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behave should their theory be correct. In physical oceanography, however,
theoreticians most often do the opposite. e.g, they use observations to predict
non-observable quantitie§. Can we do better?
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Can we do better?

Realistically, probably not much in the near future,
if by “better” you mean a drastic improvement

of observational capabilities.

THE UNIVERSITY OF TEXAS AT AUSTIN



BUT, ... enter Computational Science and Engineering:

It is an essential driving force for progress in science

in applications where experimental / observational approaches are ...
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too costly,
too slow,
dangerous,
or impossible
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Computational Science and Engineering @ the Oden Institute

In particular, CSE offers tools for addressing optimal observing design:

— When a quantity of interest (Qol) is unobserved (different variable or
different location, or both — an ubiquitous problem) ...

— What is an optimal sampling strategy with given
observational assets to best constrain the Qol?

Predictive Computational Science: Computer Predictions in the
Presence of Uncertainty

J. Tinsley Oden, Ivo Babuska, and Danial Faghihi

Institute for Computational Engineering and Sciences
The University of Texas at Austin
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Overview

1. The global ocean circulation — a big or sparse data problem?

2. The global ocean circulation as an inverse problem
— Optimal estimation for calibration & reconstruction

3. Causal / dynamical attribution based on the dual ocean state

4. UQ in large-scale inverse problems based on Hessians
— Optimal experimental (observing system) design
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1.
The global ocean circulation:
A big & sparse data problem
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Prelude

Is Oceanography a Big Data Science?
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Prelude

Is Oceanography a Big Data Science?

YES, you might say...
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Prelude

e Simulating the coupled
climate system with
increasing

72 BEAUFORT 4
¢ SEA

— detail (resolution)

— complexity (process
representation)

e creates vast output
Example:
Simulation of Arctic
Ocean subsurface
circulation at eddy-
permitting resolution

“eCOMP - ATIONAL

ENGINEERING & SCIENCES




Prelude

Simulations...

... give access to detailed phenomena of the time
evolving state of the ocean that is consistent with our
theoretical knowledge (i.e., equations of motions)

BUT ...

... significant uncertainties remain
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Prelude

e Constitutive laws are empirical

THE UNIVERSE
of
PHYSICAL
REALITIES

— uncertain structure &
parameters (and which may
vary in 3+1-dim.)

Observational

° ° ° ° E . - e
e Discretization requires o Modling o
numerical approximation & e
° ppo OBSERVATIONS MATHEMATICAL COMPUTATIONAL
parameterization MODELS MODELS
- e.g. related to surface and VALIDATION VERIFICATION

bottom-intensified mixing

e Uncertain external forcings Oden, Moser, Ghattas, SIAM News (2010)
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Prelude

e How realistic are our simulations?
e What aspects of the simulations are robust?

e How do errors accumulate over time and space?
— Are they acceptably bounded?
— How to quantify?

We need observations to ground theory & simulation,
even with improved model resolution & process representation
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Prelude

Is Oceanography a Big Data Science?
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Prelude

Is Oceanography a Big Data Science?

NO, you might say...
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Some of the challenges: 0 e
Sparse sampling of the ocean’s

Mean zonal coverage
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Some of the challenges: B ] e
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An eclectic global ocean observing system ...
... ina“noisy” ocean

Sea Surface Height Anomalies, 1992-2011

Oct 1992

Data from Radar Altimetry 1992 1995




An eclectic global ocean observing system ...
.. ina “noisy” ocean

 Heterogeneous data streams
* Disparate variables being sampled
e Spatio-temporally non-uniform sampling

How best to synthesize the information
contained in the data into a single framework?
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2,
The global ocean circulation
inverse problem
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The ocean circulation inverse problem — historical
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The ocean circulation inverse problem — today

T/P, Jason

Gnhf'u)

'WOCE Hydrographic Programme One-Time Survey
(Penny Holliday, WOCE IPO)

How to synthesize? Estimation/optimal control problem:
Use a model (MITgem) and its adjoint:
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e Stammer et al.,
JGR (2002)

* Wunsch & Heimbach,

Physica D (2007)
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The ocean circulation inverse problem — today
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The ocean circulation inverse problem

Consider model L, and observation y with noise €:

Xkr1 = Lxk, and  ykr1 = Expq1 + €kt

Variational form of least-squares estimation problem:

