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Ocean Modeling by MPAS-Ocean '

Figure courtesy of MPAS-Ocean.

"MPAS: Model for Prediction Across Scales E
Project funded by the Department Of Energy (DOE)
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Ocean Modeling by MPAS-Ocean '

Figure courtesy of MPAS-Ocean.

@ Large-scale, nonlinear problems — explicit time-stepping & parallel simulation.

"MPAS: Model for Prediction Across Scales E
Project funded by the Department Of Energy (DOE)
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Ocean Modeling by MPAS-Ocean '

) Multi-resolution Voronoi mesh
Figure courtesy of MPAS-Ocean. [Figure reprinted from Ringler et al. (2011)]
@ Large-scale, nonlinear problems — explicit time-stepping & parallel simulation.

@ Multi-resolution meshes — time step sizes restricted by the size of the
smallest cell.

= Multi-scale time stepping algorithms.

"MPAS: Model for Prediction Across Scales E
Project funded by the Department Of Energy (DOE)
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Efficient local time-stepping (LTS) schemes for MPAS-Ocean

e Spatially-dependent time steps
— local CFL conditions for stability.

e Explicit schemes
— parallel, easy to incorporate into MPAS-Ocean.

e Conservation properties.

e Desired high-order accuracy in time.
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Literature review

LTS algorithms of predictor-corrector type

Osher and Sanders (1983): first order in space (finite volume discretization) and in time
(explicit Euler)

Dawson and Kirby (2001): second-order in space (high resolution methods with slope
limiters) and in time (Heun’s method)

Sanders (2008): Godunov-type finite volume method, efficiency of a first-order LTS
algorithm in term of computational cost via extensive numerical experiments.

Krivodonova (2010): second-order in space (discontinuous Galerkin methods) and in time
(Heun’s method); Ashbourne (2016): extensions to third and fourth order Runge-Kutta
methods.

Trahan and Dawson (2012): Runge-Kutta discontinuous Galerkin finite elements,
first-order accurate in time near the local time-stepping interface.
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@ Sanders (2008): Godunov-type finite volume method, efficiency of a first-order LTS
algorithm in term of computational cost via extensive numerical experiments.

@ Krivodonova (2010): second-order in space (discontinuous Galerkin methods) and in time
(Heun’s method); Ashbourne (2016): extensions to third and fourth order Runge-Kutta
methods.

@ Trahan and Dawson (2012): Runge-Kutta discontinuous Galerkin finite elements,
first-order accurate in time near the local time-stepping interface.

Other approaches
@ Berger and Oliger (84), Berger and LeVeque (98): adaptive mesh refinement methods
@ Constantinescu and Sandu (07, 09): multi-rate time-stepping methods

@ Grote, Mehlin and Mitkova (15): Runge-Kutta based LTS algorithms
. )
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The model equations

Nonlinear SWEs in vector-invariant form

oh
(1) §+V‘(hu):0,
@) % +q(hut) = —gV(h+ b) — VK,

h: fluid thickness, u: fluid vector velocity,
k: unit vector pointing in the local vertical direction,
u™ = k x u: the velocity rotated through a right angle,

q= %: potential vorticity, n = k - V x u + f: the absolute vorticity,

K = |u|?/2: the kinetic energy,

g: gravity, f: Coriolis parameter and b: bottom topography.

g
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Multi-resolution Spherical Centroidal Voronoi Tessellations
(SCVTs)
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A multi-resolution Voronoi-Delaunay mesh by SCVT with 27,857 grid points
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Spatial discretization: TRiSK? scheme

@ C-grid staggering

@ mass points

@ Primal mesh: a Voronoi
tessellation
N @ Orthogonal dual mesh: its
e associated Delaunay
’ triangulation

@ h;: the mean thickness over
primal cell P;

@ u.: the component of the
velocity vector in the direction
normal to primal edges

@ g.: the mean vorticity (curl of
the velocity) over dual cell D,

W velocity points

A vorticity points

Voronoi region

@ Finite volume discretization

TRiSK: Thurburn, Ringler, Skamarock and Klemp (JCP, 2009). B
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Properties of TRiSK scheme

@ Exact conservation of mass.

@ Conservation of total energy (sum of the potential and kinetic energy) up
to time truncation error.

@ Robust simulation of potential vorticity.

@ ensuring the accuracy and physical correctness of the simulation of
geophysical flows

@ Good performance on highly variable spatial meshes.
@ Accuracy in space: between first- and second-order.
e depending on the quality of the meshes used
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Explicit SSP-RK time-stepping

@ System of ODEs resulting from spatial discretization:
oV = F(V).
@ Strong Stability Preserving Runge-Kutta (SSP-RK) time-stepping:
o Forward Euler
Vo1 = Vo + At F(Vh).

