical framework: flow in a single reach
Second-order method
Substituting in back in the Taylor expansion, and dropping the third- and higher-order terms:

ou At? 8 ou
UF = U7 + A -AS ) + S (o (AP )T

Oz 2 ‘0z
. A28 . At28SP
FAST g AT

Let’s drop the terms corresponding to S for a moment, substitute:

. At " n At?
Uit =Ur - =AU, - U7 ) + 2AZ?

_ A*(UZ,, - 2U7 + UT)

Rearrange to find the fluxes-Lax-Wendroff method:

" . At 1 n ny At n n
urtt=Up - E{ [§A(Ui+1 +U7) - EAQ( = U]

1 At

~SAUT + UL - AN(UT - U]}
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Flux limiter

To combine the advantages of both first- and second-order methods:

At
n+1 __
Ui - U? - E{F?Jrl/z - F;il/z}
Rewrite the high-resolution flux:
Ff{»l/2 = Ff’+1/2+ (Fﬁu/z - FiL+1/2) F£1/2 = Fil/z‘*‘ (Fﬁl/z - F1111/2)
FﬁLl/z = Ff’+1/2 + Piti2 (Fﬁu/z - FiL+1/2) Fﬁuz = F£71/2 + i1z (Ff{l/z - Fz{1/2)

The flux limiter term:
1 high-order method (Lax-Wendroff)

0 low-order method (upwind)

$(U) = {
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Q Mathematical framework: flow in a single reach

@ Source term
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Mathematical framework: flow in a single reach
Source term

Now let’s focus on the second part of U?*! (source term)
6U At? 8, ou

n+1l __ n _ = 2 r
. At? 8 . A2 9S?
TS - 55 ASE 5
The second part of the equation:
. At 8 At? 5ST .  At8SE. At? 8
AT = g ASI+ - = BUST+ 50 ) = 55, (ASK
Taylor expansion of S*:
At
Srtt = S”+At(% T =SP4 8r = (ST 4+ = (6S M
The second part of the equation:
At (S" + Sn+l) At? (AS)1+1/2 (AS)z 1/2

Az
The issue here is SP*
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Mathematical framework: flow in a single reach
Final equations

Final equation:

n A e At At ~
Urtl = (I1- TBi) Lor - —(A AU 1o+ AT Uy )0) — E(}-i-u/z — Fic1/2)
n lonrin At? (AS)1+1/2 (AS)?_UQ
+ At(S] _EBiUi)_T Az )
where,
Fio1j2 = Z|31 1/2| |31 1/2|) i—1/2
m=2
ATAUY ), = Z(s§’+1/2)_af_1/2rp
p=1
0 o 1"
B? = 7 2gSf
9(So + gsf) 2
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Boundary conditions

Periodic boundary condition:
Uy =Un_1s o =Ux
U17\lr+1 =Ur, U17\11+2 =Uy
Zero-order extrapolating from the interior solution:
ur, =Up, Ul =U7
Upyr = Uy, 17\?+2 =Uy

First-order extrapolating from the interior solution.

Ghost cells
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Qutline

Q Verification
o Flow over a bump
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Verification Flow over a bump

Flow over a bump

Example 1: Smooth subcritical flow
Domain: O0m < z < 25m
Bathymetry:

—0.2 4+ 0.05(z — 10)2
2(o,9) = {0 (z=10)

Manning’sn: 0
Initial condition:
Surface elevation: A = 2m
Flux: @ = 0m3/s
Boundary conditions:
atz = 0m Q@ =4.42m3/s
atz=25m h=2m
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8m < z < 12m

else
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Verification Flow over a bump

Example 1: Smooth subcritical flow
Upwind method (¢ = 0)
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Flow over a bump

Example 1: Smooth subcritical flow
Lax-Wendroff method (¢ = 1)

Poursartip & Dawson Network simulation March 11, 2019 20/31




Flow over a bump

Example 1: Smooth subcritical flow
minmod limiter, most diffusive (¢ = ....)
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Flow over a bump

Comparison btw various limiters

3.05

2.7625 F

< 2475

218751

18.65 18.85 19.05 19.25 19.45 19.65
X
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River network simulation Junction simulation

Q River network simulation
@ Junction simulation
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Network/Junction simulation

Network simulation

Junction simulation in HEC-RAS

Junction Simulation

Flow combination Flow split

Subcritical flow Mixed flow Supercritical flow  Subcritical flow Mixed flow Supercritical flow

PNV NN

Energy ~ Momentum Energy Momentum Energy Momentum Energy  Momentum Energy ~ Momentum Energy Momentum
based based based  based based  based based based based  based based  based
method  method method method method method method  method method  method method  method
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Junction simulation

Energy-based method for flow combination in HEC-RAS

Reach 1 Reach 2

Junction Reach 1 Reach 2
n-1 n-1
nn+1 an
n+2 n+2
Reach 3 ‘%
2 Reach 3
Q@ Reach 1 & 2:
h from the energy balance, a?v? a’V?
hy +—*=hs+
uh from cell n. 2g 29
Q@ Reach 3:
h from cell 1, Q3 =Q1+ Q2

uh from conservation of mass.
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Parallel implementation

Q Partitioner:
o based on METIS 4.0,
o creates input file for each rank separately,
o creates geometry files for visualization.

@ Parallel engine (simulator):
o hybrid parallelization: MPI and OpenMP,
o reach and junction simulation.

@ Visualization

o based on XDMF and PHDF5,
o partitioner code: geometry data,
o simulator creates the results file for each rank.
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River network simulation Flow in a synthetic channels

Q River network simulation

o Flow in a synthetic channels
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Synthetic channel

Network:

o

© 00 000CO0OO0OO

©

no. of reaches: 16
no. of junctions: 15
no. of cells: 2395
duration: 3600 sec
time step: 0.1 sec
total steps: 36000
total length: 9650 m
longest reach: 4350 m
initial height: 4 m
initial velocity: 0 m/s
flow: 8 m/s

Scalability of the model for HPC:

No. rank  Simulation time

2 200 sec
4 134 sec
8 95 sec

Poursartip & Dawson

River network simulation Flow in a synthetic channels

Synthetic network

N

Network simulation
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Synthetic channel

Animation water height/velocity
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Conclusions

The developed model is:

Q Explicit,

@ Scalable,

O Flow in in a single reach or river network,

@ Coupled with storm surge models (ADCIRC)
The code is:

@ Fortran,

@ OOFP,

Q Parallal (OMP/MPI)
References
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The End

Thanks for your attention
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