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Data driven spectral analysis

Suppose we are given a sequence of snapshots fi ∈ Cn of an underlying
dynamics, that are driven by an unaccessible black box linear operator A;

fi+1 = Afi, i = 1, . . . ,m, m < n, (1)

with some initial f1 and a time lag δt. No other information is available.

The two basic tasks of the Dyamic Mode Analysis are

1 Identify approximate eigenpairs (λj , zj) such that

Azj ≈ λjzj , λj = |λj |eiωjδt, j = 1, . . . , k; k ≤ m, (2)

2 Derive a spectral spatio–temporal representation of the snapshots fi:

fi ≈
∑̀
j=1

zςjαjλ
i−1
ςj ≡

∑̀
j=1

zςjαj |λςj |i−1eiωςj (i−1)δt, i = 1, . . . ,m. (3)
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Data driven spectral analysis – deep connections to
Koopman operator theory/applications

The decomposition of the snapshots (3) reveals dynamically relevant
spatial structures, the zςj ’s, that evolve with amplitudes and frequencies
encoded in the corresponding λςj ’s. It is desirable to have small number `
of the most important modes zς1 , . . . , zς` , ςj ∈ {1, . . . , k}.
Such a sequence of snapshot (vectors of observables) can be obtained e.g.
using black–boxed high performance ODE/PDE software, or e.g. by hi
speed camera in an analysis of combustion instabilities in flame dynamics.
In a carefully designed framework with reach enough set of properly
selected observables, the DMD can be considered as a finite dimensional
spectral approximation of the Koopman operator associated with the
dynamics under study. This deep theoretical connection gives the DMD a
pivotal role in computational study of complex phenomena in fluid
dynamics, see e.g. [Mezić]. [Rowley], [Williams], ....
For more details and references see the materials of MT1 (DMD and
Koopman Analysis, M. Budǐsić, J. N. Kutz, M. Hemati)
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Data driven spectral analysis - applications and software
implementations

Other successful applications of DMD include e.g. aeroacoustics
[Lele+Nichols], affective computing (analysis of videos for human emotion
recognition [Cat Le Ngo+et al.]), robotics (filtering external perturbation
using DMD based prediction [Berger+et al.]), algorithmic trading on
financial markets [Mann+Kutz], analysis of infectious disease spread
[Proctor+Eckhoff], neuroscience [Brunon+et al.] – just to name a few.

Computational aspects (for software implementation):

matrix multiplication and other simple matrix/vector operations

SVD decomposition, Moore-Penrose pseudo-inverse, least squares

eigenvalue of matrices of moderate dimensions

All necessary software implementations available in state of the art
packages such as Matlab, Python (NumPy, SciPy) – LAPACK based.

So is there anything left to do for a numerical analyst?
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Tool: Krylov subspaces

For i = 1, 2, . . . ,m, define the Krylov matrices

Xi =
(
f1 f2 . . . fi−1 fi

)
, Yi =

(
f2 f3 . . . fi fi+1

)
≡ AXi,

and the corresponding Krylov subspaces Xi = range(Xi) ⊂ Cn.

Assume that at the index m, Xm is of full column rank. This implies

X1  X2  · · ·  Xi  Xi+1  · · ·  Xm  · · ·  X` = X`+1, ,

i.e. dim(Xi) = i for i = 1, . . . ,m, and there must be the smallest
saturation index ` at which X` = X`+1.

AX` ⊆ X`, It is well known that then X` is the smallest A-invariant
subspace that contains f1.

The action of A on Xm is known, A(Xmv) = Ymv for any v ∈ Cm.
Hence, useful spectral information can be obtained using the
computable restriction PXmA

∣∣
Xm

, that is, the Ritz values and vectors
extracted using the Rayleigh quotient of A with respect to Xm.
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Tool: Krylov decomposition and Rayleigh-Ritz extraction

To that end, let the vector c = (ci)
m
i=1 be computed from the least

squares approximation

‖fm+1 −Xmc‖2 −→ min
c

(1)

and let rm+1 = fm+1 −Xmc be the corresponding residual. Recall
that, by virtue of the theorem of projection, Xmc = PXmfm+1 and
that rm+1 is orthogonal to the range of Xm, X∗mrm+1 = 0.

Let Em+1 = rm+1e
T
m, em =

(
0, . . . , 0, 1

)T
. The Krylov

decomposition reads:

AXm = XmCm + Em+1, Cm =


0 0 . . . 0 c1

1 0 . . . 0 c2

0 1 . . . 0 c3
...

. . .
. . .

...
...

0 0 . . . 1 cm

 ,
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Rayleigh–Ritz extraction – basic properties

1 Cm = (X∗mXm)−1(X∗mAXm) ≡ X†mAXm = (X∗mXm)−1(X∗mYm) is
the Rayleigh quotient, i.e. the matrix representation of PXmA

∣∣
Xm

2 If rm+1 = 0 (and thus Em+1 = 0 and m = `) then AXm = XmCm
and each eigenpair Cmw = λw of Cm yields an eigenpair of A,
A(Xmw) = λ(Xmw).

3 If rm+1 6= 0, then (λ, z ≡ Xmw) is an approximate eigenpair,
A(Xmw) = λ(Xmw) + rm+1(eTmw), i.e. Az = λz + rm+1(eTmw).
The Ritz pair (λ, z) is acceptable if the residual

‖Az − λz‖2
‖z‖2

=
‖rm+1‖2
‖z‖2

|eTmw|

is sufficiently small. It holds that z∗rm+1 = 0, and

λ =
z∗Az
z∗z

= argminζ∈C‖Az − ζz‖2

(λz is the orthogonal projection of Az onto the span of z).
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Beautiful structure and bad news

The spectral decomposition of Cm has beautiful structure. Assume for
simplicity that the eigenvalues λi, i = 1, . . . ,m, are algebraically simple. It
is easily checked that the spectral decomposition of Cm reads

Cm = V−1
m ΛmVm, where Λm =

(
λ1

. . .
λm

)
, Vm =


1 λ1 ... λm−1

1

1 λ2 ... λm−1
2

...
... ...

...
1 λm ... λm−1

m

 .

The Ritz vectors are the columns of Zm = XmV−1
m .

