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Oscillators?
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Oscillator ingredients

Each oscillator has a phase 6.
Each oscillator has a natural frequency w.

Oscillators couple to one another.

There is a tunable coupling strength J between oscillators.
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Main dynamics

N
Oj=wj+ Y _ Jusin (O —0)) forj=1,...

k=1
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Background: glass?
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Background: what is a glass?

Slow.

[
m Messy.
m Complicated.
n

Frustrated.
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Background: what is a glass?

m Slow, non-exponential /algebraic decay of chosen order
parameter to steady states.

m Substantial lack of long-range order or symmetry.

m Significant redundancy in the set of possible ground
microstates that all carry similar macroscopic behavior.

m Frustrated.
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What does frustration look like?

‘f.—.’
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Figure: | Phase Video Caption
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Can oscillators make a “true” glass?
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It's complicated.

PHYSICAL REVIEW E VOLUME 61, NUMBER 2 FEBRUARY 2000

Self-averaging of an order parameter in randomly coupled
limit-cycle oscillators

1. C. Stiller
Institut fiir Biologie Hi, Universitdt Freiburg, and AG Hirnforschung, Hansastrasse 9a, D-79104 Freiburg, Germany

G. Radons*
Institur fiir wnd g (FhG-IPA), 12, D-70569 Stutigart, Germany
and Fakultat Physik, Universitat Stuttgart, D-70049 Stuitgart, Germany
(Received 11 August 1999)

In our recent paper [Phys. Rev. E 58, 1789 (1998)] we found notable deviations from a power-law decay for
the “‘magnetization™ of a system of coupled phase oscillators with random interactions claimed by Daido in
Phys. Rev. Lett. 68, 1072 (1992). For another long-time property, the Lyaponov exponent, we found that his
numerical procedure showed strong time discretization effects and we suspected a similar effect for the
algebraic decay. In the Comment to our paper [preceding paper, Phys. Rev. E 61, 2145 (2000)] Daido made
clear that the power law behavior was only claimed for the sample averaged magnetization [Z] and he
presented new, more accurate numerical results which provide evidence for a power-law decay of this quantity.
Our results, however, were obtained for Z iself and not for [Z]. In addition, we have taken the intrinsic
oscillator frequencies as Gaussian random variables, while Daido in his new and apparently also in his earlier

used a appr to the Gaussian distribution. Due to the differences in the
observed quantity and the model assumptions our and Daido’s results may be compatible.

PACS number(s): 05.45.—a

The investigation of interacting biological oscillators was
introduced by Winfree [ 1] several decades ago. Building on
Winfree's idea of a phase description, Kuramoto introduced
a simple model of interacting phase oscillators [2-5], which
could be solved analytically in the limit of N—= coupled
oscillators. The dynamics of the phases of the oscillators are
described by coupled first order differential equations:
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noting the interaction strength. The frequencies w, are dis-
tributed according to a Gaussian distribution Function f(w)
—cxp(—u 12) 2w

A continuous distribution function f{w) is only well-
defined for N—= or for random variables w, . Although not
stated in [7], in his numerical calculations (with finite A}
Daido, in contrast to us [10]. used nonrandom frequencies
[see Eq. (3) in his comment [11]].

Daido investivated the decav of Z(1) from the initial con-
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It's complicated.

PHYSICAL REVIEW E

VOLUME 61, NUMBER 2

FEBRUARY 2000

Algebraic relaxation of an order parameter in randomly coupled limit-cycle oscillators

Hiroaki Daido
Depariment of Physics, Faculty of Engineering, Kyushu Instinue of Technology, Kitakyushu 804-8350, Japan
(Received 28 December 1998)

In their recent paper [Phys. Rev. E 58, 1789 (1998)]. Stiller and Radons (SR) study, following our earlier
work [Phys. Rev. Lett. 68, 1073 (1992)], the behavior of globally and randomly coupled phase oscillators with
distributed intrinsic frequencies. They claim that their simulation results do not confirm the power-law behav-
ior of an order parameter found numerically by the author, attributing its cause to the poor precision of the
authot’s integration scheme. Here demonstrated is that the power law survives even for a scheme better than
SR’s, provided that finite-size efficts are properly taken into account, as was done in our previous work.

