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© Motivation
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Objective

Design of composite car including material processing.

o
o

) J Vehicle = f(Fiber, Tow, Lamina, Laminate, Controls)

MANUFACTURING

—

PERFORMANCE PREDICTION

1
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Approach

Package information in a suitable manner for impact on purpose.

Information
PHYSICS:

e fabric folding
@ resin flow
@ resin curing

@ residual stresses
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Package information in a suitable manner for impact on purpose.

Information
PHuysICS: DATA
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Approach
Package information in a suitable manner for impact on purpose. J

Information

Puysics: DATA: I
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e fabric folding
@ resin flow
@ resin curing
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Approach

Package information in a suitable manner for impact on purpose.

suitable manner J

to leverage big computers and associated highly rTesoIved numerical models.
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I,

Approach
Package information in a suitable manner for impact on purpose. J

purpose
@ Reduce weight of vehicle without adversly affecting occupant safety.

@ Optimize the manufacturing process to achieve objective.
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© Review of Polynomial Chaos Constructions
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Probability Models

standard models:
from observations of K, construct statistics or probability density of K:

Data — |[fk(k)] 1
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Probability Models

standard models:
from observations of K, construct statistics or probability density of K:

Data — I

Polynomial Chaos Approach

from observations of K AND understanding of physics:
@ postulate dependence of K on subscale features, £ : K(¢) & € RY

@ describe this dependence in polynomial form:

Data €@ Physics [K(E):Z{l ka t'a(f))

@ estimate coefficients in that expansion

@ observations of K are either experimental or numerical.
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A Cameron-Martin Theorem

Let x(t) be a Brownian motion, and let:
@ {a;(t)} is a CONS in L?[0,1]
® ®pmp(x) = Hm [_fgf.p(r)dx(r)} m=1.2."s p

° wm:. .mp(x) — d)ml-l(x)' ' ‘tbmp-P(x)
Then

2

Jim / F[x]— Z A,,,l Vg my(X)| dwx =0

voo J ¢

The polynomial chaos decomposition of any square-integrable functional of
the Brownian motion converges in mean-square as N goes to infinity.

or a finite-dimensional representation, the coetficients are functions of the
missing dimensions. That is, the coefficients are themselves random

variables dependent on the dimensions excluded from the representation
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Polynomial Chaos

K(XE) - Z kn(x) '“n(E)

a>0
e if K is a stochastic process, then k, are funktion of x.
@ £ reflects uncertainties in model parameters, model form, and
@ updating the probabilistic model entails updating the coefficients:

@ procedure can be recursive:

hierarchy of scales: £ = Z zg va(C)
3

model/data errors: k,(x) = ka(x.{) = Z ke ~(%)14(C)
.7

>
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Polynomial Chaos

material property model: k(x,§) = Z ka(x) Val€)

a|>0
physics model: wu = f(k) = H(k(£))
u(x,§) = Z Ua(X) Val€)

a|>0

e if u is a stochastic process, then u, are functions of x.

@ £ reflects uncertainties in model parameters, model form, and da!

@ updating the probabilistic model entails updating:

&: models of the fine scale.
k.: how fine scale maps to coarse scale
U.: how prediction depends on fine scale
k: coarse scale model of property
u: coarse scale model of prediction
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Observations from elementary statistics

Average out the noise (upscaling or CLT)

[*] Y ~ '.\,“"

.Xw\g

) T""‘td

Y =Zf.;- & ~ N{O. 1)
d
X=) &  &~N(O1)
i=1
A
T ox —=i=lx & ~ N(0,1)
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L Revewof Ponominl Chaos Conservcions |

Observations from elementary statistics

Average out the noise (upscaling or CLT)
oeY~N, Y=Y,§, & ~ N(0,1)
o X~yd, X=X0.8,  &~NOI)"
o T ~ty, Tx\—/i% & ~ N(0,1)

Reverse-engineer CLT:
Features matter: away from mean-field theories

Given coarse observable, construct a functional model from the finer scales:

X = f(&,-- &) = F(§)

>
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Non-Intrusive Characterization

IF WE KNOW : € 5 u(§)

We want:

u(§) = Z UaVal(€)]

>0
Orthogonality of {v, }
U = Ee{u L'a}
- / / u(x) Va(x)Pe(x) dx
l'1 rd
~ Y ul(x®) va(x?) wy

qeQ
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______ Revewof Polynamial Cheos Constructions |
Adaptation

We address the challenge of curse of dimensionality

By shifting the complexity of analysis from that of parameter space to that
of the Quantity of Interest (Qol).