Jx)= > [Exxk =yl R [Exi — yil
0<K<N

-
+ [xk — xb] B! [xk — xb] , t= kAt

Extend to Lagrange function £, Lagrange multipliers p:

LOp) =J(x) + > nl Pasr — Lxd
Wunsch & Heimbach 0<k<N

Physica D (2007)



The ocean circulation inverse problem

Lagrange multiplier method:
Stationary point of L leads to set of normal equations:

oL
ou(t)
oL 0o
ox(t)  Ox(t)

=x(t) — L[x(t—1)] =0 1<t<t

— 1(t)

n {aL[x(t)]]Tu(t—kl):O 0<t<ts

Ox(t)
oL 8J
ox(t) ~ ax(ty) M) =0 b=t
VY AL[x(0)]1" B
ox(0) — 0x(0) [ 0x(0) ] H(1) fo =0

Wunsch & Heimbach
Physica D (2007)



The ocean circulation inverse problem

Wunsch & Heimbach
Physica D (2007)

For intermediate step of the adjoint model integration one obtains:
e

8.] T 8.] T -1
Lk O G, + [Exc — yk]
T T 0J T p—1
=L L + E'R [EXk+1 — yk_|_]_]
5Xk+2

+ ETR_1 [EXk — yk]

v

o The adjoint model L' propagates p (the sensitivity of J with
respect to all earlier states xx) backward in time to xp;

e Each model-data misfit (i.e. innovation vector Exx — yx) is a
source of sensitivity;

@ The gradient of J with respect to xp takes into account (and
weighs) the size of all misfit terms, all (inverse) error
covariances, and all (linearized) model dynamics.



The ocean circulation inverse problem

A———
o O (8J)
Ho = 8X() N 1§Zk;N 8x0 an
_ O5 euy | Pa & (ed
- 8X() 8X1 (9X0 (9X1 (9X2

Loy O (0
8X0 8XN_1 aXN

Tﬂ _|_|_T|_Tﬂ 4o+ LT...LTﬂ
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L7: is the adjoint model (and L is the tangent linear model)

Wunsch & Heimbach 1, — (37“’): Lagrange multipliers or gradients
Physica D (2007) g



The ocean circulation inverse problem

Courtesy

Nora

(Oden Institute)

Loose

(a) Perturbation experiment

input variables
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(b) Adjoint model
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Some of the challenges:
Generating & maintaining the adjoint of a state-of-the-art ocean circulation model

hand-written adjoint application of AD

LECTURE NOTES IN COMPUTATIONAL
SCIENCE AND ENGINEERING

Christian H. Bischof - H. Martin Biicker
Paul Hovland - Uwe Naumann - Jean Utke Editors

Advances in
Automatic

Differentiation

Editorial Board
T. J.Barth
M.Griebel
D.E.Keyes

R.M.Nieminen

D. Roose

@ Springer T.Schlick

Giering & Kaminski (1998); Marotzke et al. (1999); Heimbach et al. (2005); Utke et al. (2007); Griewank & Walther (2008)
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Some of the challenges:
Why adjoints: dynamical & kinematical consistency in DA

Numerical Weather Prediction (NWP) - a filtering problem

e Relatively abundant data sampling of the 3-dim. atmosphere

e NWP targets optimal forecasting
=>» find initial conditions which produce best possible forecast;
=>» dynamical consistency or property conservation NOT required

INSTITUTE




Some of the challenges:
Why adjoints: dynamical & kinematical consistency in DA

Numerical Weather Prediction (NWP) - a filtering problem
e Relatively abundant data sampling of the 3-dim. atmosphere
NWP targets optimal forecasting
=>» find initial conditions which produce best possible forecast;
=>» dynamical consistency or property conservation NOT required

Ocean state estimation/reconstruction — a smoothing problem
e Sparse data sampling of the 3-D. ocean
e Understanding past & present state of
the ocean is a major goal all by itself
=>» use observations in an optimal way
=>» dynamic consistency & property
conservation ESSENTIAL for climate
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ENGINEERING & SCIENCES



Some of the challenges:
Why adjoints: dynamical & kinematical consistency in DA

Tracer budgets in a global ocean reanalysis produced via filtering approach

20 - a) Primary contributions to T tendency away from horizontal boundaries CO m p onen tS in th e
resolved advection .
= = = Increment tendendy equatlon
5 neutral diffusion
vertical diffusion
mesoscale transport
— sigma-diffusion
v Ar Sl?bmesoscale transport dT/ dt -_ r o h .S o
£ nonlocal KPP
3
> 15
8 T tendency terms
T I Unphysical analysis increments
L RV ANTAY play leading role in the
.A T T tracer tendencies
-80 60 -40 -20 0 20 40 60 80
latitude [ °] D. Trossman (in prep.)