PACS number(s): 05.45.—a, 87.10.+¢, 02.50.—¢, 05.40.—a

The behavior of large populations of coupled nonlinear
oscillators is now one of the central subjects in nonlinear
dynamics [1-3]. Although it is usually studied for the case of
nonrandom interactions, the architecture of coupling in any
kind of real coupled-oscillator systems should involve more
or less quenched disorder. If such disorder is weak enough,
then it will not cause any significant change in the system’s
behavior. However, one may expect the emergence of quali-
tatively new features when randomness in coupling is not
decaratively fechle. For example, many biological and physi-
ological oscillator systems, including the brain, might be ex-
amples of such a case [1.4]. It is therefore an important and
interesting subject to examine the behavior of randomly
coupled oscillators. From this point of view. the author
started investigations into pools of randomly coupled limit-
cycle oscillators more than a decade ago [5] and later pro-
posed a model of “oscillator glass™ [6].

A
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when J exceeds J,, a threshold value, where [Z(1)] stands
for an average of Z(r) over a number of different realizations
of J,;, which average will hereafter be referred to as a
“sample-average’ following Refs. [6,11] and the number of
realizations used will be denoted by N, [12]. In that work,
numerical integration was performed with the Euler scheme
of time step Ar=27x0.01 for N=1500,1000,2000 and N,
=10. For the larger values of N, J, is near 6, and the expo-
nent « depends on J [see Fig. 5(b) of Ref. [6]]

Recently, however, Stiller and Radons (SR) [13] have re-
ported that their results are essentially different: they find
exponential decay for J<<24.5 and algebraic decay only for
J=24.5, leaving the region ./ 24.5 unsettled because of the
complex behavior of the order parameter therein. Their inte-
gration scheme is the Heun method with Ar=27x 107,
which is expected to have better accuracy than the author's
[6]. From this fact, they suggest that the slow relaxation
found by the author is not correct, being a discretization
effect due to the low order integration scheme. The main
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It's complicated.

PHYSICAL REVIEW E VOLUME 58, NUMBER 2 AUGUST 1998

Dynamics of nonlinear oscillators with random interactions

1. C. Stiller and G. Radons*
Institut fir Thearetische Physik, Universitat Kiel, Olshausenstrasse 40, D-24118 Kiel, Germany
(Received 3 October 1997)

We develop a mean field theory for a system of coupled oscillators with random interactions with variable
symmetry. Numerical simulations of the resulting one- dynamics are in with simula-
tions of the N-oscillator dynam s. We find a transition in dependence on interaction strength J and symmetry

7 from a phase to a phase with st disorder, where all oscillators are
frozen in random positions. Tlm. transition between the “*paramagnetic’” phase and the spin glass phase
appears 1o be of first order and is dynamically characterized by chaos (positive Lyapunov exponents) in the
former case and regular motion (vanishing Lyapunov exponents) in the latter case. The Lyapunov spectrum

shows an interesting symmetry for antisymmetric interaction {

=—1). [S1063-651 X(98}14608-1]

PACS number(s): 05.45.+b, 05.70.Fh, 64.60.H, 64.60.Cn

L INTRODUCTION

Oscillations and interacting oscillating systems are omni-
present in nature as well as in technical systems. Therefore,
systems of coupled ascillators have received much interest in
the last years. Synchronization and desynchronization were
investigated for populations of fireflies [1,2], pacemaker cells
of the heart, and pulsating lasers [3,39]. Oscillations in the
nervous system [5], which control periodical processes as
minning hreathing. and chewine. received narticnlar interest
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tion" m=(1/N)EX_ explich) according to a power law in
time. Our simulations with identical system size, smaller
time discretization, and a numerical procedure of higher or-
der do not canfirm this result. We find a power law only for
a critical interaction strength J, ; for J>.J/, and J<./,, we do
find systematic deviations from a power law. At J., how-
ever, the system shows a discontinuous transition from a
dynammally disordered state to a spin glass state with frozen
cumrasl to the case of uniform and Van

1 e et b
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Daido (1992)

VOLUME 68, NUMBER 7

PHYSICAL REVIEW LETTERS

17 FEBRUARY 1992

Quasientrainment and Slow Relaxation in a Population of Oscillators with
Random and Frustrated Interactions

Hiroaki Daido
Department of Physics, Faculty of Engineering. Kyushu Institute of Technology, Tobata, Kitakyushu 804, Japan
(Received 31 January 1991; revised manuscript received 22 October 1991)

It is numerically shown that there may be a new type of ordered state (in some sense glassy) in far-
from-equilibrium systems which can be identified with a large population of coupled limit-cycle oscilla-
tors, provided couplings are not only random but also frustrated. It is characterized by quasientrainment

and algebraic relaxation.