L3
New challenge: Learn the complexity of the Qol:

We use two different ideas of complexity:

@ Explicit Functional Dependence inherited from Governing
Equations:
use projections and vector space methods with PCE: Basis adaptation

@ Intrinsic Structure Encoded in Data:
use graph analysis and diffusions on manifolds: Manifold sampling

o
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Multiscale Material System: manufacturing to performance

'

ST

-

scale

p.6)

Macro
Simulator
(LS-DYNA)

Micro scale
Simulator
(MDS)

=
L ondtons

&>
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Manufacturing Process

Effect of fluctuations in properties of constituentskand manufacturing
control variables

on material properties and processing time.
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Manufacturing process

Draping/Fabric Forming

11 uncertain variables
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Manufacturing process

Draping/Fabric Forming

11 uncertain variables

Resin Transfer Molding + Curing

Distortion
34 uncertain variables

Total dimension of parameter space

30 uncertain variables . J

75 uncertain variables
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Manufacturing process

75-dimensional parameter space for material processing

Qol: Fill Time (75d)

(a)

32 34 36 38 40

Filltime t; (sec)

-
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Manufacturing process

75-dimensional parameter space for material processing

Qol: Fill Time (75d): First order coefficients
(@)
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Manufacturing process

75-dimensional parameter space for material processing

Qol: Maximum residual stress (75d)
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Manufacturing process

75-dimensional parameter space for material processing

Qol: Maximum Residual Stress (75d): First order Coefficients

PCE (1% od) of 0,
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Structural Performance

: : : & ;
Effect of fluctuations in microstructure of manufactured material
on the performance of the structure. J

- UQEeSIAMGS19 20 March 112019 2 20/58




| Revievof Pomomial Chaos Construction: |
Multiple Scales

@D o
>l
EF
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Multiple Scales

™

e
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Multiple Scales
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Macro-scale structural behavior
16-dimensional parameter space

Tow geometry model:
statistical dependence at microscale with coarse scale constraints

* Measured combinations

UQ@SIAM-GS19



Macro-scale structural behavior

16-dimensional parameter space: resin/fiber /towGeometry

Stochastic Structural System Performance

s
e
e o
o
4

0 00N
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-
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Macro-scale structural behavior

16-dimensional parameter space

Predicted Joint PDF for coarse scale properties
PR
‘@O
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Macro-scale structural behavior

16-dimensional parameter space

Modulus and strength comparison with experiments in tension test

Lacgts WA Fenase bweegen Bl Ui

[ -

b et
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_ Reviewof Potynomial Chaos Constructions |
Validation Results

Validation with 3PB tests
Elasticity Modulus

QLII'I'IIII'I-I. (M18) , Flex modulus (Ntteds-« ) using LSD 3pb test along AX-0
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Validation Results

Validation with 3PB tests
Strength Modulus

Laminate (M8 . Jpb strength lsdyna- phugen $0C LY
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Polynomial Chaos representation

L1l "l 11

This is our prior model that encodes physics knowledge and simulation
codes.
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Required innovation

Mathematical /Statistical

Compute likelihood and statistical dependence of various quantities across
scales and across physics/models.

Algorithms

Curse of dimensionality: address large parametric dimension through
stochastic basis adapation.

Software

Multi-models exchange distinct stochastic representations, spatial
discretizations, and homogenized variablés.

-
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© Adaptation
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o
Basis Adaptation: Context

Numerical model is parameterized with random parameters k:

These are mapped to d independent random variables.

k=FfE), ¢€EcR?

Qol is expressed as function of &

Q) £ hu(®)] = 3 Gatal€)

lal<p
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Basis Adaptation: Basic ldea

Idea:

Compute sensitivity with respect to all possible
linear combinations of the variables.

Challenge:

Linear combinations of the variables become statistically dependent with
complicated probability density functions that depend on the weights.
unless they are gaussian.

We use nonlinear maps to transport nonGaussian densities to Gaussians.

-
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Basis Adaptation: Basic Idea/ Gaussian germ

Rotate £
n = A§
Since £ is Gaussian, 7 is also Gaussian and
Q(n) = Q(§)

PCE for rotated variables:

D) Ga¥alb) = ) dava(AE)

al>0 al>0

o the sparsities of truncated expansions are different and depend on A

@ choose A to concentrate the expansion of @ in the first few

Wmi=1 o N7
@ best A depends on the specific Q

UQ@SIAM-GS19
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Basis Adaptation: Constructing the rotation

Gaussian adaptation

Align 11 with the Gaussian components of Q: 1 = Zf’zl qi€i
Other 7); obtain through Gram-Schmidt.

