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Multi-Scale Evolution

e Within-host
* HIV-1is a rapidly replicating retrovirus
 Estimated 108 newly infected cells per day

* Transmission Bottleneck
* In the majority of cases, new infections are
started by a single virus strain
* Between-host
* 1.8 million new HIV infections in 2017
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Multi-Scale Evolution: Transmission Bottleneck

* The rate of evolution of the virus @ (b)
is 2 to 6 times greater within than
between hosts.

* A current hypothesis: The HIV-1
latent reservoir acts to archive | —
less-evolved virus for later —
transmission.

* We offer a complimentary
hypothesis: traits for efficiency of

transmission, across the
bottleneck, are not under direct
SElECtiOﬂ 3 nd are th us su bject to Theys K., et. al., The impact of HIV-1 within-host evolution on transmission dynamics, Current

Opinion in Virology Dec; 28:92-101. doi: 10.1016/j.coviro.2017.12.001 (2018)

drift within-host



Multi-Scale Evolution: Insights from Influenza

e Within-host evolution of influenza 100 =0 ottt s ke mmmen
virus is consistent with a neutral
model of evolution

* Uncertainty of the between-host
bottleneck size

e Rare variants have a low
probability of transmission

* Influenza evolution is dominated
by stochasticity on local scales and
positive selection on global scales 0.00
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McCrone J., et. al., Stochastic processes constrain the within and between host evolution of
influenza virus. 2018;7:€35962. doi: 10.7554/eLife.35962 (2018)



Multi-Scale Evolution: Transmission Bottleneck
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Joseph S., et. al., Bottlenecks in HIV-1 transmission: insights from the study of founder viruses, Nat Rev Microbiol. 2015 Jul;13(7):414-25. doi:
10.1038/nrmicro3471. (2015)



Questions

Does allowing transmission fitness to evolve within-host without direct selection
pressure have the effect of slowing the observed rate of evolution over epidemic

time?

Is the difference between within- and between host evolutionary rates sensitive to
the size and composition of the bottleneck Inoculum?



Methods: Overview

/Within-host N Between-host

Stochastic branching process model of disease

Deterministic host-cell-limited model of transmission where the probability of founding
viral dynamics with fitness evolution and a a new infection and characteristics of the new
latent reservoir infection are dependent on the within-host
model
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Methods: Within-host Dynamics
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Methods: Fitness Evolution Within-host
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Methods: Model Parameters
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Methods: Model Parameters
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Simulation Sketch
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Simulation Sketch (g )
B

Bottleneck Inoculum Size



Simulation Sketch
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Results: Simulated Transmission Trees
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Results: Evolution of increased death rate (§)
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Results: Evolution of increased death rate (§)
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Results: Bottleneck Inoculum Size
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Results: Bottleneck Inoculum Size
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Results: Bottleneck Inoculum Size

0.3O!f¥§ g

0.28]

| '
””Hmm

I BN: 5

0.24) UBN: 1
0.2

time (y




Results: Fixed Transmission Fitness
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Results: Fixed Transmission Fitness

0.301

AAAAA

" " 1

llllllllllllllll




Results: Latent Reservoir
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Results: Latent Reservoir
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Questions

Does allowing transmission fitness to evolve within-host without selection have the
effect of slowing the observed rate of evolution over epidemic time?

Is the difference between within- and between host evolutionary rates sensitive to
the size and composition of the bottleneck Inoculum



Results

Does allowing transmission fitness to evolve within-host without selection have the
effect of slowing the observed rate of evolution over epidemic time?

* Changes are sensitive to the within-host viral distribution

Is the difference between within- and between host evolutionary rates sensitive to
the size and composition of the bottleneck Inoculum



Results

Does allowing transmission fitness to evolve within-host without selection have the
effect of slowing the observed rate of evolution over epidemic time?

* Changes are sensitive to the within-host viral distribution

Is the difference between within- and between host evolutionary rates sensitive to
the size and composition of the bottleneck Inoculum

* Yes, the rates of evolution are sensitive to the size and composition of the
transmission bottleneck Inoculum

e Our results suggest that bottleneck effects could amplify the changes in the
observed rate of between-host evolution beyond that of the archival effects
of the latent reservoir alone
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Discussion

 Our modeling suggests the observed between-host rate of evolution is dependent on
how well adapted the virus is to the host, and therefore slows over the course of the
epidemic

* This dependence on how well adapted the virus to the host raises the question whether
will allowing different hosts with distinct immune HLA types will reproduce the
additional explanation for the difference in evolutionary rates, ‘adapt and revert’
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Introduction: Within-host

Rapidly replicating virus

* Immune escape

* Host cell competition
Approximately ten thousand nucleotides
long
Set-point viral load (SpVL) is a key
correlate to virulence
Has a long lived and evolutionarily stable
latent reservoir

Viral load

Patient 1

t

Set-point viral load
Patient 2

Time since infection

Fraser, C., Lythgoe, K, Leventhal, G, et. al. Virulence and pathogenesis
of HIV-1 infection: an evolutionary perspective., Science.
343,6177, pp. 1243727 (2014).



Evolution of intermediate SpVL
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Mean Transmitted Mutation Class
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Mean Transmitted Mutation Class
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Within-host Diversity

50 100

150

200

' Time (vears)
250

> § Fixed

> Uncoupled

J



Within-host Model
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