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HIV/AIDS Research Priorities include

HIV Cure and Functional Cure
I immune checkpoint inhibitors
I gene therapy
I broadly neutralizing antibodies
I therapeutic vaccine
I latency-reversing agents
I ...



HIV dynamics in-host

Treatment
initiation

Treatment
interruption

What are the dynamics of viral rebound and control
post-analytic treatment interruption (ATI)?
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Observations in 235 patients post-ATI
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Aim: modeling to predict viral rebound times.
Clinical relevance: Design & evaluation of novel

strategies for HIV cure.
(Data from ACTG studies A5197, A5170, A5068, A371, and A5024; Li et al. (2016)).



Observations in 235 patients post-ATI
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Aim: modeling to predict viral rebound times.
Clinical relevance: Design & evaluation of novel

strategies for HIV cure.
(Data from ACTG studies A5197, A5170, A5068, A371, and A5024; Li et al. (2016)).



Survival analysis approach

Fit frequently-used distributions to empirical CDFs:
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Can we better predict short & long-term viral rebound
by modeling the underlying viral dynamics?
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Fine for rapid rebound:
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Poorly captures long delays:
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Can we better predict short & long-term viral rebound
by modeling the underlying viral dynamics?



Survival analysis approach

Can we better predict short & long-term viral rebound
by modeling the underlying viral dynamics?

Fine for rapid rebound:
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Source of viral rebound: the latent reservoir

Latently infected cells:
“quiet” after viral DNA
integration.

∼Major hurdle in HIV eradication∼
I reservoir half-life t1/2 ≈ 44 months (on ART)
I reservoir size varies, average 1 per 106 CD4+ T-cells

enough so that decay under ART > a lifetime

Can activate produce HIV⇒ viral rebound post-ATI
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Approach

Hypothesis: rebound induced by latent cell activation.

τdelay, 

activation; success
w/ prob. 1−q
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Cumulative probability of viral rebound by time t =

∞∑
n=0


∫

t

0

 Prob of nth activation at time t − τ
× Prob that nth activation leads to a successful rebound
× Prob of virus detection by time τ

 dτ
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Viral rebound calculation overview
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From branching process formulation of simplest model:
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Viral rebound calculation overview

τdelay, 

activation; success
w/ prob. 1−q

Det. threshold

H
IV

 R
N

A
Time

ATI
activation; failed

rebound w/prob. q

Cumulative probability of viral rebound by time t =

∞∑
n=0


∫

t

0

 Prob of nth activation at time t − τ
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× Prob of virus detection by time τ
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Assume q = prob. activated cell does not induce rebound

⇒ qn−1(1− q)



Viral rebound calculation overview
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I For now: fixed detection delay τ
I Later: stylized distribution of detection delays D(τ)



Approach
Hypothesis: rebound induced by latent cell activation.

τdelay, 

activation; success
w/ prob. 1−q
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∫
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0

 Prob of nth activation at time t − τ
× Prob that nth activation leads to a successful rebound
× Prob of virus detection by time τ
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Mathematical approach - keywords: Probability generating functions,
(time inhomogeneous) branching processes...



Cumulative probability of viral rebound: simple model

How long until viral load is detectable after treatment
interruption?

ASSUME: ◦ Treatment cessation at t = 0.
◦ Latent reservoir size L(0) = L0.
◦ Detection delay τ .
◦ Rate of latent cell activation is a.
◦ Probability activation “successful” is 1− q.

Cumulative probability of viral rebound at time t, PVR(t)

PVR(t) =
{

0, 0 ≤ t < τ

1− e−aL0(1−q)(t−τ), t ≥ τ
.



Parameter estimation
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PVR(t) =

{
0, 0 ≤ t < τ

1− e−aL0(1−q)(t−τ), t ≥ τ .

Method:
I Lik = PVR(First det. date)− PVR(Last Undet. date)

I Fit detection delay τ , “recrudescence rate” aL0(1− q).
I To estimate: Maximize likelihood summed across all patients using the

Davidon-Fletcher-Powell optimization algorithm.



Parameter estimation

Time since ATI (Weeks)

R
e
b

o
u

n
d

0
.0

0
.4

0
.8

0 2 4 6 8

PVR(t) =

{
0, 0 ≤ t < τ

1− e−aL0(1−q)(t−τ), t ≥ τ .

Method:
I Lik = PVR(First det. date)− PVR(Last Undet. date)

I Fit detection delay τ , “recrudescence rate” aL0(1− q).
I To estimate: Maximize likelihood summed across all patients using the

Davidon-Fletcher-Powell optimization algorithm.



Model DOES NOT explain data for late rebound
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Motivates investigation of recrudescence rates that are
heterogeneous in time.

◦ Pre-rebound, expect the latent reservoir to decay in time.
(Siliciano et al. 2003, Crooks et al. 2015).

◦ The latent reservoir is heterogeneous.
(Strain et al. 2003, Chomont et al. 2009, Bui et al. 2017).