Bad news: The Vandermonde matrix Vm is ill-conditioned!

The condition number κ2(Vm) ≡ ‖Vm‖2‖V−1
m ‖2 of any 100× 100 real

Vandermonde matrix is larger than 3 · 1028,
(κ2(Vm) ≥ 2m−2/

√
m,m = 100, [Gautschi]).

Better: Schmid’s DMD – compute the Rayleigh quotient using a POD
(truncated SVD) basis of Xm.
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SVD and best low rank approximation

Theorem

Eckart-Young-Mirsky Let the SVD of M ∈ Cn×m be

M = UΣV ∗, Σ = diag(σi)
min(m,n)
i=1 , σ1 ≥ · · · ≥ σmin(m,n) ≥ 0.

For k ∈ {1, . . . ,min(m,n)}, define Uk = U(:, 1 : k), Σk = Σ(1 : k, 1 : k),
Vk = V (:, 1 : k), and Mk = UkΣkV

∗
k . Then

min
rank(N)≤k

‖M −N‖2 = ‖M −Mk‖2 = σk+1 (2)

min
rank(N)≤k

‖M −N‖F = ‖M −Mk‖F =

√√√√min(n,m)∑
i=k+1

σ2
i . (3)

Hence, if σm � σ1, the condition number κ2(Xm) = ‖Xm‖2‖X†m‖2 = σ1
σm

is large, Xm can be made singular with a perturbation δXm such that
‖δXm‖2/‖Xm‖2 = σm/σ1 = 1/κ2(Xm)� 1.
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Schmid’s DMD

To avoid the ill-conditioning, Schmid used the thin truncated SVD
Xm = UΣV ∗ ≈ UkΣkV

∗
k , where Uk = U(:, 1 : k) is n× k orthonormal

(U∗kUk = Ik), Vk = V (:, 1 : k) is m× k, also orthonormal (V ∗k Vk = Ik),
and Σk = diag(σi)

k
i=1 contains the largest k singular values of Xm. In

brief, Uk is the POD basis for the snapshots f1, . . . , fm. Since

Ym = AXm ≈ AUkΣkV
∗
k , and AUk = YmVkΣ

−1
k , (4)

the Rayleigh quotient Sk = U∗kAUk with respect to the range of Uk can be
computed as

Sk = U∗kYmVkΣ
−1
k , (5)

which is suitable for data driven setting because it does not use A
explicitly. Clearly, (4, 5) only require that Ym = AXm; it is not necessary
that Ym is shifted Xm. Each eigenpair (λ,w) of Sk generates the
corresponding Ritz pair (λ,Ukw) for A.
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Schmid’s DMD

Algorithm [Zk,Λk] = DMD(Xm,Ym)

Input: • Xm = (x1, . . . ,xm),Ym = (y1, . . . ,ym) ∈ Cn×m that define a
sequence of snapshots pairs (xi,yi ≡ Axi). (Tacit assumption is that
n is large and that m� n.)

1: [U,Σ, V ] = svd(Xm) ; {The thin SVD: Xm = UΣV ∗, U ∈ Cn×m,
Σ = diag(σi)

m
i=1, V ∈ Cm×m}

2: Determine numerical rank k.
3: Set Uk = U(:, 1 : k), Vk = V (:, 1 : k), Σk = Σ(1 : k, 1 : k)
4: Sk = ((U∗kYm)Vk)Σ

−1
k ; {Schmid’s formula for the Rayleigh quotient

U∗kAUk}
5: [Wk,Λk] = eig(Sk) {Λk = diag(λi)

k
i=1; SkWk(:, i) = λiWk(:, i);

‖Wk(:, i)‖2 = 1}
6: Zk = UkWk {Ritz vectors}

Output: Zk, Λk
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Data driven (computable) residual

Not all computed Ritz pairs will provide good approximations of eigenpairs
of the underlying A, and it is desirable that each pair is accompanied with
an error estimate that will determine whether it can be accepted and used
in the next steps of a concrete application. The residual is computationally
feasible and usually reliable measure of fitness of a Ritz pair. With a
simple modification, the DMD Algorithm can be enhanced with residual
computation, without using A explicitly.

Proposition

For the Ritz pairs (λi, Zk(:, i) ≡ UkWk(:, i)), i = 1, . . . , k, computed in
the DMD Algorithm, the residual norms can be computed as follows:

rk(i) = ‖AZk(:, i)− λiZk(:, i)‖2 = ‖(YmVkΣ
−1
k )Wk(:, i)− λiZk(:, i)‖2.

(6)
Further, if A = Sdiag(αi)

n
i=1S

−1, then minαj |λi − αj | ≤ κ2(S)rk(i) (by
the Bauer–Fike Theorem).
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Data driven (computable) residual

Example

test The well studied and understood model of laminar flow around a
cylinder is based on the two-dimensional incompressible Navier-Stokes
equations

∂v

∂t
= −(v · ∇)v + ν∆v − 1

ρ
∇p, ∇ · v = 0, (7)

where v = (vx, vy) is velocity field, p is pressure, ρ is fluid density and ν is
kinematic viscosity. The flow is characterized by the Reynolds number
Re = v∗D/ν where, for flow around circular cylinder, the characteristic
quantities are the inlet velocity v∗ and the cylinder diameter D. For a
detailed analytical treatment of the problem see [Bagheri], [Glaz+et al.];
for a more in depth description of the Koopman analysis of fluid flow we
refer to [Mezić], [Rowley].
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Data driven (computable) residual
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Figure: Left: Comparison of the residuals of the Ritz pairs computed by the
DMD RRR Algorithm with velocities as observables (V-DMD, circles ◦) and with
both velocities and pressures (VP-DMD, crosses, ×). Right: Selected Ritz values
with velocities as observables (◦) and with both velocities and pressures (×).
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Refined Ritz vectors