PACS numbers: 87.10.+¢, 02.50.+s, 05.40.+j, 05.70.Fh

Large assemblies of coupled limit-cycle oscillators play
an important role in many fields of science. Their most
remarkable feature is that they exhibit macroscopic mu-
tual entrainment for coupling strength greater than a cer-
tain threshold. The resulting coherent oscillations model
a variety of rhythmic behaviors observed in diverse far-
from-equilibrium systems, such as biological clocks, many
physiological organisms, chemical reactors, and so on
[1-3]. Quite a few investigations have been carried out
analytically as well as numerically for a number of model
systems in order to elucidate the nature of such a transi-
tion [2].

A common feature of the models used in those studies
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of coupled oscillators [4,7]. Suppose a pair of oscillators
evolve as 6, =Jsin2r(6; — 6,+ay)), 6,=1Jsin2r(8,—6,
+aj3), whose phase difference asymptotically becomes
8, —6,=pB2+ 015, where B12=(az—a2)/2 and 62=0
or + depending on the value of a2+ ax. Then, imagine
three oscillators, every pair of which has a similar cou-
pling as above. It is easy to see that unless X, (B
+0;;) =0(mod1), the phase difference favored by the
coupling cannot come true for all of the pairs, leading to
a competition among interactions, or frustration. Exten-
sion is straightforward to the case of more than three os-
cillators.

Frustration mav he a fairlu comman faatura of raal
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Main dynamics: Daido's choices

N
éj :ijrZijsin(Hk —0;) forj=1,...,N.
k=1
m Normally distributed natural frequencies.

m Symmetric coupling matrix (Jjx = Jij), with entries
distributed as Normal(0, 27J/+/N).
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Daido’s dynamics: J < 8
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Daido’s dynamics: J > 8
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Local Fields

We define the local fields to be

N
Pj=rje® =" Jyel,
k=1
forj=1,...,N. Equation (1) then becomes

6; = wj + rsin (¢ — ;).
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Daido (1992): Local field trajectories |Expand

85

(a)

Y

-2. 85

1
-2. 85 X 2. 85 -3.2 X 3.2

FIG. 1. Phase portraits of a local field (N =500): (a) J=4
(20000 points); (b) J =14 (50000 points).

BJOL Volcano Transitions



Daido (1992): a volcano transition

PHI a
e -1 (a) | 1.5} (b)
N=1000 (3]
ol 1.0
1} .5{
01 P L - L 1 U| P " 1 1
a -5 1 1.5 R 0 S 10 15 J

FIG. 2. Behavior of the distribution of a local field averaged
over all j: (a) PHI(R)=P(x,y) vs R=(x2+p)'2 where P is
averaged over three samples of J;; as is expressed by (3) in the
figure (this convention will be used hereafter); (b) the peak
point of PHI(R) vs J.
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Daido (1992): a volcano transition

There is some critical coupling scale J. that corresponds to the
onset of a volcano transition. Moreover, this corresponds to a
transition into a glassy state.
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Main dynamics: our choices
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Main dynamics: our choices

Instead of normally distributed natural frequencies, we use the
Cauchy distribution
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Main dynamics: our choices

Instead of normally distributed couplings, we make

J K
= ST (1™ uly, (2)

m=1

where each v is iid, with equal probability of being +1.
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The coupling matrix: special features
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The coupling matrix: special features

K
Jk_NZ l)mum m.

m=1

m J controls the spread.
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The coupling matrix: special features

J K (k)
Jk = N Z 1)mum Um".

m=1

m J controls the spread.

m K controls the rank, since it decides the number of outer
products making Jjx (Even Integer).
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The coupling matrix: interpretation

m Each oscillator j has a vector (ugj), e uﬁ?), and the

coupling between oscillators j and k depends on the number
of places their vectors agree.
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The coupling matrix: extra features |Expand

z\k

Jk—

K
E um um .
m=1

m If K= N and N — oo, then the off-diagonal entries go to
Normal(0, J/v/N). (Has relevant limit)
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Local Fields (reminder)

We define the local fields to be

N
Pj=rje =" Jyel,
k=1
forj=1,...,N. Equation (1) then becomes

6; = wj + rjsin (¢ — ;).
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Local Fields

Caption

Expand

BJOL
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Infinite N
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Infinite N

f(0,w, u, t) = density of oscillators with natural frequency w,
interaction vector u, and phase 6 at time t.

v(0,w, u, t) = flow of ditto.
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Infinite N: interaction matrix

Much the same as before:

K
J(u, ) :=J Z(—l)mumufn.

m=1

The u's are random K-vectors with entries being +1 with equal
probability, so
p(o) = 2K 36— v),
v

where the sum runs over all the equally likely v € {£1}¥.
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Infinite N: putting it together |Expand

So
) N
9] =wj+ ZJJk sin ((9[( — 0_,)
k=1
becomes
v(0,w,u,t) =w+ (J(u,d)sin(0" — 0)), (3)