Time-varying recrudescence rate
Take time-heterogeneous recrudescence rate, r(t) = (1− q)a(t)L(t),

PVR(t) =

{
0, 0 ≤ t < τ

1− e−
∫ t−τ

0 r(s) ds, t ≥ τ

Motivation: exponential decay dynamics following ART in
I Latent reservoir (Strain et al., Siliciano et al. 2003; Crooks et al. 2015).
I Viral load (Perelson & Ribeiro 2013; many others).

Test exponential decay models for r(t):

r(
t)

Time t

0
.0
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.0
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3
.0

0 5 10 15 20 25

(1)

(2)

(3)

(4)

r(t) model ∆ AIC
(1) 47.3
(2) -11.5
(3) -9.6
(4) -10.8



Single-phase decay (2), r(t)→ r∞ as t→∞

Fine for rapid rebound:
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AND captures long delays:
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Recrudescence rate r(t) = r∞ + (r0 − r∞)e−kt with

PVR(t) =

{
0, 0 ≤ t < τ

1− e−
∫ t−τ

0 r(s) ds, t ≥ τ
,

in good agreement with data. But why?



To build intuition: simpler model

Step-wise recrudescence rate (∆AIC<2): r(t) =


0, 0 ≤ t < τ
r0, τ ≤ t < T
r∞, t ≥ T

Sill fine for rapid rebound:
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OK for long rebound delays:
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Suggests latent reservoir composed of two major sub-populations:
(1) cells that activate frequently & deplete rapidly (T ≈ a month).
(2) cells that activate infrequently.
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Sill fine for rapid rebound:

0.00

0.25

0.50

0.75

1.00

0 25 50 75

Time since ATI (days)

C
u

m
. 

P
ro

b
. 

R
b

d

OK for long rebound delays:

0.80

0.85

0.90

0.95

1.00

0 200 400 600 800

Time since ATI (days)
C

u
m

. 
P

ro
b

. 
R

b
d

Suggests latent reservoir composed of two major sub-populations:
(1) cells that activate frequently & deplete rapidly (T ≈ a month).
(2) cells that activate infrequently.



Population split: pre-ATI ART regimen

Li et al. (2016): NNRTIs yield statistically significant rebound delays.
Explanation: NNRTIs can have longer half-lives (Ribaudo et al. (2006), Maggiolo (2009)).

Predicted r(t) (∆AIC=-23.7):
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Explanation: NNRTIs can have longer half-lives (Ribaudo et al. (2006), Maggiolo (2009)).
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Unexpected outcome:

Transition to r∞ later when pre-ATI ART regimen excluded NNRTIs.
⇒ “frequently-activating” population depletes more slowly.



Hypothesis on why NNRTIs yield slower depletion

NNRTIs can have longer half-lives: Better infection control, for longer.

Previous modeling, viral dynamics given suppressive ART:

High drug efficacy (R = 0.23):
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Low drug efficacy (R = 0.92):
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(Conway & Perelson (2017))

One tentative hypothesis:
Latent reservoir is primarily composed of memory cells (Chomont et al. (2009)).
“Frequent-activators” may be getting stimulated with less intensity.
HIV specific memory responses?...



Population split: time of ART initiation (non-NNRTI only)

Initiated ART during: - acute infection (< 3 mos post-exposure)
- early infection (3-6 mos post-exposure)
- chronic infection (> 6 mos post-exposure)

Predicted r(t) (∆AIC=-4.9):
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I Early-treated recrudescence rate r0 slowest!
Hypotheses: - adaptive immune responses better developed than in

acute-treated (Li et al. (2016)).
- fewer accumulated CTL escape mutations than in

chronic-treated (Deng et al. (2015)).
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I Acute-treated recrudescence rate r0 shortest in duration.
Hypothesis: smallest HIV-specific reservoir, per tentative hypothesis?
hello
hello
hello



Discussion
Viral rebound dynamics using a phenomenological, time-dependent recrude-
scence rate. Preliminary results.

I Improved on survival models by considering underlying biology.

I Time-dependent models explain short and long-term viral rebound.

Average recrudescence rate predictions:
I Shortly after ATI: 1/7 days (Pinkevych et al. (2015)).
I Roughly 1-2 months later: 1/130 days.

I Refinements: model selection, alternative detection delay models,
sharpening biological picture...

Applications:
Given some intervention that will delay viral rebound and some testing fre-
quency, can predict how many study participants are required to achieve the
desired statistical power to detect delay.
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Utility: clinical trial planning & analysis

Even if you’re skeptical of the underlying biology, new model predicts late
viral rebounds very well.

Standard survival models:
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Exp. decaying r.r. (∆ AIC=-11.5):
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Treat recrudescence rate as the hazard rate for analysis.

I Baseline to evaluate efficacy of intervention in a clinical trial setting.
I Predict # of study participants required to achieve desired statistical

power.



Example: predicting # of study participants

Over 1000 in silico trials, % that yield statistically significant difference in
mean rebound time (Wilcoxon rank-sum test).
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I Testing frequency: twice weekly
(solid), weekly (dashed), bi-weekly
(dotted).

I Delay associated with reduced hazard
ratio.
HR 0.7 = 3 days; HR 0.5 = 1 wk; HR
0.4 = 2 wks.

Note that these are preliminary results.

With good support for underlying biological hypotheses, can make similar
predictions for interventions that target rebound mechanisms.