The Ritz vectors are not optimal eigenvectors approximations from a given
subspace Uk = range(Uk). Hence, for a computed Ritz value λ, instead of
the associated Ritz vector, we can choose a vector z ∈ Uk that minimizes
the residual. From the variational characterization of the singular values, it
follows that

min
z∈Uk\{0}

‖Az − λz‖2
‖z‖2

= min
w 6=0

‖AUkw − λUkw‖2
‖Ukv‖2

= min
‖w‖2=1

‖(AUk − λUk)w‖2 = σmin(AUk − λUk),

where σmin(·) denotes the smallest singular value of a matrix, and the
minimum is attained at the right singular vector wλ corresponding to
σλ ≡ σmin(AUk − λUk). As a result, the refined Ritz vector corresponding
to λ is Ukwλ and the optimal residual is σλ. Detailed analysis by Jia.
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Data driven refinement of Ritz vectors

The minimization of the residual can be replaced with computing the
smallest singular value with the corresponding right singular vector of
Bk − λUk, where Bk ≡ AUk = YmVkΣ

−1
k . Compute the QRF

(
Uk Bk

)
= QR, R =

( k k

k R[11] R[12]

k′ 0 R[22]

)
, k′ = min(n− k, k)

and write the pencil Bk − λUk as

Bk−λUk = Q

((
R[12]

R[22]

)
− λ

(
R[11]

0

))
≡ QRλ, Rλ =

(
R[12] − λR[11]

R[22]

)
.

Theorem

Let for the Ritz value λ = λi, wλi denote the right singular vector of the
smallest singular value σλi of the matrix Rλi . Then z = zλi ≡ Ukwλi
minimizes the residual, whose minimal value equals σλi = ‖Rλiwλi‖2.
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Residuals of refined selected pairs
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Figure: Comparison of the refined residuals of the Ritz pairs computed by the
DMD RRR Algorithm with velocities as observables (top 39 pairs in V-DMD,
circles ◦) and with both velocities and pressures (top 53 pairs in VP-DMD,
crosses, ×). The noticeable staircase structure on the graphs corresponds to
complex conjugate Ritz pairs.
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Comment on scaling the data snapshots

Let Ym = AXm and let D be (diagonal) nonsingular matrix

Then
(YmD) = A(XmD)

and e.g. in the Exact DMD

A = YmX†m = YmDD
−1X†m = (YmD)(XmD)†.

So, D changes nothing. But, suitable D can enforce truncation at any
numerical rank r < m!?!

Let Ym = AXm and let S be nonsingular matrix

Then
SYm = SAXm = (SAS−1)(SXm).

S migth be used to define suitable energy norm, or it can carry statistical
information on measurements, ...
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Enhanced DMD Algorithm

[Zk,Λk, rk, ρk] = DMD RRR(Xm,Ym; ε) {Refined Rayleigh-Ritz DMD}

1: Dx = diag(‖Xm(:, i)‖2)mi=1; X
(1)
m = XmD

†
x; Y

(1)
m = YmD

†
x

2: [U,Σ, V ] = svd(X
(1)
m ) ; numerical rank: k = max{i : σi ≥ σ1ε}.

3: Set Uk = U(:, 1 : k), Vk = V (:, 1 : k), Σk = Σ(1 : k, 1 : k)

4: Bk = Y
(1)
m (VkΣ

−1
k ); {Schmid’s formula for AUk}

5: [Q,R] = qr(
(
Uk, Bk

)
); {The thin QR factorization}

6: Sk = diag(Rii)
k
i=1R(1 : k, k + 1 : 2k) {Sk = U∗kAUk}

7: Λk = eig(Sk) {Λk = diag(λi)
k
i=1; Ritz values, i.e. eigenvalues of Sk}

8: for i = 1, . . . , k do

9: [σλi , wλi ] = svdmin(
(
R(1:k,k+1:2k)−λiR(1:k,1:k)

R(k+1:2k,k+1:2k)

)
);

10: Wk(:, i) = wλi ; rk(i) = σλi {Optimal residual, σλi = ‖Rλiwλi‖2}
11: ρk(i) = w∗λiSkwλi {Rayleigh quotient, ρk(i) = (Ukwλi)

∗A(Ukwλi)}
12: end for
13: Zk = UkWk {Refined Ritz vectors}
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A synthetic example

Goal: DMD black-box software

The main goal of the modifications of the DMD algorithm is to provide a
reliable black-box, data driven software device that can estimate part of
the spectral information of the underlying linear operator, and that also
can provide an error bound.

Example (A case study)

The test matrix is generated as A = e−B
−1

where B is pseudo-random
with entries uniformly distributed in [0, 1], and then A = A/‖A‖2.
Although this example is purely synthetic, it may represent a situation with
the spectrum entirely in the unit disc, such as e.g. in the case of an
off-attractor analysis of a dynamical system, after removing the peripheral
eigenvalues, see e.g. Mohr & Mezić 2014.
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Accuracy of the computed Ritz values

-0.02 -0.01 0 0.01 0.02 0.03 0.04 0.05 0.06
-0.02

-0.015

-0.01

-0.005

0

0.005

0.01

0.015

0.02
Eigenvalues and the computed Ritz values

eig(A)

DMD

DMD-RRR
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Comparing residuals

Ritz pairs
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Figure: Comparison of the residuals of the Ritz pairs computed by the DMD
Algorithm (pluses +) and the DMD RRR Algorithm (crosses, ×), with the same
threshold in the truncation criterion for determining the numerical rank.
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Ritz values wit k = 27 (hard coded)
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Drmač:MS61 Adv. DD Techn.and Num. Meth. in Koopman OT Numerical methods for data driven Koopman spectral analysis



Introduction DMD and RRRR-DMD Vandermone+DFT based algorithm ...

Residuals wit k = 27 (hard coded)
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ηi =
‖(YmVkΣ

−1
k )Wk(:, i)− λi(UkWk(:, i))‖2

‖A(UkWk(:, i))− λi(UkWk(:, i))‖2
≡ 1, i = 1, . . . , k.
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Singular values of Xm computed three times
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Figure: The blue circles (◦) are the values used in the DMD Algorithm and are
computed as [U,Σ, V ] = svd(Xm,

′ econ′). The red dots (·) are computed as
Σ = svd(Xm), and the pluses (+) are the results of Σ = svd(Xm(:, P )), where
P is randomly generated permutation.
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Floating point SVD

If Xm ≈ Ũ Σ̃Ṽ ∗ is the computed SVD of Xm, then there exist unitary
matrices Û , V̂ , and a perturbation δXm (backward error) such that
‖Û − Ũ‖2 ≤ ε1, ‖V̂ − Ṽ ‖2 ≤ ε2, and

Xm + δXm = Û Σ̃V̂ ∗, ‖δXm‖2 ≤ ε‖Xm‖2. (8)

Theorem (Weyl and Wieland-Hoffman)

Let the singular values of Xm and Xm + δXm be σ1 ≥ · · · ≥ σmin(m,n)

and σ̃1 ≥ · · · ≥ σ̃min(m,n), respectively. Then

max
i
|σ̃i − σi| ≤ ‖δXm‖2;

√√√√min(m,n)∑
i=1

|σ̃i − σi|2 ≤ ‖δXm‖F .

