

Towards Mantle Convection Simulations in the Exa-scale Era: Real World Models

Markus Huber

joint with: S. Bauer, H.-P. Bunge, S. Ghelichkhan, P. Leleux, M. Mohr, U. Rüde, B. Wohlmuth

Technical University of Munich (TUM)

March 11-14, 2019

SIAM GS 2019, Houston, Texas

150 Jahre culture of excellence

Processes deep beneath our feet...

Software requirements

What are the requirements of the application to our software?

- Many time steps (one overturn 60 Myr) and fine resolution of 1 km (systems with $\mathcal{O}(10^{12})$ DOF)
- \Rightarrow Necessity of **supercomputers**
- Complex models (jumping viscosity of orders of magnitude)
- ⇒ Modern and efficient algorithms and architecture-aware optimization

What are our achievements?

- Fast matrix-free assembly routines
- Efficient solver for the Stokes problem \Rightarrow Fast solving time for problems with fine resolution of 1.5 km (systems with $\mathcal{O}(10^{12})$ DOF)
- Investigation in **complex viscosity models** and the **Earth's topography**
- Mantle convection benchmarks

Model problems for geophysics: Stokes problem

Goal: Reduce the model to develop efficient software.

Let $\Omega \subset \mathbb{R}^3$ $-\operatorname{div}(2\nu\dot{\varepsilon}(\mathbf{u})) + \nabla p = \mathbf{f} \text{ in } \Omega,$ $\operatorname{div} \mathbf{u} = 0 \text{ in } \Omega,$ + BC

with positive scalar viscosity ν and $\dot{\varepsilon}(\mathbf{u}) = \frac{1}{2} \left(\nabla \mathbf{u} + (\nabla \mathbf{u})^{\top} \right)$. Equal-order $\mathbf{P}_1 - P_1$ FE- discretization with PSPG-stabilization¹

$$\begin{pmatrix} \mathbf{A}_L & B_L^\top \\ B_L & -C_L \end{pmatrix} \begin{pmatrix} \underline{\mathbf{u}}_L \\ \underline{p}_L \end{pmatrix} = \begin{pmatrix} \underline{\mathbf{f}}_L \\ \underline{g}_L \end{pmatrix}.$$

Winner in a large scale comparison: Uzawa-type multigrid solver ²

 ¹T. J. R Hughes et al.: A new finite element formulation for computational fluid dynamics: V. circumventing the Babuška-Brezzi condition: A stable Petrov-Galerkin formulation of the Stokes problem accommodating equal-order interpolations Comput. Methods Appl. Mech. Eng., 1986.
 ²M. Huber et al.: A quantitative performance study for Stokes solvers at the extreme scale. J. Comput. Sci., 2016.

The high-performance geometric multigrid framework: Hierarchical Hybrid Grids ³⁴

Multigrid hierarchy

- unstructured tetrahedral input grid \mathcal{T}_0
- structural refinement $\mathcal{T}_{\ell}, \ell = 1, \dots, L$

Data-structure

- geometric classification of DOF
- hierarchical data organization

MPI parallelization

ghost layer enrichment

Matrix storage format

compression technique

³Bergen: *Hierarchical Hybrid Grids: Data structures and core algorithms for efficient finite element simulations on supercomputers.* SCS Publishing House eV, 2006.

⁴Gmeiner: Design and Analysis of Hierarchical Hybrid Multigrid Methods for Peta-Scale Systems and Beyond. PhD thesis, University of Erlangen-Nuremberg, 2013.

Towards geophysical simulations: framework adjustments

Multigrid hierarchy adjustment to the curved domain⁵

non-projected

projected

Matrix-free assembly adjustment⁶

- Compression technique fails => classical FEM assembly
- classical FEM assembly fails (too much memory $> 1\,000$ TByte) \Longrightarrow on-the-fly assembly
- on-the-fly assembly fails (computational too expensive (factor > 20)) \implies surrogate on-the-fly assembly by low order polynomial approximations

⁵ Bauer et al: A two-scale approach for efficient on-the-fly operator assembly in massively parallel high performance multigrid codes, App. Num. Math. 2017.

⁶ Bauer, Huber, et al: Large-scale Simulation of Mantle Convection Based on a New Matrix-Free Approach, J. Comp. Sci., 2019.

Towards geophysical simulations: the model

Stokes equation with different viscosity models with radial and lateral variations and right-hand side $\mathbf{f} = \operatorname{Ra} \tau \mathbf{x} / ||\mathbf{x}||_2$ using real-world temperature data⁷

Real world measurements of the temperature data:

Boundary conditions:

- surface: plate velocity data⁸
- core-mantle-boundary: free-slip conditions

⁷N. A. Simmons et al.: *Evidence for long-lived subduction of an ancient tectonic plate beneath the southern Indian Ocean.* Geophys. Res. Lett. 2015.

⁸S. Williams et al.: An open-source software environment for visualizing and refining plate tectonic reconstructions using high resolution geological and geophysical data sets. GSA Today, 22(4), 2012.

