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Data-driven Extraction of Dynamics R KUY

e Analytic Approach (conventional)
Hypothesis
Generation N

~ ™| Mathematical model

\. J

(or, Lit+1 = F(a?t) )

[(real) Dynamic Process ]

Analysis /
Prediction

e Data-driven Approach

Observation Machine learning is
a key mathematical

[(real) Dynamic Process ] Y Dot
framework!

\/ — Understanding of data generation

P (f | Y) —_— mechanism

— Use for prediction / simulation

Inverse Problem (Learning)



Operator-theoretic Analysis R KUY

* |In place of directly analyzing nonlinear dynamics f, we analyze a
linear operator [C, such as the Koopman operator (Kkoopman 31), that
corresponds to the time evolution in the dynamics:

time t > timet
Nonlinear Dynamical Systems Nonlinear (difficult to analyze)

Understand / Predict
the behavior

L1 — F(wt)
(& &= f(z))

Operator
representation

Kg() = 9(F() | —

-Data
\ (g: S — C)

Transfer operator Infinite-dimensional linear space
(function space) H

Lt~ > Ty
State space S

(eg. spectral analysis)

(eg. Koopman operator)



Reproducing Kernel and RKHS e Kxusi

* Reproducing kernel k: X X X — R is a mathematical tool for
analyzing data via the reproducing property:

- Symmetricity: k(x,y) = k(y, x) for any pair T,y € &

T

— Positive definiteness: Z cicik(x;, xj) >0
ij=1
for neN,z1,...,x, € X,c1,...,¢, €R

ex.) RBF Gaussian kernel k(w, y) = €XP (—CHCD — yHZ)
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Reproducing Kernel and RKHS e Kxusi

* Reproducing kernel k: X X X — R is a mathematical tool for
analyzing data via the reproducing property:

- Feature map: ¢: X — H;. (o(x) = k(zx,-))
— An inner product in the feature space can be calculated as

(0(x), ()4, = k(z, ')

¢($) — k(wa ) A o

R G
° ° . feature map ory

o
X o ¢
o /Hk

Space of original data feature space (RKHS)
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Perron-Frobenius Operator in RKHS R KUY

* Use the Perron-Frobenius Operator in RKHS Hkrendowed with a
reproducing kernel:

gEHK == Lo(x)=¢oF(x) (VeS8

time t > time ¢+ 1 time t > time ¢+ 1

F

Ti— > T

T > T

State space S State space S

His = (0(@)]m € S), i

(p: Hr,s — H :linear isomorphism) (Kawahara, NIPS’16), (Ishikawa et al., NeurlPS'18)



Properties and Extensibility KUy

e Applicable to wide range of dynamical systems without preparing
observables (just need to choose (suitable) kernel functions).

A DMD procedure (for the naive case) is reduced to the equivalent
one of Extended DMD (williams+ 16) (for SVD-based implementation)
(Kawahara, 16).

=> but, PF operators from kernels are not necessarily bounded.

* Deliver useful extensibility such as

— Random systems with kernel-mean embeddings
(Hashimoto et al., under review)

— Structured observables (eg. Graph sequence)
(Fujii & Kawahara, Neural Networks (in press))

— Metric with PF operators in RKHSs (Ishikawa et al., NeurlPS’18)
— and others ...



Random Systems (1/3) e s

* Consider a nonlinear system with random noise:
Xit1 = h(Xy) + &

—X and &are random vars. from measurable space to state space S,
and h: S — S isamap.& is assumed to be independent of X.

* Transform random variable X into probabilistic measure X, P

(pushforward measure of P w.r.t. X defined by Xp(4) = P(X~'(A)))
metric

* Perron-Frobenius operator K is defined via kernel-mean embeddings:
®: D(S) — Hy definedby [ |—>/ gb(az)dugx)
xeS

probability measure

by [K® (1) = B(F(p© P))
\
(Fy: S xQ — S is defined by (z,w) — h(z) + {(w))

(Hashimoto et al., under review)



Random Systems (2/3) e s
&t

Fi
X P— > Xi1.P

State space S

time t > time ¢+ 1 time t — time ¢+ 1

*) (Klus+ 17) considers PF operators in RKHS via kernel-mean embeddings in another
way, and (Crnjaric -Zic et al., 2017) considers the Koopman operator for random
system z,,1 = o(t,w, z;), where p: Z>g x I x§ — §.
=> The relations of our case with the above works can be explicitly described.

