
Conservative Explicit Local Time-Stepping Schemes
for The Rotating Shallow Water Equations

T.T. Phuong Hoang

Department of Mathematics and Statistics
Auburn University

SIAM GS19 - Mar 12, 2019
Houston, TX

Phuong Hoang Explicit Local Time-Stepping 1 / 20



Collaborators:
Lili Ju, Zhu Wang (University of South Carolina)

Wei Leng (LSEC, Chinese Academy of Sciences)

Konstantin Pieper (Florida State University)

Acknowledgment:
US Department of Energy as part of the project E3SM (Energy Exascale Earth
System Model), previously known as ACME, to develop the next generation of
Earth System Models.

Reference:
H., LENG, JU, WANG AND PIEPER, Conservative explicit local time-stepping
schemes for the shallow water equations, J. Comput. Phys., 2019.

Phuong Hoang Explicit Local Time-Stepping 1 / 20



Ocean Modeling by MPAS-Ocean 1

Figure courtesy of MPAS-Ocean.

Multi-resolution Voronoi mesh
[Figure reprinted from Ringler et al. (2011)]

Large-scale, nonlinear problems −→ explicit time-stepping & parallel simulation.

Multi-resolution meshes −→ time step sizes restricted by the size of the
smallest cell.

=⇒ Multi-scale time stepping algorithms.

1MPAS: Model for Prediction Across Scales
Project funded by the Department Of Energy (DOE)
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Efficient local time-stepping (LTS) schemes for MPAS-Ocean

Spatially-dependent time steps

−→ local CFL conditions for stability.

Explicit schemes

−→ parallel, easy to incorporate into MPAS-Ocean.

Conservation properties.

Desired high-order accuracy in time.
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Literature review

LTS algorithms of predictor-corrector type
Osher and Sanders (1983): first order in space (finite volume discretization) and in time
(explicit Euler)

Dawson and Kirby (2001): second-order in space (high resolution methods with slope
limiters) and in time (Heun’s method)

Sanders (2008): Godunov-type finite volume method, efficiency of a first-order LTS
algorithm in term of computational cost via extensive numerical experiments.

Krivodonova (2010): second-order in space (discontinuous Galerkin methods) and in time
(Heun’s method); Ashbourne (2016): extensions to third and fourth order Runge-Kutta
methods.

Trahan and Dawson (2012): Runge-Kutta discontinuous Galerkin finite elements,
first-order accurate in time near the local time-stepping interface.

Other approaches
Berger and Oliger (84), Berger and LeVeque (98): adaptive mesh refinement methods

Constantinescu and Sandu (07, 09): multi-rate time-stepping methods

Grote, Mehlin and Mitkova (15): Runge-Kutta based LTS algorithms

...
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The model equations

Nonlinear SWEs in vector-invariant form
∂h
∂t

+∇ · (huuu) = 0,(1)

∂uuu
∂t

+ q(huuu⊥) = −g∇(h + b)−∇K ,(2)

h: fluid thickness, uuu: fluid vector velocity,

kkk : unit vector pointing in the local vertical direction,

uuu⊥ = kkk × uuu: the velocity rotated through a right angle,

q =
η

h
: potential vorticity, η = kkk · ∇ × uuu + f : the absolute vorticity,

K = |uuu|2/2: the kinetic energy,

g: gravity, f : Coriolis parameter and b: bottom topography.
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Multi-resolution Spherical Centroidal Voronoi Tessellations

(SCVTs)

A multi-resolution Voronoi-Delaunay mesh by SCVT with 27,857 grid points
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Spatial discretization: TRiSK2 scheme

C-grid staggering

Primal mesh: a Voronoi
tessellation
Orthogonal dual mesh: its
associated Delaunay
triangulation
hi: the mean thickness over
primal cell Pi

ue: the component of the
velocity vector in the direction
normal to primal edges
qv: the mean vorticity (curl of
the velocity) over dual cell Dv

Finite volume discretization

2TRiSK: Thurburn, Ringler, Skamarock and Klemp (JCP, 2009).
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Properties of TRiSK scheme

Exact conservation of mass.

Conservation of total energy (sum of the potential and kinetic energy) up
to time truncation error.

Robust simulation of potential vorticity.

ensuring the accuracy and physical correctness of the simulation of
geophysical flows

Good performance on highly variable spatial meshes.

Accuracy in space: between first- and second-order.

depending on the quality of the meshes used
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Explicit SSP-RK time-stepping

System of ODEs resulting from spatial discretization:

∂tVVV = F (VVV ).