Hence, if we combine this Theorem with the backward stability (8), we
have that for each computed singular value σ̃i = σi + δσi

|δσi| ≤ ‖δXm‖2 ≤ ε‖Xm‖2; |δσi|/σi ≤ ε‖Xm‖2/σi. (9)
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‖δfi‖2 ≤ ‖δXm‖2 ≤ ε‖Xm‖2 ≤ ε
√
mmaxi ‖fi‖2

Bad news for small σi’s: maxi |δσi|/σi ≤ εκ2(Xm).
Suppose we have backward error δXm such that

‖δXm(:, i)‖2 ≤ ε‖Xm(:, i)‖2, i = 1, . . . ,m. (10)

In terms of the snapshots, this reads ‖δfi‖2 ≤ ε‖fi‖2, for all snapshots.

Theorem (Eisenstat and Ipsen)

Let σ1 ≥ · · · ≥ σn and σ̃1 ≥ · · · ≥ σ̃n A+ δA = Ξ1AΞ2 and let
ξ = max{‖Ξ1ΞT1 − I‖2, ‖ΞT2 Ξ2 − I‖2}. Then

|σ̃i − σi| ≤ ξσi, i = 1, . . . , n.

Hence, if Xm is of full column rank, Xm + δXm = (In + δXmX†m)Xm

and n application of this theorem yields

max
i

|σi − σ̃i|
σi

≤ 2‖δXmX†m‖2 + ‖δXmX†m‖22.

‖δXmX†m‖2 invariant under column scalings!
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Dicussion on the SVD

Matlab uses different algorithms in the svd() function, depending on
whether the singular vectors are requested on output.

The faster but less accurate method is used in the call
[U, S, V ] = svd(Xm,

′ econ′). It is very likely that the full SVD,
including the singular vectors, is computed using the divide and
conquer algorithm, xGESDD() in LAPACK.

For computing only the singular values S = svd(X) calls the QR
SVD, xGESVD() in LAPACK.

Note that the same fast xGESDD() subroutine is (to our best knowledge)
under the hood of the Python function numpy.linalg.svd.
Numerical robustness of both xGESVD(), xGESDD() depends on κ2(Xm),
and if one does not take advantage of the fact that scaling is allowed, the
problems illustrated in this example are likely to happen.
Better: Jacobi SVD (xGEJSV(), xGESVJ() in LAPACK, Drmač 2009.)
and preconditioned QR (xGESVDQ(), LAPACK, Drmač 2018.).
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Extension to weighted DMD using energy (·, ·)M
[Zk,Λk] = Weighted DMD(Xm,Ym;M ; ε)

Input:

Xm = (x1, . . . ,xm),Ym = (y1, . . . ,ym) ∈ Cn×m that define a
sequence of snapshots pairs (xi,yi ≡ Axi).

Hermitian n× n positive definite M that defines the inner
product: (x, y)M = y∗Mx. M = LL∗, L = chol(M).

Tolerance level ε for numerical rank

1: [Ũk, L, [Ûk]] = Weighted POD(Xm;M ; ε) {[Volkwein]}
2: Ŝk = Ũ∗kL

∗YmVkΣ
−1
k {Weighted Rayleigh quotient}

3: [Wk,Λk] = eig(Ŝk) {Λk = diag(λi)
k
i=1; ŜkWk(:, i) = λiWk(:, i);

‖Wk(:, i)‖2 = 1}
4: Zk = ÛkWk {Ritz vectors}

Output: Zk, Λk

Changing physical units changes the condition number and the numerical
rank!? For more details see [Drmač+Mezić+Mohr, SISC 2018].
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... rewind ...JJ... Beautiful structure and bad news

The spectral decomposition of Cm has beautiful structure. Assume for
simplicity that the eigenvalues λi, i = 1, . . . ,m, are algebraically simple. It
is easily checked that the spectral decomposition of Cm reads

Cm = V−1
m ΛmVm, where Λm =

(
λ1

. . .
λm

)
, Vm =


1 λ1 ... λm−1

1

1 λ2 ... λm−1
2

...
... ...

...
1 λm ... λm−1

m

 .

The Ritz vectors are the columns of Zm = XmV−1
m .

Bad news: The Vandermonde matrix Vm is ill-conditioned!

The condition number κ2(Vm) ≡ ‖Vm‖2‖V−1
m ‖2 of any 100× 100 real

Vandermonde matrix is larger than 3 · 1028,
(κ2(Vm) ≥ 2m−2/

√
m,m = 100, [Gautschi]).

Drmač:MS61 Adv. DD Techn.and Num. Meth. in Koopman OT Numerical methods for data driven Koopman spectral analysis



Introduction DMD and RRRR-DMD Vandermone+DFT based algorithm ...

Ill-conditioning of Vandermonde matrices: examples

V20, i = 1, . . . , 200
0 50 100
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2(V
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tests #1, #2

V20, i = 1, . . . , 100
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κ
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200
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250
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Figure: The spectral condition number over three sets of the total of 300
Vandermonde matrices of dimension m = 20, V20(λi); (λi) = eig(A). Left
panel: First, 100 matrices are generated in Matlab as A = rand(m,m),
A = A/max(abs(eig(A))). Then, 100 matrices are generated as
A = randn(m,m), A = A/max(abs(eig(A))). Right panel: 100 samples of
V(λi) are generated using the eigenvalues of A = expm(-inv(rand(m,m))),
A = A/max(abs(eig(A))). The horizontal line marks 1/(mε) ≈ 2.25e+14.
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Vandermonde x DFT = Cauchy; DFT = Vandermonde

Let F denote the DFT matrix, Fij = ω(i−1)(j−1)/
√
m, where ω = e2πi/m,

i =
√
−1. Now, recall that DFT transforms Vandermonde into Cauchy

matrices as follows: If λmi 6= 1, then

(VmF)ij =

[
λmi − 1√

m

] [
1

λi − ω1−j

] [
ω1−j] ≡ (D1)ii Cij (D2)jj , 1 ≤ j ≤ m.