(-) denotes integration using the time-dependent measure
(0, u, t)d0 g(w)dw p(u")du'.
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Infinite N: local fields again

Also,
N
P; = rje’¢’f = Z.Ijke’ek,
k=1

becomes .
P(u,t) = (J(u, u")e”).
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The Ott-Antonsen Ansatz

1 = .
f(0,w,u,t)= o 1+ Z aw, u, t)"e’”e +c.c.
n

n=1
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Using the ansatz |Expand

Following the conventions and defining a(u, t) := a(—i, u, t), we
find
P*(u,t) — a(u, t)>P(u, t)

a(u,t) = —a(u, t) + > : (4)
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Using the ansatz |Expand

The ansatz also simplifies the local fields into

(u,t) = oK ZZ Y umul.a*(u' t).
u/
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Time to Ott

By replacing P with its sum, we get a closed set of 2% ordinary
differential equations for a(u, t), one for each possible choice of u.
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Stability?

m We have a 2K dimensional ODE.
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Stability?

m We have a 2% dimensional ODE.

ma(u,t) =0 = f(0,w,u,t) =1/(27), which is incoherence.
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Stability?

m We have a 2K dimensional ODE.
ma(u,t) =0 = f(0,w,u,t) =1/(27), which is incoherence.

m J., the critical coupling, corresponds to the incoherent state
no longer being stable.
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Stability?

We have a 2K dimensional ODE.
a(u,t) =0 = f(0,w,u,t) =1/(27), which is incoherence.

Jc, the critical coupling, corresponds to the incoherent state
no longer being stable.

To calculate J., we just need to linearize this ODE and
find the first zero eigenvalue.
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Jacobian |Expand

The Jacobian is

.y A (5)

+ 2K+1
Here [ is the 2K x 2K identity matrix and

K

Au,v = Z(_l)mumvm

m=1

where the entries of A have been conveniently indexed by binary
strings u,v € {+1}K.

BJOL Volcano Transitions



Stability?  |Expand

Since the Jacobian is
J

the Jacobian has exactly three distinct eigenvalues:
—1+ J/2 with multiplicity K/2
—1 — J/2 with multiplicity K /2
—1 with multiplicity 2K — K
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Main Result:

=2 (6)
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Local Fields

Expand
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Numerical checks?
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Numerical checks: it's complicated. |Expand
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Convergence to J. =2 |Expand

45 T T T | | |
Bm K=2
4 A4 K=4 N
oo K=8
35} Normal entries |7
Je
3L ]
25} T

25 75 125 175 225 275
N
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Are we a glass yet?
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Are we a glass yet?

A proposed signature feature of oscillator glasses is nonexponential
relaxation of the order parameter