Phuong Hoang Explicit Local Time-Stepping



Explicit SSP-RK time-stepping

@ System of ODEs resulting from spatial discretization:
oV = F(V).
@ Strong Stability Preserving Runge-Kutta (SSP-RK) time-stepping:
@ Forward Euler
Vo1 = Va+ AtanF(Vh).
©@ SSP-RK2 (Heun’s method)
Vi1 = Vo + AtaF(V),

1 1 /o -
Vair = 5Va+ 5 (Vors + AOF(Vir)) -

Phuong Hoang Explicit Local Time-Stepping



Explicit SSP-RK time-stepping

@ System of ODEs resulting from spatial discretization:
oV = F(V).
@ Strong Stability Preserving Runge-Kutta (SSP-RK) time-stepping:
o Forward Euler
Vot = Vo + A F(Vy).
©@ SSP-RK2 (Heun’s method)
Vi1 = Vo + AtaF(V),
Vi = %Vn + % (Vn+1 + AtaF(Vipyq )) .
© SSP-RK3
Vo1 = Vo + At F(Vp),

_ 3 1, _
Vg, = 2 Vi + 7 (Vn+1 + AtnF(Vn+1)) )

1 2 _
Vo = 3 Vo + 3 (vn+‘/2 + AtnF(Vn+‘/2)> .

© Higher-order SSP-RK 6
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Local time-stepping (LTS)

[tn7 tn+1) _ U [tn,k7 tn,k+1)

k=0
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Local time-stepping (LTS)

Cells/edges with fine time increments;
Fp & Fr

Cells/edges with coarse time increments

CE - inter

k=0

Phuong Hoang Explicit Local Time-Stepping



Local time-stepping (LTS)

Cells/edges with fine time increments;
Fp & Fr
Cells/edges with coarse time increments

CEM i er 1 cells

ar,

cy

k=0

Conservative LTS algorithms:

@ Predictor-corrector type

@ Based on SSP-RK time-stepping and Taylor expansions
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Second-order LTS predictor

The second-order predictor based on SSP-RK2 and Taylor expansion:

—n+1

h;

—n+1 ’
€

hk Hy
|: ug,k :| = (1 — ak) |: Ug + (7% o
Eg,k+1 hf E?+1
gk =(1— k1) ur + Qe i )
foralli € i and e € CEY, where
ax = 5 fork =0 M -1
K= =0,..., ,

and 7] fori € C5 and U7 for e € CEM the values at the first stage of SSP-RK2

with a coarse time step.
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Third-order LTS predictor

hn,k ] n fn+1 En+1/z
i ~ (3 ~ 7
|: unk = —ax—aw) u? (e =8 l: T + 20k [ 7n+1/2 ] ’
Ef’k“ b Hy 7n+1 h n+1/2
ket | =0 — Bk — B) un + (Bk — Bk) it + 2B e
uy J Ue e
EZ, k+1/2 7 o R hg 7n+1 o hZ+1 /2
ke | = (1 =7 =) o |t (v — k) u"+1 + 2% e
foralli e Clt and e e cFH, where
R k+1 . k(k+2) 2k+1 2K +2k+1
k= k= gme Pe=—pms Be= e k= k= oE
fork=0,...,M—1, A" " B fori e CF and 7, T, for e € CFH' the values at the first

two stages of SSP-RK3 with a coarse time step.

g
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Properties of the LTS schemes

@ A unified approach to construct high-order, explicit LTS schemes in which
different time-step sizes are used in different regions of the domain, global CFL
condition replaced by local CFL condition .

— time step sizes chosen according to local mesh sizes.

@ By construction, all properties of the spatial discretization are preserved: exact
conservation of the mass and potential vorticity, and conservation of the total
energy within time-truncation errors.

@ Implementation: in parallel and can be incorporated into MPAS-Ocean
straightforwardly.

— LTS is efficient in terms of stability, accuracy and computational cost.

g
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Numerical results for the SWTC5 3

@ On the sphere with a radius of a = 6371.22km.
@ An isolated mountain is placed around the point with longitude and latitude
(>\C7 00) = (371'/2, 71'/6)
with height as hs = hs,(1 — r/R), where hs, = 2km, R = /9,
P =min{R?, (A — Xc)® + (0 — 6c)°}, and (), §) is the latitude and longitude.

@ The initial longitudinal and latitudinal components of velocity are
(u, v) = (upcos(6),0), where up = 20ms™".