(1)
If λi = ω1−j for some index j, write λmi − 1 =

∏m
k=1(λi − ω1−k) and

replace (1) with the equivalent formula for the i-th row

(VmF)ij =
1√
m︸︷︷︸

(D1)ii

m∏
k=1
k 6=j

(λi − ω1−k) ω1−j︸︷︷︸
(D2)jj

, (VmF)ik = 0 for k 6= j. (2)

This is the starting point for accurate computation of the SVD of Vm
[Demmel]. We use it for Zm = XmV−1

m ≡ (XmF)(VmF)−1.
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How this transforms AXm = XmCm + rm+1e
T
m?

It is interesting to see how this transformation Vm 7→ VmF fits the
framework of the Krylov decomposition AXm = XmCm + rm+1e

T
m, where

Cm = V−1
m ΛmVm. Post-multiply this with F to obtain

A(XmF) = (XmF)F∗(V−1
m ΛmVm)F+ rm+1e

T
mF (3)

and then, using VmF = D1CD2,
F∗CmF = F∗(V−1

m ΛmVm)F = D∗2C−1D−1
1 ΛmD1CD2 = D∗2C−1ΛmCD2 and

A(XmF) = (XmF)((CD2)−1Λm(CD2)) + rm+1e
T
mF ⇐⇒ (4)

A(XmFD∗2) = (XmFD∗2)(C−1ΛmC) + rm+1e
T
mFD∗2. (5)

If we think of each row Xm(i, :) as a time trajectory of the corresponding
observable, then Xm(i, :)F represents its image in the frequency domain,
and (4, 5) is the corresponding Krylov decomposition. Possible insightful
connections (?) to the Laskar algorithm [Laskar, Arbabi+Mezić] and (data
centered) DMD and temporal DFT see [Chen+Tu+Rowley].
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But κ2(Vandermonde x DFT) = κ2(Vandermonde) ?!

Note that the matrices D1, C, D2 are given implicitly by the parameters λi
(eigenvalues, available on input) and the m-th roots of unity ζj = ω1−j ,
j = 1, . . . ,m (easily precomputed to any desired precision and tabulated),
so that the DFT VmF is not done by actually running an FFT.
It suffices to make a note that the λi’s and the roots of unity are the
parameters (original data) that define VmF as in (1), (2).

Besides nice matrix–theoretical connection, what is the gain?

Applying the DFT to Vm in order to avoid the ill–conditioning of Vm may
seem a futile effort – since F is unitary, κ2(D1CD2) = κ2(VmF) = κ2(Vm).
Further, Cauchy matrices are also notoriously ill-conditioned, so, in
essence, we have traded one badly conditioned structure to another one.

High acuracy numerical linear algebra :)

Accurate LU, QR, SVD of any Cauchy or Vandermonde matrix is feasible
without higher precision arithmetic. Good algorithms are available!

How bad it can be? What is the meaning of bad, ill–conditioned anyway?
Is Cauchy matrix really badly conditioned?
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SVD(D1 × Cauchy ×D2)

Given Cauchy matrix C and any two diagonal matrices D1, D2, the SVD
of G = D1CD2 can be computed to nearly full precision as follows:

1 Compute the LDU, P1GP2 = LDU using explicit determinant based
formulas to update the Schur complement [Demmel]. This is entry
wise forward stable computation of L, D, U . Moreover, κ(L), κ(U)
are moderate. (Small ‖δL‖/‖L‖, ‖δU‖/‖U‖, |δDii|/|Dii| is also OK)

(G = hilb(100), κ2(G) > 10150, κ2(L) = κ2(U) ≈ 72.24,

κ2(D) ≈ 2.32 · 10149)

2 Compute the SVD of the product LDU using a Jacobi type SVD
algorithm (product SVD [Drmač]). The forward error is determined
by max(κ(L), κ(U)), independent of κ2(D). The backward errors
‖∆L‖/‖L‖, ‖∆U‖/‖U‖, ∆Dii/Dii are small.

The key is in forward stable reparametrization, so that the new
representation is well-conditioned (for particular algorithm).
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L L̃ = L+ δL

Vm VmF ∆ ∆̃ = ∆ + δ∆ ΠT
1 L̃∆̃ŨΠT

2

Vm + E U Ũ = U + δU

♠

N

N

N

♣

♣

♣

H

H

H
�

Figure: Legend: ♠ = the DFT of Vm using the explicit formulas (1); N = the
forward stable pivoted LDU [Demmel]; ♣ = forward errors in the computed

factors L̃, ∆̃, Ũ ; H = implicit representation of VmF as the product ΠT
1 L̃∆̃ŨΠT

2 ;
� = direct computation with Vm, using standard algorithms, produces backward
error E that is small in matrix norm, and the condition number is κ2(Vm).

|L̃ij − Lij | ≤ ε|Lij |, |∆̃ii −∆ii| ≤ ε|∆ii|, |Ũij − Uij | ≤ ε|Uij |, (6)

Ŵm = (((((XmF)Π2)U−1)∆−1)L−1)Π1. (7)

Error analysis: [Demmel], [Demmel+Koev], [Dopico+Molera], [Drmač].
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Matlab code for Zm = XmV−1
m

function Z = X inv Vandermonde( lambda, X )
% X inv Vandermonde computes Z = X*inv(V(lambda)), where X has m
% columns and V(lambda)=fliplr(vander(lambda)) is the m x m
% Vandermonde matrix defined by the m x 1 vector lambda;
% V(lambda) {ij} = lambda(i)ˆ(j−1), i,j=1,...,m.
%..........................................................................
% Coded by Zlatko Drmac, drmac@math.hr.
%..........................................................................
%
m = length(lambda) ;
% .. pivoted LDU of V(lambda)*DFT ; p1, p2 permutations
[ L, D, U, p1, p2 ] = Vand DFT LDU( lambda, m, 'LDU' ) ;
Z = ifft(X,[],2) ;
Z = ( ( Y(:,p2) / U ) * diag(sqrt(m)./D) ) / L ;
p1i(p1) = 1:m ; Z = Z(:,p1i) ; % p1i is the inverse of p1
end