N
Z(t)=> e,
k=1
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No. |Expand

0.0
S K=2
-0.5 \\\
— ~
N <o
-0 S
— \\
o0 ~o
L 15 Seo
~~~~
_20 1 I I - —
0 1 2 3 4 5
Time

Figure: Dashed blue line has J = 0. Solid red has J = 10. N = 5000 for
both.
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Is a glass possible?

m Our continuum limit gives us 2/ ODEs.
m Therefore, it is only consistent when N > 2K
m What if that doesn't happen?
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Algebraic decay? |Expand

0.0
(a)
K=
N = -
2 6 8 10
g
B (b)
K = 5000
-2.0 1 | e ————
2 4 6 8 10

Time

Figure: Dashed blue line has J = 0. Solid red has J = 10. N = 5000 for
both.
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Algebraic decay? |Expand

-2.0
-1.0 -0.5 0.0 0.5 1.0

log,(Time)

Figure: Dashed blue line has J = 0. Solid red has J = 10. N = 5000 for
both.
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Final Summary

m J. = 2, regardless of the rank of the coupling matrix.

m The volcano transition can occur in absence of a glass
transition.

m There is still the possibility of a glass transition in the high K
limit of this model.
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Future directions

BJOL Volcano Transitions



Future directions

Checking the large K limit for glassy behavior.
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Future directions

Applying results to associative memory models:

K

J (k)
NZ (1—6jk) e“"’e“"’
m=1
with each M(J) being uniform on 0-27.
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Future directions

Semi-field parameters are set by

N
Fro= 3 )i
k=1

These have many fun properties, including their relationship to
local fields:

K
J o
Pi=3 > (-1) ud) Fr.
m=1

They also make for good videos: ‘Example‘ ’Caption‘
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Questions? (Full slides available at ottinoloffler.com)
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Daido’s dynamics: J < 8
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Figure: |Field Video Caption
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Daido’s dynamics: J > 8

73.43

36.71F

0.0

-36.71

-73.43 .
-73.43 -36.71 0.0

36.71 73.43

Figure: |Field Video Caption

= &
BJOL Volcano Transitions

N



The coupling matrix: extra features

K
Jk_NZ l)mum m.

m=1

m Quter products make it symmetric.
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The coupling matrix: extra features

J < ), (k)
_ m U
Ji = N m51(—1) us uy’.

m Outer products make it symmetric.

m (—1)™ ensures the diagonal is 0 (No spurious information)
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The coupling matrix: extra features

Jk—

K
E um um .
m=1

m Outer products make it symmetric.

z\k

m (—1)™ ensures the diagonal is 0 (No spurious information)

m If K= N and N — oo, then the off-diagonal entries go to
Normal(0, J/v/N). (Has relevant limit)
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The coupling matrix: extra features

K
Z 1)’"um um .

m=1

z\k

Jk—

Outer products make it symmetric.

(—1)™ ensures the diagonal is 0 (No spurious information)

m If K= N and N — oo, then the off-diagonal entries go to
Normal(0, J/v/N). (Has relevant limit)

m Entries of Jj are independent. | (Are they?)
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Yes, they are (1)

The only chance of non-trivial dependence is between entries of
the same row or column of the coupling matrix, that is, between
ij and Jj/.
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Yes, they are (I1)

Take some x,y € {0,1,...,K}, then

N N
P;:P<ink=2X—Kand Jlezzy—K>
K
:P(Z( 1)ty iy’ = 2x — K and Z
m=1

Let ap, = (—l)mu,(;’;), b = U, e = D).
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Yes, they are (Ill)

Let a,, := (—l)muff;), by, = u,(,f), Cm 1= u,(,/,).

Each can be thought of as a fair K-long coinflip sequence of +1's
and —1's.

K K
P—P(Zambm—2x—Kand Zamcm_2y—K)

= P ( coinflip sequence a agrees with b x times and with ¢ y times )

MHEE

N N
:P<Jij:2x—K)P<JJj/:2y—K>\/
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Yes, they are (1V)

0.035
0.030
0.025
0.020
0.015
0.010

0.005

0.000

Figure: Measuring absolute correlation between J; » and J; x across a
coupling matrix of size N = 25 and K = 4, averaged across 10°
realizations. Blue entries (the diagonal, (1,2), and (2,1)) have trivial
correlations and are ignored.
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Phase distributions for J =1

0

Wi
Figure: | Phase Video Full Caption
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Phase distributions for J = 3

!.AJJ '
Figure: | Phase Video Full Caption
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Local Fields for J = 1
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Figure: |Field Video Full Caption
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Local Fields for J =3
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Figure: |Field Video Full Caption