(Hashimoto et al., under review)



Random Systems (3/3) e s

* PF operator K is not necessarily bounded. =>
eq., if k is the Gaussian kernel, and h is nonlinear (even when  &; =0

* We develop Shift-invert Arnoldi (SIA) method for the estimation:
— Use Krylov subspace of (y] — K)_1 (v ¢ o(K)) instead of K.

\

Spectrum of K

o
o

SIA
e I/'\ —e— N=50

(Standard) Arnoldi method tends
~ to fail if S is large (not so robust).

o
o

Variation of abnormality
o
~J
|

Arnoldi N
N=50 T
N=100

8 10 12 14 16

o
w

(@)

\ .
Dim. of Krylov subspace (Hashimoto et al., under review)



Properties and Extensibility KUy

e Applicable to wide range of dynamical systems without preparing
observables (just need to choose (suitable) kernel functions).
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(Kawahara, 16).
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* Deliver useful extensibility such as

— Random systems with kernel-mean embeddings
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— Structured observables (eg. Graph sequence)
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Extension to Structured Observations (14 «us

e DMD => Operator is defined in the space of observable g

B
 DMD for relations among observables when given structured data

(such as sequences of graphs or distances)?

ex) Extract the dynamics in collective motions such as fish school ?

Swarm Torus Parallel

(Fujii et al., PLOS Computational Biology (2018))



Extension to Structured Observations (2%)

Before: Dynamics on observables g
=> Extend it to dynamics on relations among observables

Use vector-valued kernels

Obs. func. |9 = (91, 7913], gi € Hi ||~ g c %K
/ 4

~ /

RKHS RKHS with k: X x X - R RKHS with K : X x X — R™*xm

Rep. prop.: ¢(x) = k(x, ) {Rep. prop.: ¢c(x) = K(x,-)c
f(x) = (f, o)) f(x) c=(f K(z,)c)

Ex.) Regard a graph sequence A;, A,, ..., A; as realizations of covs. in g(x) ~ N (u(x), K(x,x))

wy § € H i (where H K is the RKHS endowed with covariance matrix K )

(Fujii & Kawahara, Neural Networks (2019))



W
Extension to Structured Observations 3@)

 Determine a kernel func. K ( ¢c: feature map)
* Finite length graph sequence (seq. of adj. matrices) A, A,, ..., A;

(define @¢ = [pe(x0), Pe(X1), -, Pe(®r_1)] P1:= [de(T1), Pc(x2), -, Pe(®T))

[ 1. Calculate an orthogonal basisin Hk : U := &M (M c RT-1x»)
< T—1

QZ. Solve the LS prob. : P := argmin — Z |U* Pe(@i11) — P (U pe(1))]”

prerexy 1=

Basically can be performed by applying Tensor DMD (Klus+ 16)

3. Calculate the eigen-value / -vectors of P : Pv; = A\jv;

p
4. Obtain the decomposition : U*¢c(z) = Y Nj(p;(z0) " )0,
=1
(where @;(-) ' c= k; (U c()) (R, is the left-eigenvector of P))
(Fujii & Kawahara, Neural Networks (2019))



Extension to Structured Observations (4%

* Empirical example of the application to data from fish school simulation:
— Data are the sequence of distance matrices among fishes.

Swarm (x)

Clustering results with |
DMD modes as features E
(with kernels defined on |
DMD modes (Fujii+ 2017))  =--- -2

Parallel (*)

R - S
J 1 _10 ’ . : I
-10 -5 0 5 10

(Fujii & Kawahara, Neural Networks (2019))

Exact DMD
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ex). Bike sharing data

| 20 bikes
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(Fujii & Kawahara, Neural Networks (2019))



Properties and Extensibility KUy
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Metric on Dynamical Systems (1/2) N gt

Metric on nonlinear dynamics with time t > time £+ 1
PF operator in RKHSs (Ishikawa+ 18)

= Generalizes (Martin 00), (Vishwanatan+ 07) etc.