Strong Stability Preserving Runge-Kutta (SSP-RK) time-stepping:
1 Forward Euler

VVV n+1 = VVV n + ∆tnF (VVV n).

2 SSP-RK2 (Heun’s method)

VVV n+1 = VVV n + ∆tnF (VVV n),

VVV n+1 =
1
2

VVV n +
1
2

(
VVV n+1 + ∆tnF (VVV n+1)

)
.

3 SSP-RK3

VVV n+1 = VVV n + ∆tnF (VVV n),

VVV n+1/2 =
3
4

Vn +
1
4

(
VVV n+1 + ∆tnF (VVV n+1)

)
,

VVV n+1 =
1
3

Vn +
2
3

(
VVV n+1/2 + ∆tnF (VVV n+1/2)

)
.

4 Higher-order SSP-RK
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Local time-stepping (LTS)

[
tn, tn+1

)
=

M−1⋃
k=0

[
tn,k , tn,k+1

)

Conservative LTS algorithms:

Predictor-corrector type

Based on SSP-RK time-stepping and Taylor expansions
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Second-order LTS predictor

The second-order predictor based on SSP-RK2 and Taylor expansion:[
hn,k
i

un,k
e

]
= (1− αk )

[
hn
i

un
e

]
+ αk

[
h

n+1
i

un+1
e

]
,

[
h

n,k+1
i

un,k+1
e

]
= (1− αk+1)

[
hn
i

un
e

]
+ αk+1

[
h

n+1
i

un+1
e

]
,

for all i ∈ C IF-L1
P and e ∈ C IF-L1

E , where

αk =
k
M
, for k = 0, . . . ,M − 1,

and h
n+1
i for i ∈ C IF-L1

P and un+1
i for e ∈ C IF-L1

E the values at the first stage of SSP-RK2
with a coarse time step.

Phuong Hoang Explicit Local Time-Stepping 9 / 20



Third-order LTS predictor

[
hn,k
i

un,k
e

]
= (1− αk − α̂k )

[
hn
i

un
e

]
+ (αk − α̂k )

[
h

n+1
i

un+1
e

]
+ 2α̂k

[
h

n+1/2

i

un+1/2
e

]
,

[
h

n,k+1
i

un,k+1
e

]
= (1− βk − β̂k )

[
hn
i

un
e

]
+ (βk − β̂k )

[
h

n+1
i

un+1
e

]
+ 2β̂k

[
h

n+1/2

i

un+1/2
e

]
,

[
h

n,k+1/2

i

un,k+1/2
e

]
= (1− γk − γ̂k )

[
hn
i

un
e

]
+ (γk − γ̂k )

[
h

n+1
i

un+1
e

]
+ 2γ̂k

[
h

n+1/2

i

un+1/2
e

]
,

for all i ∈ CIF-L1
P and e ∈ CIF-L1

E , where

αk =
k

M
, α̂k =

k2

M2
, βk =

k + 1

M
, β̂k =

k(k + 2)

M2
, γk =

2k + 1

2M
, γ̂k =

2k2 + 2k + 1

2M2
,

for k = 0, . . . ,M − 1, h
n+1
i , h

n+1/2

i for i ∈ CIF-L1
P and un+1

i , ui for e ∈ CIF-L1
E the values at the first

two stages of SSP-RK3 with a coarse time step.
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Properties of the LTS schemes

A unified approach to construct high-order, explicit LTS schemes in which
different time-step sizes are used in different regions of the domain, global CFL
condition replaced by local CFL condition .
−→ time step sizes chosen according to local mesh sizes.

By construction, all properties of the spatial discretization are preserved: exact
conservation of the mass and potential vorticity, and conservation of the total
energy within time-truncation errors.

Implementation: in parallel and can be incorporated into MPAS-Ocean
straightforwardly.

=⇒ LTS is efficient in terms of stability, accuracy and computational cost.
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Numerical results for the SWTC5 3

On the sphere with a radius of a = 6371.22km.

An isolated mountain is placed around the point with longitude and latitude

(λc , θc) = (3π/2, π/6)

with height as hs = hs0 (1− r/R), where hs0 = 2km, R = π/9,
r 2 = min{R2, (λ− λc)2 + (θ − θc)2}, and (λ, θ) is the latitude and longitude.

The initial longitudinal and latitudinal components of velocity are
(u, v) = (u0 cos(θ), 0), where u0 = 20ms−1.