Compresisve sensing

Find A to minimize least squares distance between adapted-basis
prediction and available full-dimension samples.

Various optimality criteria
@ closest 1d match to CDF of available samples
@ diagnolize a full second order fit
e Maximum likeliho?d estimator for A

@ Bayesian posterior for A over manifold of rotation matrices.

-
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Isometry on Gaussian Space

Let A be an Isometry
Let n = A€
Then

Vn>1 span{va(€). || = n} = span{t'a(n). |a| = n}

Let f,'e(E) '-'n(")
and

9€) = ) qaval). a*n)= D qava(n).

acl, acl,
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Projection on Transformed Space

Consider a subspace V7 of L?(Q2) spanned by {v5;:B€ZIC T

- Ip}.
The projection of g2 on V7 is:

qA‘I(T]) = Z l.,[j(ﬂ Z Z ch(‘-c: 'v[_‘i)" ﬂ(ﬂ)

BeI BeI acl,

e Z Q-{L'“r(f) °
Y€,

This yields,

=Y Y tala, vB)Wh. vs)

BeI acl,

o
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Case 1: Adaptation to Gaussian Components

d

Take N = Z er'-'a(g) - Z QQ,EE

acl; i=]
T=T.NG.
Then:
*'(m)=qf +aam+ Y_ qus(m)+ D ahva(n).
‘pet,” ‘Bes
and

**(n)=a5 + )_ qaava(n)
Be &

UQ@SIAM-GS19
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Error

A Al
q*(n) - a**(m) = Y davs(n)
l-ﬂ:;t‘::”
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Case 2: Adaptation to Quadratic Components

d d

Take A to diagonalize gy + Z qi&i + Z Z qii(&i& — 0j)
=] j=l

ASA-D
Then:
q*(n) = %+Zb'h +Zd(u. - 1)+ ) qavp(n) .
IB8|>2
d
T=q+)Y ) aqfvs(n)

i=1 BEE,
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EI’!C]Ir

*m) - )= D qausn) .

. 75
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-

Case 3: Adaptation to CDF of Qol

p
Take A such that: A = arg min Z lqi(A) — Gillw;

=0
I=§6 where §= F'o(¢) = Y Givi(€)
Then:
() =q6 +dam+ Y qhvs(m)+ Y aivs(n) .
‘B "Bes
and
**(n) = a8 + Y _ aavs(n)
Be&

Error

q‘:(n)-qu(n)= Y d4vs(n)
‘bgf.lp
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 Swchasic Opumization |
Qutline

@ Stochastic Optimization
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Basis Adaptation for Optimization: A(d)

Focus on Qol in Design Optimization:
d* = Locations of Injection/Production wells

Find: d* = arg max J(d)

J(d) = Q(a)
Subject to:
1 - F4(Qa) = P(q(d.0) > Qa)
=1-a

UQ@SIAM-GS519 March 11 2019 42/58



Basis Adaptation for Optimization: A(d)

Focus on Qol in Design Optimization:
d* = Locations of Injection/Production wells

___Adapted chaos dvmensionality

| Find: d* = argmax J(d)
X J(d) = Q(a)
" I . . Subject to:
3 et AL AR A 1 - Fg(Qa) = P(q(d.0) > Q.)
=]1-a
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Basis Adaptation for Optimization: A(d)

Focus on Qol in Design Optimization:
d* = Locations of Injection/Production wells

Angles
-

Find: d* = argmax J(d)
J(d) = Q(a)
Subject to:
1 - Fqg(Qa) = P(q(d.0) > Qu)

=1-a
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Basis Adaptation for Optimization: A(d)

Focus on Qol in Design Optimization:
d* = Locations of Injection/Production wells

LI A A L * e
yYvou | 8. g, * *
10 = s
. 05 :
8 L ® va® o
g M:i':';zt'i;.:t‘:'::s Find: d* = argmax J(d)
5 i J(d) = Q(a)
5 « e
o Subject to:
et g 1= Q) = Pe(d.0) > Q)
=1-a
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Adapted Stochastic Upscaling

Fluid passing through heated inclusions
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Random Thermal Conductivity of Inclusions
cs'!(‘) SC(\)*(E) § ¢

Stochastic Process with d Dimensions

ThermCond
53.183899

33.2479897

One realization of thermal conductivity process.
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Governing Equations

Steady-state laminar flow

@ continuity pe(V-u)=0
@ conservation of momentum pr(V-u)u=—VP + usV23u+ psf
@ conservation of energy prcof [V - (uT)] = ke V2T

B.C.: Constant material flux and constant temperature on left side.

pr is the density of the fluid,

ji¢ is the viscosity of the fluid,

k¢ is the thermal conductivity of the fluid,
Cp.r is specific heat of the fluid.