Towards geophysical simulations: extended model

Viscosity model: temperature-dependent lateral and radial variations $(d_a = 0.0635 \text{ (410 km)})^9$

$$\nu(\mathbf{x},\tau) = \exp\left(2.99\frac{1 - \|\mathbf{x}\|_2}{1 - r_{\rm cmb}} - 4.61\tau\right) \begin{cases} 1/10 \cdot 6.371^3 \, d_a^3 & \text{for } d_a > 1 - \|\mathbf{x}\|_2, \\ 1 & \text{else.} \end{cases}$$

Solver structure: Uzawa multigrid method with a block-low-rank coarse level solver¹⁰

Weak scaling experiments on Hazel Hen (Stuttgart, position 30 on TOP500):

proc.	DOF	iter	time (s)		BLR ϵ	time (s)		
	fine		total	fine		coarse	ana. & fac.	par. eff.
1 920	$2.10\cdot 10^{10}$	15	78.1	77.9	10^{-3}	0.03	2.7	1.00
15 360	$4.30\cdot 10^{10}$	13	88.9	86.8	10^{-3}	0.22	25.0	0.93
43 200	$1.70\cdot 10^{11}$	14	95.5	87.0	10^{-8}	0.59	111.6	0.82

⁹Huber et al.: A New Matrix-Free Approach for Large-Scale Geodynamic Simulations and its Performance. Computational Science – ICCS 2018. pages 17-30. 2018.

¹⁰Huber et al.: Extreme scale multigrid with block-low-rank coarse grid solver submitted. 2019.

Dynamic topography

Earth's topography is by means not constants. It changes by

- erosion,
- sedimentation,
- global isostatic adjustment,
- deflection \Rightarrow dynamic topography (viscous stresses in the mantle)

Dynamic topography = normal component of the surfaces traction:

$$egin{aligned} \sigma_{nn}^s &= \mathbf{n}^T oldsymbol{\sigma} \mathbf{n} \ oldsymbol{\sigma} &= 2
u \dot{arepsilon} (\mathbf{u}) - p \mathbf{I} \end{aligned}$$

Goal: Study the influence of the viscous stresses by using the Stokes model with different viscosity profiles.

Dynamic topography: viscosity profiles

Three viscosity models with asthenosphere thickness of 410km:

- ν_A : pure radial variations
- ν_B : lateral variations > 300km
- ν_C : lateral whole mantle

Further setup:

- Tomography model: real-world density and temperature data,
- Resolution: ≈ 1.5 km surfaces resolution ($1.6 \cdot 10^{12}$ DOF),
- Uzawa multigrid solver executed on the Hazel Hen supercomputer (75810 compute cores).

Dynamic topography: results¹¹

Dynamic topography Difference Surface Differences: C) depth-dependent+whole mantle Surface C) depth-dependent+whole mantle B) depth-dependent+Lithosphere B) depth-dependent+Lithosphere A) depth-dependent 500 -500 0 Topography [m] -2000 -1000 1000 2000 0

¹¹ Ghelichkhan, Huber, et al: Large-scale Simulation of Mantle Convection Based on a New Matrix-Free Approach, J. Comp. Sci., 2019.

Topography [m]

Towards mantle convection simulations: benchmark setup

Software benchmarking for the coupled system¹²

$$-\operatorname{div}(2\nu\dot{\varepsilon}(\mathbf{u})) + \nabla p = \operatorname{Ra}T\frac{x}{\|x\|} \quad \text{in } \Omega \times I,$$

 $\operatorname{div} \mathbf{u} = 0 \qquad \qquad \text{in } \Omega \times I,$

$$\frac{\partial T}{\partial t} + \mathbf{u} \cdot \nabla T = \Delta T \qquad \text{in } \Omega \times I.$$

Benchmark settings:

- $Ra = 7.6818 \cdot 10^4$, pure free-slip boundary conditions
- initial temperature spherical harmonics (l, m) = (3, 2)

$$T_0(r,\phi,\theta) = \frac{r_{\rm cmb}(r-r_{\rm srf})}{r(r_{\rm cmb}-r_{\rm srf})} + \varepsilon(\cos(m\,\theta) + \sin(m\,\theta))\,p_{lm}(\theta)\sin\left(\frac{\pi(r-r_{\rm cmb})}{(r_{\rm srf}-r_{\rm cmb})}\right)$$

with $\varepsilon = 0.01$ and Lagrange polynomial $p_{lm}(\theta)$.

• temperature-dependent viscosity (with $\Delta\eta=0,20$):

$$\eta = exp(\eta_0(0.5 - T)).$$

¹² Zhong et al: A benchmark study on mantle convection in a 3-D spherical shell using CitcomS, Geochem. Geophys., 2008.

Towards mantle convection simulations: Zhong's benchmarks (I)

Discretization and solver setup:

FEM for Stokes and temperature equation (SUPG not necessary: diffusive problems).

Decouple Stokes and temperature equation and solve iteratively.

Uzawa multigrid method and θ -scheme for time integration.

Setting $\Delta \eta = 0$:

Setting $\Delta \eta = 20$:

Towards mantle convection simulations: Zhong's benchmarks (II)

Similar results for other reference parameters: Nusselt numbers at surfaces and CMB

Conclusion

- Efficient matrix-free assembly approach for curved boundary domaisn
- Excellent weak scaling results for a multigrid method with BLR coarse level solver
- Viscosity model influence on the Earth's dynamic topography
- Verification of the coupled solver through benchmark test

Future work:

• high Rayleigh number simulations \rightarrow SUPG stabilzation

• adjointed mantle convection simulations \rightarrow relate today's observation with past