Not as simple as Zm = Xm/Vm

More accurate than Zm = Xm/Vm; independent of the distribution of
the λi’s (as long they are mutually different)
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Numerical stress test drive: Q2D Kolmogorov flow
Example

We use the simulation data of a 2D model obtained by depth averaging
the Navier–Stokes equations for a shear flow in a thin layer of electrolyte
suspended on a thin lubricating layer of a dielectric fluid; see [Tithof+et
al], [Suri+et al] for more detailed description of the experimental setup.a

The (scalar) vorticity field data consists of nt snapshots of dimensions
nx × ny; in this particular example nt = 1201 ≡ m+ 1, nx = ny = 128.
The nx × ny × nt tensor is matricized into nx · ny × nt matrix of
snapshots (f1, . . . , fnt), and Xm is of dimensions 16384× 1200.

aWe thank Michael Schatz, Balachandra Suri, Roman Grigoriev and Logan
Kageorge from the Georgia Institute of Technology for providing us with the
data.

This is a good stress test because κ2(Vm) > 1076

Want to show that we can use Cm,Vm in working precision (IEEE 64 bit)
despite the fact that κ2(Vm) > 1076 � 1/roundoff64 ≈ 4.5 · 1015
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Test the reconstruction potential

Reconstructing snapshots using selected modes

fi ≈
∑̀
j=1

zςjαjλ
i−1
ςj ≡

∑̀
j=1

zςjαj |λςj |i−1eiωςj (i−1)δt, i = 1, . . . ,m.

where, for simplicity, the modes are selected by taking given number of
modes with absolutely largest amplitudes |αj | (dominant modes).

1 inversion of the Vandermonde matrix by the backslash operator in
Matlab ; κ2(Vm) > 1076 � 1/roundoff64 ≈ 4.5 · 1015

2 inversion of the row scaled Vandermonde matrix by the backslash

operator in Matlab: Vm = DrV
(r)
m , Ŵm = (Xm(V(r)

m )−1)D−1
r , where

Dr = diag(‖Vm(i, :)‖)mi=1 ; κ2(V(r)
m )≈3.1 · 107≈0.45 · 1/roundoff32

3 inversion of the column scaled Vandermonde matrix by the backslash

operator in Matlab: Vm = V(c)
m Dc, Ŵm = (XmD

−1
c )(V(c)

m )−1, where

Dc = diag(‖Vm(:, i)‖)mi=1. κ2(V(c)
m ) ≈ 3.0 · 1021
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f321 with 300 modes; similar results for other fi’s

input snapshot

0 0.5 1 1.5 2 2.5 3 3.5 4

0

0.5

1

1.5

2

2.5

3

3.5

4
Vandermonde, 300 modes

0 0.5 1 1.5 2 2.5 3 3.5 4

0

0.5

1

1.5

2

2.5

3

3.5

4

 r.s. Vanderm., 300 modes

0 0.5 1 1.5 2 2.5 3 3.5 4

0

0.5

1

1.5

2

2.5

3

3.5

4
 c.s. Vanderm., 300 modes

0 0.5 1 1.5 2 2.5 3 3.5 4

0

0.5

1

1.5

2

2.5

3

3.5

4

Figure: Reconstruction
of f321 using 300
dominant modes. The
linear systems are solved
in Matlab using the
backslash operator.
Note how using the row

scaled V(r)
m improves the

reconstruction (first plot
in the second row),
while backslashing the
original Vm and the
column scaled matrix
V(c)

m yields poor results
(plots in the second
column on the Figure).
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Björck-Pereyera, DMD, DFT+Cauchy

We now test the following three methods:

1 Companion matrix formulation with the Björck-Pereyera method for
Vandermonde systems. Although forward stable in the special case of
real and ordered λi’s, this method may be very sensitive in the case of
general complex λi’s and relatively large dimension m.

2 Companion matrix formulation with the DFT and inversion of the
Cauchy matrix. Since F and D2 in (1) are unitary, the algorithm solves
linear system with the matrix D1C = VmFD∗2 of condition number
bigger than 1076. No additional scaling is used; we want to illustrate
the claim that such high condition number cannot spoil the result.

3 Schmid’s DMD method. Here we expect good reconstruction results,
provided it is feasible for given data and the parameters. The SVD is
not truncated because κ2(Xm) ≈ 5.5 · 1010 (σmax(Xm) ≈ 4.2 · 103,
σmin(Xm) ≈ 7.5 · 10−8).
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Reconstructing f321 with 300 modes
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Figure: Reconstruction
of f321 using 300
dominant modes.
Björck-Pereyera method
(second plot in the first
row) failed to produce
any useful data. The
DFT+Cauchy inversion
and the Schmid’s DMD
reconstruction (second
row) succeeded in
reconstructing f321
pretty much using 300
modes with dominant
amplitudes.
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Reconstructing f1111 with 1075 modes
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Figure: Reconstruction
of f1111 using 1075
dominant modes. The
DFT+Cauchy inversion
did well, and the
Schmid’s DMD
reconstruction (second
row) unfortunately
failed. (With 1074
modes DMD performed
well, but starting with
1075 all reconstruction
failed, including the one
with all 1200 modes.)
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Concluding remarks

We have presented modifications of the DMD algorithm, together
with theoretical analysis and justification, discussion of the potential
weaknesses of the original method, and examples that illustrate the
advantages of the new proposed method. From the point of view of
numerical linear algebra, the deployed techniques are not new;
however, the novelty is in adapting them to the data driven setting
and turning the DMD into a more powerful tool.
Using high accuracy numerical linear algebra techniques we were able
to curb the ill-conditioning of the companion matrix’s associated
Vandermonde matrix allowing us to invert it and find the DMD
modes.
In addition to the inherent elegance in terms of the companion matrix
formulation of DMD, we provide a numerical linear algebra framework
that has a close connection to Koopman operator theory, as well as to
the results coming from Generalized Laplace Analysis theory
[Mezić+Mohr].
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For more on this and complete references list see

Z. Drmač, I. Mezić, and R. Mohr.

Data driven modal decompositions: analysis and enhancements.