Steady-state heat conduction in solid

\sCp.s [V-(uT)] = ks V2T

B.C.: Constant flux at center of each inclusion.
UQ@SIAM-GS519 March 11 2019 45 /58




Fine scale results using Albany- u, and u,

WA e J_n_wa
102 b2 [ 54687
fra {

120

&C 2
0 0

(a) Mean of u, (b) std. dev. of u,
"‘,i,;‘; Js.;.;?’s
l° '*
- ,
- |
" : | 0
(¢) Mean of u, (d) std. dev. of u,
k
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Fine scale results using Albany - pressure and temperature

" va0082
(+B ]
02
o1
0
(e) Mean of pressure (f) std. dev. of presure
ferrp_rmean Terrp _thad
?T! 19282 21693
&0
— 30
» ;
10
322 %3831 1 0)e-10
(g) Mean of temperature (h) std. dev. of temperature
k
=
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Coarse scale model: Brinkman-Darcy equations

Fluid flow continuity equation
pe(V-a) =0

Darcy-Brinkmann Momentum Equation:

Qg

,,,—(v i) = —oVP + pusV3i — S oprf

Fluid and solid phase equations collapse to one
. (5CuT) = EsV2T +£0

@ u is the volume averaged Darcy seepage velocity
@ P is the volume averaged fluid pressure in the porous media,
@ ¢ is the porosity of the medium,
@ K is the permeability,

o C,y is effective heat conductivity of porous media.

@ Brinkman Yerm 1t¢ V2 accounts for transitional flow =

between the solid boundaries
UQOSIAM-GS19 March 112019  49/58




Stochastic upscaling
Spatial Average over RVE

Permeability

Obtain: For each RVE.kk,-j(x) as function of £ € RY.

o
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Stochastic upscaling
Spatial Average over RVE

Thermal Conductivity

pCV - (aT) = CV - (VT)

By Gauss-divergence theorem

,76/ 5 )= c'eff/ 7 (VT)b,
53 C

Obtain: for each RVE, N () as function of £ € RY.

’
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L Swochustic Mutiscale Reprsentations |
Parameter of Upscaled Model

We want a random field model for coarse scale permeability K and C ¢

P
k(x,€) = D _ ki(x)vi(€),
=0

This is a model in d dimensional space. Still too expensive.
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Stochastic upscaling
Spatial Average over RVE

Qol is Permeability

Obtain: For each RVE.kk,-j(x) as function of one 7).

o
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Stochastic upscaling
Spatial Average over RVE

Qol is Thermal Conductivity

pCV - (aT) = C

By Gauss-divergence theorem

,76/ ) c‘eﬁ/ 7-(VT)ds,
G C

Obtain: for each RVE, N ¢f(x) as function of one 7.

-




L SwchsicMutscale Repsenution: |
Qol is RVE-upscaled variable:

We want a coarse scale random field for permeability K and C¢f:

k(x.€) = Y ki(x)¥(€).
j=0)

Linear basis adaptation for each RVE
d

n(x) = 3 wilx)

i=1

k(x,€) = Z ki(x)i(n(x))

Challenge:

Considered over the witle spatial domain, it is likely that all & are
activated: no reduction in complexity.
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L Swchic Mutiscaie Reprsenacions

Upscaled Permeability: Is not one-dimensional

»
’
n [ %
5::: 1 -
/| i
z ’
[
[ ™
3 J ———
ry

£ x4 3 R & IR )l‘:' 151 © ey
o "Permibtody 5, (1)

(i) Permeability at point 3 (j) Permeability at point 20

Figure: Permeability computed at points 3 is 3-dimensional and at point 20 is
1-dimensional.
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Upscaled variables are statistically dependent

Depend on same fine scale fluctuations

k(x) = ) ka(x)val(€)

Ceff(%) = Y _ Ceffa(X)al)
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e eecnco [

Concluding Remarks

e PCE is fundamentally a representation of stochastic variables and
processes.

@ The coefficients can be constrained by physics from across scales.

@ Adaptation and other projections can be leveraged to yield massive
computational reductions.
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