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MOTIVATION

“Rising sea level has worldwide
consequences because of its
potential to alter ecosystems and
the vulnerability of coastal regions
by increasing the prevalence of
recurrent tidal flooding events and
life-threatening storm surge

events.1”

1NOAA. The Ecological Effects of Sea Level Rise Program. coastalscience.noaa.gov/. Access 3/19.
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A GREEN’S FUNCTION APPROACH

A (modest) Goal: Variance estimation for a given “reference”
or “mean” shallow water forecast.

Tools to use:

I Green’s Functions

I Shallow Water Equations

I Monte Carlo approach
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GREEN’S FUNCTIONS

Given an inhomogeneous linear
system,

L[q(x, t)] = f (x, t),

the Green’s function solves the system
perturbed by an impulse (Dirac delta):

L[G(x, t; x′, t′)] = δ(x− x′)δ(t− t′).

The “magic rule” property of the
Green’s function recovers the solution:

q(x, t) =

T∫
0

∫
Ω

f (x′, t′)G(x, t; x′, t′)dx′dt′.

Numerically, we can use a unit
impulse (Kronecker delta) and solve
for Green’s Functions on a spacetime
grid ({xi}, {tn}):

L[G(x, t; xi, tn)] = δ(x− xi)δ(t− tn).

The solution is

q(x, t) =
N∑

n=1

S∑
i=1

f (xi, tn)G(x, t; xi, tn).
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GREEN’S FUNCTIONS—SOME ANALYTIC EXAMPLES

2D Wave impulsive force

I ∇2φ− 1
c2φtt = δ(x)δ(t)

I φ(x, t) = c
2π

H(ct−r)√
(ct)2−r2

, r = ‖x‖2

2D Wave Time-Harmonic force

I ∇2φ− 1
c2φtt = δ(x)eiωt

I φ(x, t) = i
4 eiωtH(2)

0 (ωr
c )
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GREEN’S FUNCTIONS

For the initial condition problems,

q(x, t) =
S∑

i=1

f (xi)G(x, t; xi).

Or, in a matrix form,
G11 G12 . . . G1S
G21 G22 . . . G2S
G31 G32 . . . G3S

...
...

. . .
...

GN1 GN2 . . . GNS


︸ ︷︷ ︸

Green′s Functions

·


f1
f2
...
fS


︸︷︷︸

Initial Condition

=


η̃1
η̃2
η̃3
...
η̃N


︸ ︷︷ ︸
Solution

For a time-dependent forcing, add an extra dimension to this
calculation.
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A GREEN’S FUNCTION APPROACH

The Goal: Variance estimation for a given “reference” or
“mean” shallow water forecast.

Tools to use:

I Green’s Functions

I Shallow Water Equations

I Monte Carlo approach

10 / 25



INTRODUCTION GREEN’S FUNCTION APPROACH EFFICIENCY DEMONSTRATION

A GREEN’S FUNCTION APPROACH

The Goal: Variance estimation for a given “reference” or
“mean” shallow water forecast.

Tools to use:

I Green’s Functions

I Shallow Water Equations

I Monte Carlo approach

11 / 25



INTRODUCTION GREEN’S FUNCTION APPROACH EFFICIENCY DEMONSTRATION

SHALLOW WATER EQUATIONS

Free surface elevation: η(x, t)
Velocities: u(x, t)
Bathymetry: H(x)

ηt +∇ · ((H + η)u) = 0

ut + (u · ∇)u + g∇η = 0
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SHALLOW WATER EQUATIONS

η(x , y , t)+H (x , y)

η(x , y , t)

−H (x , y)

Free Surface
u( x , y , t)

Free Surface

= h(x, y, t)
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SHALLOW WATER PERTURBATION EQUATIONS

Instead, we try to get better results within the previously stated
goal to perturb around some kind of “reference solution.”

I Assume a given solution to SWE: [E,U]T.
I This is the mean of our forecast.

I Perturb it: [E + η̃,U + ũ]T

I Assumption: η̃, ũ,∼ O(ε)
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LINEARIZED Perturbation EQUATIONS

η̃t + (U · ∇)η̃ + (H + E)(∇ · ũ) = −(∇ ·U)η̃ − (ũ · ∇)(H + E)

ũt + (U · ∇)ũ + g∇η̃ = −(ũ · ∇)U

or, to emphasize the linearity in the perturbations,

η̃ũ
ṽ


t

+

U (H + E) 0
g U 0
0 0 U

η̃ũ
ṽ


x

+

V 0 (H + E)
0 V 0
g 0 V

η̃ũ
ṽ


y

= −

(Ux + Vy) (H + E)x (H + E)y
0 Ux Uy
0 Vx Vy

η̃ũ
ṽ


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DOMAIN SNAPSHOT—SOURCES AND RECEIVERS
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EFFICIENCY

Parameters affecting computation and storage of the Green’s
functions:

I Source region size (S)
I Receiver region size (R)
I Timesteps (T)

2 stages:

I Pre-computation of Green’s functions (expensive—model
runs)

I Re-combination of Green’s functions (effectively
instantaneous—matrix-vector multiply)
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MONTE CARLO VS GREEN’S FUNCTIONS

So what’s the difference?

I In a straightforward Monte Carlo approach, we calculate
many model runs.

I Convergence is slow, and model runs are long.

I In the GF approach, we must pre-compute:

I For Initial Condition / Tsunami: S model runs.

I For time-dependent forcing / Storm surge: S · T model
runs.
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REDUCING THE PROBLEM

We need to keep the number of Green’s functions reasonable.

For the spatial dimension (S):

I Coarsen the Green’s Functions grid

I Other basis representations

For the temporal dimension (T):

I Time-harmonic Green’s functions
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SO THEY’RE PRE-COMPUTED—WHAT NOW?

After pre-computing Green’s functions, the world of parameter
perturbation is open.

I What-if scenarios

I Look at individual
parameter effects
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DEMONSTRATION

The mean forecast:
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DEMONSTRATION
Results:
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Thank you.
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