Some of the challenges:
Why adjoints: dynamical & kinematical consistency in DA

Balancing the
momentum,

freshwater,
and heat
budgets

THE UNIVERSITY OF TEXAS AT AUSTIN



Some of the challenges:
Why adjoints: dynamical & kinematical consistency in DA

Annual mean net imbalances are not consistent with what we know:
* Earth Energy Imbalance ( < 1W/m?)
* Global Mean Sea Level rise ( ~3 mm/year )

net fresh water imbalance net heat flux imbalance

reanalysis product [mm/year] [W/m?2]

“+”” for ocean volume increase “+” for ocean cooling

NCEP/NCAR-1 1992-2010 159 62 -0.7 -2.2
NCEP/DOE-II (1992-2004) 740 - -10 -

ERA-Interim (1992-2010) 199 53 -8.5 -6.4
JRA-25 (1992-20009) 202 70 15.3 10.1

ocean-only




The ocean circulation inverse problem:
The control space T (o)) 4 1)\
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The ocean circulation inverse problem:
The control space

Joint inversion for uncertain
input/control variables/parameters:

» 3-Dinitial conditions (T, S, U, V)

e 2+1-D time-varying atmospheric state
(boundary conditions)

Forget et al. (2015)



The ocean circulation inverse problem:
The control space

Joint inversion for uncertain
input/control variables/parameters:

e 3-D initial conditions (T, S, U, V)

e 2+1-D time-varying atmospheric state

(boundary conditions)

¢ 3-D (time-mean) mixing parameters
o vertical diffusivity

o isopycnal diffusivity (Redi, 1982)

o bolus transport (Gent-McWilliams, 1990)

Forget et al. (2015)



3.
Dynamical attribution
via the dual (adjoint) state
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Causal / dynamical attribution:
The South Atlantic Ocean Circulation

* Gateway to neighboring ocean basins
* Influences norward heat transport carrled by AMOC
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Causal / dynamical attribution:
The South Atlantic Ocean Circulation

South Atlantic Meridional

Overturning Circulation
(SAMOC) variability

80°W  70°W 60W SOW 40°W  30°W 20°W 10°W 0° 10°E  20°E  30°E

Quantity of interest: Smith & Heimbach, J. Clim. (2019)

0J (u(x,y,t)) = Monthly AMOC Anomaly @ 34°S
“controlled” by:

du(x,y,t) = Surface Atm. Forcing Perturbations

Tim Smith through (assumed) linear dynamics described by:

ttimsmitt Follows you

PhD candidate @utices interested in a J
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Causal / dynamical attribution:
The South Atlantic Ocean Circulation

Now, J

refers not o = 2 Y 0k (aJ)

to model O G2y 0% \Ox

vs. data

misfit, but _ Ox (8J) N Ox1 Oxa (ﬂ)

to our QOI, - Oxg \ Ox1 Oxg Ox1 \ Ox

which is Ox1 OXN ( oJ )

TR R

AMOC 0X0 Oxn—1 \ Oxn

transport

across 348. R SUCIT R R T R el
0xq 0xo Oxn

L7: is the adjoint model (and L is the tangent linear model)
g = (%): Lagrange multipliers or gradients



Causal / dynamical attribution:
The South Atlantic Ocean Circulation

e Use of the availability of the dual ocean state (i.e., the time-evolving
adjoint state) for scientific analysis of sensitivity propagation.

e Reconstruction of
AMOC at 33°S  , . ~ i EE ... i S N, ~

from 20°N __________________ ____________________ ______________________ ' _______________________ ______________________ _____________________ _____________________

forcin g 00 koo AAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAA ......................... AAAAAAAAAAAAAAAAAAAAAAAAA ......................... AAAAAAAAAAAAAAAAAAAAAAAAA ......................... A AAAAAAAAAAAAAAAAAAAAAAA ! %3}2 52\]//
m

anomalies  ,40c

via the adjoint; 348

. T h . t I eneVo VI . g AAAAAAAAA : AAAAAAAAAAA

Lagrange multipliers

dj/d T,

= dual state, has physical meaning t = t-0 Days _SAMOC
Smith & Heimbach, J. Clim. (2019)