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Continuum limit explanation (1)

How does N
éj =wj+ Z.]Jk sin (Hk — HJ-)
k=1

become
v(0,w,u,t) =w+ (J(u,d")sin(0' —0))?
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Continuum limit explanation (II)

Since B
Ju, i) =0 (1)U,
m=1
we get
ANy
0; =wj+ Z J (u(f) uf )> sin (0x — 6)
k=1
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Continuum limit explanation (lII)

Consider adding a hypothetical oscillator with phase 6, natural
frequency w, and interaction vector u. Then its instantaneous
frequency would be given by

v(0,w,u, t) = ZN: ( )sin(ek—e).

k=1
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Continuum limit explanation (IV)

Sums are just integrals, so
v(f,w,u, t) =w+ /J (u, u') sin (0 — 0) udf'dw'du/’

where we have the normalized measure

N
,u::%Z(S(Q’—Gk)é(w’—wk)é(u’—u(k)>.
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Continuum limit explanation (V)

Let's slightly overload our terminology by introducing

é(k,w’ ut) = {ek(t) if w=wy and u = uk),

0 else.
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Continuum limit explanation (VI)

Naturally,

But now, we define a new measure

f(0,w,u,t):= I|m ZN: <9—9(k,w,u,t)>.

k:
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Continuum limit explanation (VII)

Because u and w are independent, we find that

N
p= 60— 00) 5 () 6 (o — )
k=1

N
:% s (,9/ — Ok, w, u, t)) 5 (o — i) 6 (o — u)
k=1

N—o0

F(6,w,u, t)g(w)p(u)
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Continuum limit explanation (VIII)

So in the large N limit, we find that
v(0,w,u,t) =w+ (J(u,d)sin(0' — 0)),

where (-) denotes integration using the time-dependent measure
o', ', t)d0' g(w)dw' p(u)du'. v

BJOL Volcano Transitions



Ott trick explanation (1)

How

1 > .
f(0,w,u,t) = > 1+ Z a(w, u, t)”e’”9 +c.c.
T

n=1

becomes

P*(u,t) — a(u, t)>P(u, t)

a(u, t) = —a(u, t) + >
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Ott trick explanation (I1)

Because the total number of oscillators doesn’t change, a
continuity equation must be obeyed. In particular,

—fr = (fv)y.
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Ott trick explanation (I11)

LHS first.

o0

-1 .
—f; :8tg 1+ Z ow, u, t)"e™ +c.c.
n=1

§ :naan 1 ln0+na*a*n 1 —lnG
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Ott trick explanation (IV)

Now RHS ...
After some manipulation, this:

v(0,w,u,t) =w+ (J(u,u)sin(0' —0)),
becomes this:

1 . .
V(0w u,t) = w+ o [ P(u, ) — P (u,1)]
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Ott trick explanation (V)

RHS takes more work than LHS ...

1 > , ,
fv :g 1+§:1aneln9+a*ne—m9
n=

1 . .
[w + = (e"eP — e’eP*)] .
2i
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Ott trick explanation (VI)

But eventually . ..

1
fv =—[2wi+ aP — o P7]
i

4

1 & ,
+ r (Zwian+an+lp_ an—lp*) em@

T -

1 & ,
+ rz (2iné*n _ a*n—l—lP* _|_a*n—1P) e—/nO‘

Ui

n=1

BJOL Volcano Transitions



Ott trick explanation (VII)

And so
fr)g in) (2wia + a"TIP — "1 p*) e
“ani
i
n=1

+ o Z —in) (2wia*" — a*"P* + a*"1P) e~ Y
i
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Ott trick explanation (VIII)

By setting f; + (fv)s = 0 and setting Fourier coefficients to be
equal, then
P* — 2P

2

o = —waol +
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Ott trick explanation (IX)

The calculation of P(u, t) reveals it only depends on a(—i, u, t), so
setting w = —i and a(u, t) := a(—i, u, t), we finally get

P*(u,t) — a(u, t)2P(u, t) v

a(u,t) = —a(u, t) + >
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Another trick explanation (1)

How -
P(u,t) = (J(u, u’)e'e )

becomes

J K
P(u,t) = o SN (1) umupat(u 1)
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Another trick explanation (1)

Sub in the ansatz to get

P(u,t) = /J(u, e F(0, W 1) g (W) p(u')db du’ duf’

g(Wp(u')do' dw'du' .

oo
. . .
el@ _|_§ :ane/(n+1)9 +a*ne_’(”_1)9
n=1
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Another trick explanation (I11)

Take the ¢ integral first to get rid of almost everything

P(u,t) —/“/(L2I’L]/)(27ra*)g(w')p(u')dw'du'

s

:/J(u, aFg(wp(u')dw'du'.
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Another trick explanation (V)

Next, we want to take the w’ integral. Since we are using a Cauchy
distribution, then

_ v /) —i/(@n)
g(w)_w(a+w2)_ wHi LT

So if a has the right smoothness and decay, then the integrand has
exactly two poles at +1/.
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Another trick explanation (V)

So by taking the appropriate contour integral, we get
P(u,t) :/J(u, u') (/ a* (W' t)g(w’)dw’> p(u)du’
:/J(u, u) <—27ri217Ta*(—i, v, t)) p(u)du’
— [ . d)att ol

where a(u, t) := a(—i, u, t).
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Another trick explanation (VI)

From here, just plug in for J, recalling that
p(u) =27K 3, 6 —v)

P(u,t) :/J(u, a(d, t)p(u")dd

K
:2iK Z Z(—l)mumufna*(u’, t).v

v m=1
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Why that Jacobian? (1)

How )
P* t) — t)-P t