@ The initial thickness is

h=ho— 1(aQu0 + “j)(sin(e))2
g 2 ’

where hy = 5.96km, Q = 7.292 x 10~ °s~', and g = 9.80616ms 2.

SWilliamson et al., A standard test set for numerical approximations to the 6
shallow water equations in spherical geometry, J. Comput. Phys., 1992.
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The SWTC5 (Contd.)

@ Left: the bottom topography b
@ Middle: the cell area of a variable-resolution SCVT mesh:
@ 40,962 cells
@ the coarse cell size is approximately two times of the fine cell size;

@ Right: the LTS interface, At = At%

g
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Accuracy in time: third-order LTS scheme

@ 1 day simulation
@ Fixed M = 4, varying At

l Alcoarse H h [CR] ‘ u [CR] ‘
0.5 3.38e-06 - 2.20e-05 -
0.25« 5.88e-07 [2.52] | 3.27e-06 [2.75]
0.125« 7.80e-08 [2.91] | 4.20e-07 [2.96]

0.0625« || 1.24e-08 [2.85] | 6.25e-08 [2.93]
@ Fixed At = 0.25q, varying M
LM h u_ |
1 1.69e-06 9.38e-06
2 6.76e-07 3.68e-06
4 5.95e-07 3.27e-06
8 5.88e-07 3.25e-06
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Evolution of fluid height for 15 days

(Loading ...)
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SWTC5.mov
Media File (video/quicktime)


Evolution of total energy
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Exact conservation of mass and potential vorticity, M = 4
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Parallel scalability: Afcoarse = 0.5ccand M =4, T = 3 hours

No of 40,962 Cells 163,842 Cells 655,362 Cells

Cores Time Speedup Efficiency Time [ Speedup Efficiency Time Speedup Efficency
The SSP-RK3 based LTS algorithm

1 398.50 - - 1704.73 - - 7220.48 - -
2 207.41 1.92 96.1% 838.29 2.08 101.7% 3543.05 2.04 101.9%
4 109.93 3.62 90.6% 420.18 4.06 101.4% 1745.22 414 103.4%
8 58.23 6.84 85.6% 213.74 7.98 99.7% 889.65 8.12 101.5%
16 31.82 12.52 78.3% 110.45 15.43 96.5% 461.69 15.64 97.7%
32 18.97 21.00 65.6% 57.51 29.64 92.6% 236.77 30.50 95.3%
64 10.86 36.70 57.4% 30.94 55.10 86.1% 115.57 62.47 97.6%
128 6.93 57.51 44.9% 17.18 99.20 77.5% 60.43 119.48 93.3%
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Running times of Local time-stepping vs Global time-stepping

@ Spatial mesh of 655,362 cells: fine region with 216,701 cells, and coarse region
with 438,661 cells.

@ Global SSP-RKS time-stepping: uniform time step size At = 0.125q«.
@ Local SSP-RKS time-stepping: Afcoarse = 0.5 and Afine = 0.125« (i.e., M = 4).

No. of The SSP-RKS3 algorithm
Cores || Without LTS | With LTS | Ratio
1 14476.94 | 7220.48 | 2.00
2 7021.38 | 3543.05 | 1.98
4 3348.39 | 174522 | 1.92
8 1722.99 889.65 | 1.94
16 883.58 461.69 | 1.91
32 463.39 236.77 | 1.96
64 229.58 115.37 | 1.99
128 119.57 60.43 | 1.98
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Running times of Local time-stepping vs Global time-stepping

@ Spatial mesh of 655,362 cells: fine region with 216,701 cells, and coarse region
with 438,661 cells.

@ Global SSP-RKS time-stepping: uniform time step size At = 0.125q«.
@ Local SSP-RKS time-stepping: Afcoarse = 0.5 and Afine = 0.125« (i.e., M = 4).

No. of The SSP-RKS3 algorithm
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1 14476.94 | 7220.48 | 2.00
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@ Theoretically optimal
value for the ratio:

(4 x 655362)

(1 x 438661 1 4 x 216701) - 201"

(when the cost for interface pre-
dictions and corrections is consid-
ered to be negligible).
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Conclusions

@ Conservative, explicit LTS algorithms in time for SWEs discretized
in space by the TRiSK scheme.

@ Time step sizes are restricted by local CFL conditions, instead of
by the global CFL condition.

@ Numerical results confirm the accuracy, stability and efficiency of
LTS algorithms on variable spatial meshes.

Ongoing and future work

@ High-order LTS algorithms for conservation laws.
@ Numerical simulation of realistic benchmark test cases.
@ Extensions of LTS to ocean/coastal coupling. B
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