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Montserrat
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Plymouth 1977

MONTSERRAT: CAPITAL PLYMOUTH WITH SOUFRIERE (3002 FT.)
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Pyroclastic Flows
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Plymouth 1998
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How bad is it?

X e W

E. Bruce Pitman (UB) Uncértaiﬁty Quantificétion for Volcanic Hazar SIAM Geoscience 8 /35



The Cast of Characters

This project began as a SAMSI Working Group in the ‘Computer Models’
program 2006-2007. Over the years several wonderful graduate students at
Buffalo, Duke, and Marquette have participated in the effort. The research

has been continuously supported by the NSF through its FRG, BigData,
and CDSE programs.
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Conservation

z=s(x,1,1) Upper free surface

F(xt) = s(xy,t)—z=0,
Basal material surface

Fo(x.0) = b(x.y) —z=0

flowing mass ;

glﬁ\ﬂ = - . .
Kinematic BC:

at F(x.r)=0: ¢ F+v-VF =0

at F°(x,1)=0: 8 F" +v-VF’ =¢,

V-u=0
d(pou) +V - (pou @ u) =V - T + pog
Assume H/L < 1 and scale governing equations, and depth average.

11 /35

E. Bruce Pitman (UB) Uncertainty Quantification for Volcanic Hazar SIAM Geoscience



Final System

h hvy
U= | hv f(U)= | hv2+ Lkapg.h?
hv, hvyv,

Ovy .
S« = gxh— hkapsgn(a—y)(?y(gzh) Sin ©jnt

L S |:gzh (1 + Yx >:| tan Yped
\JVE+ v)? <8z
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Final System

ou | of(U) | 9g(V)
8t+ Ox + Oy

= 5(U)
A system of hyperbolic conservation laws.

Input parameters ¢, ¢jne could, in principle, be measured in lab

TITAN2D is a computational environment for solving this system.
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TITAN-2D requires a model of the topography at every lat-lon location.

Other inputs include ¢p, @jn¢, initial volume and location, direction and
velocity of the flow at the start.

Sensitivity analysis: ¢j,: less important than ¢y.
Discover ¢p = ¢p(V)!
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Effective Friction

Friction vs. Volume (x 16® m%)
T T

Tan(o)

Volume
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Volume-Frequen
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tserrat Computation

Fix ¢int, choose V, ¢y, C.
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msvol50000000cut30dir135 t=00:01:00 h
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Volume-Frequen
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Volume-Frequency

«
Pareto volume-frequency f(v]a) = S5

Best estimate: « < 1 which means expected volume of flows, and
expected variance, are both infinity. That is, there is a non-trivial chance
of extremely large event (larger than the total mass of the island!).
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Volume-Frequency

«
Pareto volume-frequency f(v]a) = S5

Best estimate: « < 1 which means expected volume of flows, and
expected variance, are both infinity. That is, there is a non-trivial chance
of extremely large event (larger than the total mass of the island!).

Little data out near the shoulder to fit a cut-off.

21/

E. Bruce Pitman (UB) Uncertainty Quantification for Volcanic Hazar SIAM Geoscience



Table of Contents

© A Path Forward

E. Bruce Pitman (UB) Uncertainty Quantification for Volcanic Hazar SIAM Geoscience 22 /35



Hierarchical Friction Model

50 replicates of ¢ v=. V at Montserrat

18 T T T

Basal Friction (degrees)

Voluma [x10F m%)

®ped = arctan(a+ blog(V))
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o Consider what happens at a single location on the island

@ Select initial volume and direction from prescribed distributions
obtained from historical data, make a random selection of ¢,(V), and
fix other parameters

o Many TITAN2D simulations

@ Define a “catastrophic curve” () in this plane, calling more
simulations as necessary

@ Construct a GaSP emulator

@ Assume Poisson process in time with rate A; use a distribution of as
consistent with the data

@ Assume uniform distribution of flow directions
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Catastrophic Event

If we define yM(V/, () as the TITAN2D output, a catastrophic event is a
yM € ¢ where

¢ = ¢(C) = 1nf(V : yM(Vv C) > hcrit)

Finding v is an inverse problem.
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GaSP
gyM(V,Q) =6+ mV+2Z(V.Q)

with squared exponential correlation in V and ¢
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Hazard Probability

t 2
E (#-catastrophic flows in t yrs) = ﬁ ; »(¢)™*d¢
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Hazard Probability

Then the posterior distribution is given as

P(at least one flow > 9({) in t yrs) =

1— [ [exp(Z2E [279(¢)"*d¢)N(a, N data)dAday
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Hazard Probability

Note: the simulations and GaSP construction are divorced from the
determination of ¥ which is divorced from the hazard calculation.

E. Bruce Pitman (UB) Uncertainty Quantification for Volcanic Hazar SIAM Geoscience 30/ 35



Map Construction

To compute the hazard probability for many points in a region, compute
the hazard at a point, for many locations.

One large set of simulations (~2000), done beforehand.
Draws of about 50 runs to construct GaSP for each unique location. Add
some additional simulations if necessary to find ¢ curve accurately enough.

This can be done for all locations in parallel.

We also have data on which valleys were hit with which frequency, and
when, showing an intereting switching phenomena after large events.
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Flow Distribution
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@ We have outlined one approach for the rapid construction of a hazard
map, one which separates the flow simulations from the construction
of the hazard map

@ We turned an inverse problem for parameters into a series of forward
problems

@ We have discovered uncertain inputs in our models and accounted for
them

@ We have explored Bayes model averaging — because we don’t know
the correct constitutive relation

@ We used a GaSP emulator in an interesting construction. Since the
first work we did, Gu and Berger - Parallel Partial Emulation.

@ Can emulate time series, which we are using to locate rockfall
locations.
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