a(u,t) = —a(u, t) + (v, 1) agu’ Gl ).
becomes
/ J A
I ok
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Why that Jacobian? (I1)

m We want to linearize around a(u, t) = 0 for all u.
m P and P* are just O(a).

m Therefore, we can drop the a%P term near 0.
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Why that Jacobian? (lI1)

Therefore, near the incoherent state,

a(u,t) ~ — a(u, t) + %P*(u, t) + 0(a%)

K
J m
~ — a(u, t) + W E E (—1) UmU;na(Ul, t)

u m=1
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Why that Jacobian? (1V)

So the entries of the Jacobian are given by
X
Oa(uy34) = =1+ 3y > (=) timtm
m=1
X
:—1+WZ(—1)"’:—1
m=1
on the diagonal, and
TR
Davya(u) = oK1 > (1) tmVim
m=1
of the off-diagonal.
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Why that Jacobian? (V)

The most convenient way to index the entries of the Jacobian is by
using the vectors u, v € {+1, —1}%, AKA the set of all K-long
binary strings. So entry u, v of the Jacobian is

K
J
_5u,v + W Z(—l)mumvm
m=1
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Why that Jacobian? (VI)

Therefore, the Jacobian is

J

I+ ok

A,

where [ is the 2K x 2K identity matrix and

K
Ay = Z(—l)mumvm.\/

m=1
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Eigenvalues?

For each integer 1 < n < K and each binary string v € {jzl}K,
define a vector ((" € R whose vth entry is

C(”) _

v’ = V.
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Features of ((")?

m The set of all K distinct (") are orthogonal.  |(Are they?)

m By using the evenness of K, then AC(" = (—1)”2K{(”).
(Really?)
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Other eigens?
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Other eigens? |Expand| |Return

Given any 7 perpendicular to all the ¢ one finds An = 0.
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Stability?

Therefore, A has exactly three distinct eigenvalues:
+2K with multiplicity K/2
B —2X with multiplicity K/2
0 with multiplicity 2X — K
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Yes, they are orthogonal (1)

Why is

orthogonal for all n?
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Yes, they are orthogonal (I1)

Let n # m,

¢(mem) — Z ViV,
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Yes, they are orthogonal (I11)

Let n # m, then

¢t = " v

v

= [{# times m and n agree}|

— |{# times m and n disagree}|
=2K=2(1 4+ 1) —2K2(1 +1)
=0.v'
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Yes, they are eigenvectors (1)

Why does
K
Ay = Z(—l)mumvm
m=1
have
C\(/n) = Vp,

as an eigenvector?
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Yes, they are eigenvectors (II)

Let's do this directly, and let's fix some n € {1,2,...,K} and
ve {+1,-1}¥. So

(AC(”))U =S A" =% (i(—l)mumvm> v

v m=1

K
= Z Z(—l)mumvmvn

m=1 v

= (~1)"unvava+ > > (=1)"timVimVn

m#n Vv

= Term 1+ Term 2
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Yes, they are eigenvectors (llI)

First term!

Term 1 = Z(—l)”u,,v,,v,,

=(-1)"u, Z vg

= (-1)"2Ku,
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Yes, they are eigenvectors (V)

The second term therefore becomes

Term2:Z Z (=1)"umVmva

m#n ve{£1}K

— / /
- um va

m#Z£n v/ e{£1}K-1

where the v’ and v/ are n-deleted versions of (—1)"up, and vy,v,
specifically.
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Yes, they are eigenvectors (V)

Second term becomes a matter of just counting the number of
places two vectors v’ and v/ of length K — 1 disagree, across all
possible v/. So combinatorically,

Term 2 22 —1-2w) <K_1).
w
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Yes, they are eigenvectors (VI)

But ...

This is an odd function times an even function, so the total sum
goes to zero.  |(Really?)
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Yes, they are eigenvectors (VII)

Putting them back together ...

(AQ(”)) =Term 1+ Term 2
u
=(-1)"2Ku, +0
=(=1)"2¢¢", vu,

Therefore, for all n, we have

A = (—1)m2K¢n
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Showing the nullspace (1)

Why does
n L ¢ for all n

imply
An =07
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Showing the nullspace (1)

Since
n L ¢ for all n,

then for any n =1,2,..., K, we have

¢t =0,
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Showing the nullspace (l11)

Therefore,

(A’I’])u = Z uvllu = Z Z Ume77u

v m=1
K

Il
SRl

m=1

3
Il
N

—-1)"um0 = 0.

I
ij

3
Il
N

So Anp =0, so it forms a nullspace. V.
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Numerical checks: Daido’s method

Measure the location of the peak:
If the peak is at zero, the we are below the transition

Otherwise, we are above it.
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Daido problematic

Measure the location of the peak:
m Radial density noisiest at origin.

m Need to collect and add many pdfs, but ignore most of the
data in diagnosis.

m Binning of pdfs will be arbitrary.
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Numeircal checks: our method