The initial thickness is

h = h0 −
1
g

(aΩu0 +
u2

0

2
)(sin(θ))2,

where h0 = 5.96km, Ω = 7.292× 10−5s−1, and g = 9.80616ms−2.

3Williamson et al., A standard test set for numerical approximations to the
shallow water equations in spherical geometry, J. Comput. Phys., 1992.
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The SWTC5 (Contd.)

Left: the bottom topography b

Middle: the cell area of a variable-resolution SCVT mesh:

40,962 cells
the coarse cell size is approximately two times of the fine cell size;

Right: the LTS interface, ∆tfine =
∆tcoarse

M
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Accuracy in time: third-order LTS scheme

1 day simulation

Fixed M = 4, varying ∆t

∆tcoarse h [CR] uuu [CR]
0.5α 3.38e-06 – 2.20e-05 –

0.25α 5.88e-07 [2.52] 3.27e-06 [2.75]
0.125α 7.80e-08 [2.91] 4.20e-07 [2.96]

0.0625α 1.24e-08 [2.85] 6.25e-08 [2.93]

Fixed ∆t = 0.25α, varying M

M h uuu
1 1.69e-06 9.38e-06
2 6.76e-07 3.68e-06
4 5.95e-07 3.27e-06
8 5.88e-07 3.25e-06
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Evolution of fluid height for 15 days

(Loading ...)
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SWTC5.mov
Media File (video/quicktime)



Evolution of total energy

Initial fluid height dh0 = h0 + b Fluid height at T = 15 days

Time (hours)
0 100 200 300 360

To
ta

l e
ne

rg
y

1.569929685E+08

1.569929690E+08

1.569929695E+08

1.569929700E+08
3rd order LTS: ∆  tcoarse=0.5 α
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Exact conservation of mass and potential vorticity, M = 4

0 50 100 150 200 250 300 350
Time (hour)
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)

×10-11

3rd-order LTS: ∆ t coarse=0.75 α
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Parallel scalability: ∆tcoarse = 0.5α and M = 4, T = 3 hours

No of 40,962 Cells 163,842 Cells 655,362 Cells

Cores Time Speedup Efficiency Time Speedup Efficiency Time Speedup Efficency

The SSP-RK3 based LTS algorithm

1 398.50 - - 1704.73 - - 7220.48 - -

2 207.41 1.92 96.1% 838.29 2.03 101.7% 3543.05 2.04 101.9%

4 109.93 3.62 90.6% 420.18 4.06 101.4% 1745.22 4.14 103.4%

8 58.23 6.84 85.6% 213.74 7.98 99.7% 889.65 8.12 101.5%

16 31.82 12.52 78.3% 110.45 15.43 96.5% 461.69 15.64 97.7%

32 18.97 21.00 65.6% 57.51 29.64 92.6% 236.77 30.50 95.3%

64 10.86 36.70 57.4% 30.94 55.10 86.1% 115.57 62.47 97.6%

128 6.93 57.51 44.9% 17.18 99.20 77.5% 60.43 119.48 93.3%
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Running times of Local time-stepping vs Global time-stepping

Spatial mesh of 655,362 cells: fine region with 216,701 cells, and coarse region
with 438,661 cells.

Global SSP-RK3 time-stepping: uniform time step size ∆t = 0.125α.

Local SSP-RK3 time-stepping: ∆tcoarse = 0.5α and ∆tfine = 0.125α (i.e., M = 4).

No. of The SSP-RK3 algorithm

Cores Without LTS With LTS Ratio

1 14476.94 7220.48 2.00

2 7021.38 3543.05 1.98

4 3348.39 1745.22 1.92

8 1722.99 889.65 1.94

16 883.58 461.69 1.91

32 463.39 236.77 1.96

64 229.58 115.37 1.99

128 119.57 60.43 1.98

Theoretically optimal
value for the ratio:

(4× 655362)

(1× 438661 + 4× 216701)
≈ 2.01.

(when the cost for interface pre-
dictions and corrections is consid-
ered to be negligible).
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Conclusions

Summary
Conservative, explicit LTS algorithms in time for SWEs discretized
in space by the TRiSK scheme.

Time step sizes are restricted by local CFL conditions, instead of
by the global CFL condition.

Numerical results confirm the accuracy, stability and efficiency of
LTS algorithms on variable spatial meshes.

Ongoing and future work

High-order LTS algorithms for conservation laws.

Numerical simulation of realistic benchmark test cases.

Extensions of LTS to ocean/coastal coupling.
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