Causal / dynamical attribution:
The South Atlantic Ocean Circulation

Dynamic attribution of interannual

SAMOC variability due to
wind stress perturbations

5 1
. . . 1992 1994 1996 1998 2000 2002 2004 2006 2008 2010 2012
Smith & Heimbach, J. Clim. (2019)

—e—\Wind Stress
Narm Il Atlantic S. Subtropics
B South (0]
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k ____|Atlantic Tropics
N . |Other
atm t 8j
_ / // 25 (x,y, 7 — tr) duk(x, y, 7) dxdyd7
P to /x Jy Uk
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4.
Uncertainty Quantification &
Optimal Observing System Design

THE UNIVERSITY OF TEXAS AT AUSTIN



Recall:

The inverse problem

Courtesy
Nora Loose
(Oden Institute)
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Now:

The uncertainty propagation problem
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Bayesian UQ in large-scale (linear) inverse problems based on (low-rank) Hessians

| _
Tprior(X) ~ €xp —§(x —%)" B™' (x — %)

1
Thoise(€) ~ €xp —E(e — é)T R~ (e — €)

for linear model and Gaussian prior, leads to posterior PDF:

1 1 ,

Tpost(x) ~ exp |5 IIx = KI[3 — Slly — F(x) — &lf3

with model operator f(x) = £(x), X = x”
B: prior error covariance
R: observation & model error covariance



Bayesian UQ in large-scale (linear) inverse problems based on (low-rank) Hessians

e Hessian and prior-preconditioned Hessian of the data misfit:

Hmisie = LTR™L

Hmisfit — 81/2 Hmisfit 81/2 — 81/2 LTR_lL 81/2
— VAVT

e Posterior error covariance:

-1
P — (LTR—lL + B—l)
— 81/2 (81/2 LTR—lL 81/2 + I) — 81/2

_ Bl/2 (V/\VT n /)_1 B1/2




Bayesian UQ in large-scale (linear) inverse problems based on (low-rank) Hessians

Inversion using Sherman-Morrison-Woodbury relation:

(31/2 ITR-1 B1/2 4 /) -

n A.
=/ -V.D,V +0 !
reo( Y )

I=r+1

with A, , V, truncated eigenvalues & eigenvector matrix

Ai+1

Nobs A
= B1/2 {/ - dy VT} BY/? 4 = -~
i=1

p = B/ (/ _ v,D,v,T) BY2  p, = diag( A )

: A+ 1




Bayesian UQ in large-scale (linear) inverse problems based on (low-rank) Hessians
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Bayesian UQ in large-scale (linear) inverse problems based on (low-rank) Hessians

Observations: heat & volume transport across:
—Iceland-Scotland Ridge
—RAPID array (26N)

— OSNAP West
— OSNAP East
— Davis Strait

Quantity of Interest (Qol): ‘
subsurface heat content outside of

Sermilik Fjord & Helheim Glacier (Southeast Greenland)

N. Loose, PhD thesis (2019)
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How well does each observing system constrain the solution & relevant Qols?

Prior & posterior variances of Quantity of Interest Q

= (99} (92 _ (99} p (22
Hprior =\ “ax B ) 0 B A o

Case of only 1 observation:

Uncertainty reduction of Qol Q ihrough observation 7

— )
Hoprior 1BY2(52) "1l 11BY2 (%) |
= di; < info required by Q, info transmitted by J >

o




How well does each observing system constrain the solution & relevant Qols?

Qol = subsurface

temperature near Helheim
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N. Loose, PhD thesis (2019)




How well does each observing system constrain the solution & relevant Qols?
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A unified, data-driven computational framework that enables:

Conclusions: optimal state & parameter estimation =
@,

1. Model calibration & state reconstruction via gradient-based optimization
— making optimal use of available, disparate observing systems

— dynamical & kinematical consistency of data-model synthesis

2. Causal / dynamical attribution of observed changes
— Adjoint [ dual state propagates sensitivity information

— Dynamical attribution via convolution

Hessian-based uncertainty quantification
— Prior —to— posterior —to— Qol uncertainty propagation

W

Optimal Experimental (Observing System) Design

4.
A long-term program to bring to bear CSE tools in ocean climate modeling
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