State Space

Compare the properties with respect
to a pair of dynamical systems:
Dy(Fy,Kp,, 51) == Dy(Fs,Kp,, %2) @

Observation

Space H 1,
Some definitions:

Kg: Hip — Ki : Perron-Frobenius Ope.

Ly : Hr — Hob : Observation Ope.

—
m T—1 Both | N
/L (D , Do) =1t L. Ko 7)) L. K&.#, | e C . bothare positive
m (D1 D2) 1“ </\§( TR 2) o 1) / definite kernels
2
+ &L (D1, D
AL (D, Dy) := lim < (D1, D) € [0,1]

e—+0 (e + 8L (D1, D)) (¢ + 8T (D, Dy))

=> Relation to the metrics in (Mezic 04) (Mezic+ 16) ?
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Metric on Dynamical Systems (2/2)

m
Empirical Example: Rotation in a unit circle / \
Al A2

A_1(Szego) T=100 A2 (Szego) T=100
| 1:0=1/3,]al=1 2:0=1/3,]al=09 3:0=1/3,]al=03 1 1
2 2
4 4
o @
Szego 5 5
-0.5
6 6
Kernel
4 7 7
| 4:0=1/4,al=1 5:0=1/4,|al =09 6:0=1/4,|al=03 8 8
9 9
08 \/O / u 1 2 3 456 7 89 1 2 3 456 7 8 9
: =
Alg (Gauss) T=100 A 2g (Gauss) T=100
-0.5
L 1 1
o 2 2
3 3
| 7:0=n/3, lal =1 8:0=n/3 lal=09 9:0=n/3, |al=03 . 4 4
Gaussian
05 5
Kernel 6 6
0 7 7
05 8 8
9 9
05 1 -1 -05 0 05

123456783 1 2 3 45 6 7 8 9



Summary i st

* Introduce analysis with transfer operators of dynamical systems using
reproducing kernels, and describe some related recent works such as

[ — Extension to random systems with kernel-mean embeddings
— Extension to DMD for relation dynamics with vector-valued RKHSs

A

— Metric on nonlinear dynamical systems with PF operators in RKHSs

~

Acknoledgements: | would like to thank all of my collaborators (shown below),
and acknowledge supports by IMI, Kyushu Univ. and RIKEN AIP Center.

Dr. Masahiro lkeda Dr. Naoya Takeishi

Dr. Isao Ishikawa Dr. Keisuke Fuijii Ms. Yuka Hashimoto



Tt

RIHE.N KY(;;HU

UNIVERSITY

24



Interpretation of Dynamic Mode R KUY

Mode 1

DMD mode v; gives the contribution of the corresponding dynamics
to each observable:

CBt+cAt E )\3903 L Uj

PCA DMD
SR
. |} |
*t§
© ©
[e] o
g £
2 — 2 SEC =
— time
(Data)

Space 1/ Modified from (Brunton+ 16)



Metrics on Nonlinear Dynamics

IIIIIIIIII

For example, a kernel comparing spatial coherence of dynamics
between two time-series data is defined with subspace angles:

Data 1

(space)

Data 2

(space)

(time)

o DMD mode V,

U

>

Wwwwwwwwwaww
VVWWWWY/

(time)

o DMD mode V,

X

>

Wwwwwwwwwwaww
VVWWWW/

(Fujii et al., ECML-PKDD'17)
(Ishikawa et al., NIPS'18)



Embedding of Nonlinear Dynam
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Embedding with kDMD

Dynamics include various scales, like
indivisuals => groups => team 05
0

-0.5

Applying DMD+ 1
Dynamics comparison

—

6 0.6t
g, A S 0.55¢
5
DOW%M Z 0.5¢
6 }5045
g3 \ 2 04f

0123456 7 8 910111213 ’

time (s) 0.3

modes -+ principal angles
1

succ

fail

-0.5 0 0.5 1

Classification errors by kNN

DMD

kernel DMD

1 2 3 4 91625 Euclid xy
index of input matrices

K. Fujii, Y. Inaba and Y. Kawahara, "Koopman spectral kernels for comparing complex dynamics:
Application to multi-agent sport plays," in Proc. of ECML-PKDD’17, pp.127-139, 2017.