SIAM Journal on Scientific Computing, 40(4):A2253–A2285, 2018.

Z. Drmač, I. Mezić, and R. Mohr.

Data driven Koopman spectral analysis in Vandermonde-Cauchy form via the DFT:
numerical method and theoretical insights.

ArXiv e-prints, August 2018. (SIAM SISC, in revision)

Z. Drmač, I. Mezić, and R. Mohr.

On least squares problem with certain Vandermonde–Khatri–Rao structure with
applications to DMD.

ArXiv e-prints, November 2018. (SIAM SISC, in review)
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Few more comments on the numerical aspects of S†~g

For given (λj , zj)’s and nonnegative weights wi, find the αj ’s to achieve

m∑
i=1

w2
i ‖fi −

∑̀
j=1

zjαjλ
i−1
j ‖

2
2 −→ min . (1)

Set W = diag(wi)
m
i=1. The weights wi > 0 are used to emphasize

snapshots whose reconstruction is more important. Let Λ = diag(λj)
`
j=1,

∆α=

( α1 0 · 0
0 α2 · ·
· · · 0
0 · 0 α`

)
, Λi =

 λi−1
1

λi−1
2·
λi−1
`

, ∆Λi =

 λi−1
1 0 · 0

0 λi−1
2 · ·

· · · 0
0 · 0 λi−1

`

 ≡ Λi−1,

and write the objective (1) as the function of α = (α1, . . . , α`)
T ,

Ω2(α) ≡ ‖
[
Xm − Z`∆α

(
Λ1 Λ2 . . . Λm

)]
W‖2F −→ min, (2)

( Λ1 Λ2 ... Λm ) =


1 λ1 ... λ

m−1
1

1 λ2 ... λ
m−1
2

...
... ...

...
1 λ` ... λ

m−1
`

 ≡ V`,m ∈ C`×m. (3)
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Explicit normal equations solution

‖(W⊗I`) [~g − Sα] ‖2 −→ min, where ~g =

(
g1

...
gm

)
, S = (Im⊗R)

(
∆Λ1

...
∆Λm

)
≡

R∆Λ1

...
R∆Λm

 .

Theorem

With the notation as above, the unique solution α of the LS problem (1) is

α = [(R∗R) ◦ (V`,mW2V∗`,m)]−1[(V`,mW ◦ (R∗GW))e], (4)

where G =
(
g1 . . . gm

)
, e =

(
1 . . . 1

)T
. In terms of Xm, Z`,

α = [(Z∗`Z`) ◦ (V`,mW2V∗`,m)]−1[(V`,mW ◦ (Z∗`XmW))e]. (5)

This includes the DMDSP of [Jovanović+et al] and solution for scattering
coefficients in multistatic antenna array processing [Lev-Ari] as unweighted
cases. Are normal equations safe to use? Let us experiment with a small
dimension example.
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Squaring the conditon number – loosing definiteness

Let W = I. Let ` = 3, m = 4, ξ =
√
ε, λ1 = ξ, λ2 = 2ξ, λ3 = 0.2, so

that the Vandermonde section V`,m equals

V`,m =
( 1 1.490116119384766e−08 2.220446049250313e−16 3.308722450212111e−24

1 2.980232238769531e−08 8.881784197001252e−16 2.646977960169689e−23
1 2.000000000000000e−01 4.000000000000001e−02 8.000000000000002e−03

)
,

R =

1 1 1
0 ξ/2 ξ
0 0 ξ

 =
( 1 1.000000000000000e+00 1.000000000000000e+00

0 7.450580596923828e−09 1.490116119384766e−08
0 0 1.490116119384766e−08

)
.

Here κ2(V`,m) ≈ 109, κ2(R) ≈ 109 � 1/roundoff64 ≈ 4.5 · 1015.
>> chol(Vlm*Vlm’)

Error using chol

Matrix must be ....

>> chol(R’*R)

Error using chol

Matrix must be positive definite.

>> chol((R’*R).*(Vlm*Vlm’))

Error using chol

Matrix must be positive definite.

Normal equations matrix is
not definite!
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Indefinite ◦ Indefinite = Positive Definite ?!

Use the same V`,m but change the definition of R to

R =

1 1 1
0 ξ ξ
0 0 ξ/2

 =
(

1 1.000000000000000e+00 1.000000000000000e+00
0 1.490116119384766e−08 1.490116119384766e−08
0 0 7.450580596923828e−09

)
.

If we repeat the experiment with the Cholesky factorizations, we obtain
>> chol(Vlm*Vlm’)

Error using chol

Matrix must be positive definite.
>> chol(R’*R)

Error using chol

Matrix must be positive definite.

>> TC = chol((R’*R).*(Vlm*Vlm’))

TC =

1 1.000000000000000e+00 1.000000002980232e+00

0 1.490116119384765e-08 1.999999880790710e-01

0 0 4.079214149695062e-02
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How accurately we can solve with
C = (R’*R).*(Vlm*Vlm’)?

Based on [Demmel], we know that floating point Cholesky factorization
C = LL∗ (L lower triangular with positive diagonal) of C is feasible if the
matrix Cs = (cij/

√
ciicjj)

`
i,j=1 is well conditioned. Further, if we solve the

linear system Cx = b 6= 0 using the Cholesky factor in the forward and
backward substitutions, then the computed solution x̃ satisfies

‖DC(x̃− C−1b)‖2
‖DC x̃‖2

≤ g(`)εκ2(Cs), (6)

where g(`) is modest function of the dimension, DC = diag(
√
cii)

`
i=1.

Note that this implies component-wise error bound for each x̃i 6= 0:

|x̃i − (C−1b)i|
|x̃i|

≤
[
‖DC x̃‖2√
cii|x̃i|

]
︸ ︷︷ ︸

≥1

g(`)εκ2(Cs). (7)

In the Q2D Kolmogorov flow example, κ2(C) > 1087 � κ2(Cs) ≈ 8.5+01.
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Theorem

Let A ad B be Hermitian positive semidefinite matrices with positive
diagonal entries, and let C = A ◦B. If As = (aij/

√
aiiajj),

Bs = (bij/
√
biibjj), Cs = (cij/

√
ciicjj), then

max(λmin(As), λmin(Bs)) ≤ λi(Cs) ≤ min(λmax(As), λmax(Bs)). (8)

In particular, ‖C−1
s ‖2 ≤ min(‖A−1

s ‖2, ‖B−1
s ‖2) and

κ2(Cs) ≤ min(κ2(As), κ2(Bs)). If A or B is diagonal, all inequalities in
this theorem become equalities.

Corollary

Let C ≡ (R∗R) ◦ (V`,mW2V∗`,m), Cs = (cij/
√
ciicjj). Further, let

R = Rc∆r and V`mW = ∆v(V`mW)r with diagonal scaling matrices ∆r

and ∆v such that Rc has unit columns and (V`mW)r has unit rows (in
Euclidean norm). Then

κ2(Cs) ≤ min(κ2(Rc)
2, κ2((V`,mW)r)

2).
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‖~g − Sα‖2 −→ min; S = QSRS, α = R−1
S (Q∗S~g)

α = R−1
S (R−∗S (S∗~g)), r = ~g − Sα

δα = R−1
S (R−∗S (S∗r)), α∗ = α+ δα (9)

Algorithm Corrected semi-normal solution

Input: R, Λ, G, S
Output: Corrected solution α∗

1: Compute the triangular factor RS in the QR factorization of S.
2: gS = [(V`,m ◦ (R∗G))e] {Note, gS = S∗~g. Use xTRMM from BLAS 3.}
3: α = R−1

S (R−∗S gS){Use xTRSM or xTRTRS or xTRSV from LAPACK.}
4: r2 = G−R

(
α Λα Λ2α . . . Λm−1α

)
≡ G−Rdiag(α)V`,m

5: rS = [(V`,m ◦ (R∗r2))e] {Note, rS = S∗r. Use xTRMM from BLAS 3.}
6: δα = R−1

S (R−∗S rS) {Use xTRSM or xTRTRS or xTRSV from LAPACK.}
7: α∗ = α+ δα

Considerably improves over normal equations, but needs QRF of S.
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Algorithm: Recursive QR factorization of S for m = 2p

Input: Upper triangular R ∈ c`×`; diagonal Λ ∈ c`×`; number of
snapshots m = 2p

Output: Upper triangular QR factor RS = Tp of S ∈ c2
p`×`

T4 ←− T3 ←− T2 ←− T1 ←− RΛ0

0 0 0 0 ←− RΛ1

0 0 0 ←− T1Λ2 RΛ2

0 0 0 0 RΛ3

0 0 ←− T2Λ4 T1Λ
4 RΛ4

0 0 0 0 RΛ5

0 0 0 T1Λ
6 RΛ6

0 0 0 0 RΛ7

0 ←− T3Λ8 T2Λ
8 T1Λ

8 RΛ8

0 0 0 0 RΛ9

0 0 0 T1Λ
10 RΛ10

0 0 0 0 RΛ11

0 0 T2Λ
12 T1Λ

12 RΛ12

0 0 0 0 RΛ13

0 0 0 T1Λ
14 RΛ14

0 0 0 0 RΛ15

,

1 : T0 = R
2 : for i = 1 : p do

3 :

(
Ti
0

)
= qr(

(
Ti−1

Ti−1Λ
2i−1

)
)

4 : end for
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Matlab code for S = VT`,m �R (Khatri-Rao product �)

function T = QR Khatri Rao VTR 2p( R, Lambda, p )
% QR Khatri Rao VTR 2p computes the upper triangular factor
% in the QR factorization of the Khatri−Rao product
% S=Khatri Rao(Vlm.',R), where R is an <ell x ell> upper
% triangular matrix, and Vlm is an <ell x m> Vandermonde
% matrix V, whose columns are V(:,i) = Lambda.ˆ(i−1),
% i = 1,...,m, and m=2ˆp.
% Input:
% R upper triangular matrix
% Lambda vector, defines Vlm = Vandermonde matrix
% p integer >=0 defines m = 2ˆp
% Output:
% T triangular QR fator of Khatri Rao(Vlm.',R)
T = R ; D = Lambda ;
%
for i = 1 : p
[˜, T] = qr( [ T ; T*diag(D)], 0 ) ;
D = D.ˆ2 ;
end
end
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Input: Upper triangular R ∈ C`×`; diagonal Λ ∈ c`×`; m
Output: Upper triangular QR factor RS = Tj−1 of S in

(??)
1: Compute the binary representation of m: m ≡ b =

(bblog2 mc, . . . , b1, b0)2, m ≡
∑j∗

j=1 2ij

2: Let blog2mc = ij∗ > ij∗−1 > · · · > i2 > i1 ≥ 0
3: T0 = R
4: if i1 = 0 then
5: T1 = T0; j = 2; ℘ = 1
6: else
7: T0 = []; j = 1; ℘ = 0
8: end if
9: for k = 1 : ij∗ do

10:

(
Tk
0

)
= qr(

(
Tk−1

Tk−1Λ
2k−1

)
) {Local factor.}

11: if k = ij then
12: if Tj−1 6= [] then

13:

(
Tj
0

)
= qr(

(
Tj−1

TkΛ
℘

)
) {Global factor.}

14: else
15: Tj = Tk
16: end if
17: j := j + 1; ℘ := ℘+ 2k

18: end if
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Comments and concluding remarks

Provably small backward error

‖δS(:, j)‖2 ≤ η‖S(:, j)‖2, j = 1, . . . , `; η ≤ f(`,m)ε,

The relevant condition number is of the column scaled S:

Corollary

κ2(Sc) =
√
κ2(Cs) ≤ min(κ2(Rc), κ2((V`,m)r))

≤
√
`min( min

D=diag
κ2(RD), min

D=diag
κ2(DV`,m)).

If the data is real, can work in real arithmetic even if the eigenvalues
are complex (conjugate pairs)
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