Fit the radial distribution of the data to symmetric normals

for r > 0.
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Why use this fit? |Expand| |Return

The functional form of h(r) allows us to identify its convexity at
the origin easily.

m v := p?/0? < 1 implies concave down.

m v > 1 implies concave up.
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Measuring v?

We are going to use method of moments on the 2D local field
data, with M, being the n'th moment.
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Measuring v?  |Expand| |Return

147~

" 2[e 4 /w2 (A /DR

m The left hand side comes from simulation data. |Expand

M1 M_

m The right hand side is monotone in .  |Expand

m Therefore, h(r) is concave down at the origin (and therefore
J < Jo) if and only if My 1 M_; = 1.4694.
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Concavity (1)

When is the sum of two normals centered at +u concave up at the
origin?
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Concavity (I1)

When is

2 —p? —r? wr
0= ez (22 o (1)
") Wexp< 207 )C°s o2)’

concave up at the origin?
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Concavity (11l

Letting v := p?/0? and 3 1= p/o?,

h(r) = 25 exp <?> exp <_;2f2> cosh (rf3).

BJOL Volcano Transitions



Concavity (1V)

2 _ 33,2 j_ﬁ2r2 2
Iy h(r) =By eXp< > " 2 >”m

x cosh(3r) [—’y +~% 4+ %1% — 2B’yrtanh([3r)]
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Concavity (V)

Evaluating therefore gives

92h(0) = B>y Lexp (—7/2) ﬁ(’r - 1).

So h is concave down whenever v < 1 and concave up whenever
vy>1 v
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A moment for v (1)

2 —u?—r? wr
h(r) = W exp (M) COSh (;) s
lead to

147

2[e=1/2 + \/my/2Erf(\/7/2)]2

MMy =
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A moment for v (Il)

Define

Ln ::/ r"h(r)dr
0
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A moment for  (llI)

By computation, and using v := u?/0? and 8 := p/o?,

po =1
_ 2y1 v 0
— e /2 /L2 4 TEf A
= w/3+/3'< 2)
Y+
%% 52
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A moment for v (1V)

Notice!
m h(r) is a distribution on the interval (0, c0).

m However, our data comes from a sample of a 2D space.
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A moment for v (V)

So the “true” distribution we are sampling is closer to

h (V3 +y?)

since it has the correct radial behavior, is rotationally symmetric,
and is properly normalized on the plane.
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A moment for v (VI)

So the moments we are numerically observing are

M= | H(x,y) (W)" dixdy

// rdd0

_Hnt1
M1
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A moment for v (VII)

By earlier computation,

M_,=H0 — b
HL e=v/2 2%+7Erf(\/§>
2
Mo, = 12— (v +7)/8

1 a2 277 + ~Erf (ﬂ)
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A moment for v (VIII)

So, we directly get

1+
MiiM_1 = J

2(e P+ o 2B (AR
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Measuring M, 1 M_17 (I)

How do we measure My 1 M_17
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Measuring M1 M_1? (II)

Estimate individual moments from numerically obtained values of

Pi(t) = x;(t) + iy (t) ZJ,k (cos(0k(t)) + isin(Bk(t))) .
k=1

by averaging over all N feilds and over the sampling window T.

N

)
Mo = D05 (o + (e

j=1t=1
1 N T ; 2_1
M1 g 20D (12 + ()
J

j=1 t=1
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Measuring M. M_1? (1l

We then estimate their product by averaging these moments across
L independent simulations,

1~
EMi] = pia~ 7> M)

L

1 /

EIMa]=pa~ 7 S mY)
1=1

L
1 1) gl
E[MaM_a]~ 7 > MM,
=1

Note!
E[MiiM_1] # pyap1,

because moments aren’t independent.
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Measuring M 1M_1? (IV)

Similarly,

Var (M) = ‘7~2H
Var (M_1) = 62,

can be estimated by online methods, but
Var (M+1 Mfl)

is more difficult.

BJOL Volcano Transitions



Measuring My M_1? (V)

The error on the product is given by
1
Var (My1M-1) =~ 7 (131020 + 421034
1
+2/L+1/J,_]_COV(M+]_, M_]_)] + 0 <L2> .

so this gives us a numerical way to estimate M1 M_;. v
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M1 M_; monotone? (1)

How the heck is

1+
MiM_y = J

2 [e=1/2 4 /7y /2Erf(1/7/2)]2

montone in 7
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M. 1M_; monotone? (II)

Let's define
T 1+~

2f(v)2 2 [e=7/2 + «/7T'y/2Erf(\/W)]2’

so this expression is monotone if f is monotone in ~.
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M1 M_; monotone? (Il1)

f(y) = e /2 4 /7y /2Er(\/7/2)
Ve ’

monotone?
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M1 M_; monotone? (IV)

f'(v) = (11/'5?3/)2 (Erf( g) _ \/?e—v/2>

single signed?
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M1 M_; monotone? (V)

Notice!
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M, 1M_; monotone? (VI)

Also notice!

2
\/;e”’/z:/ ! et _2r2e Pyt
2 0
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M1 M_; monotone? (VII)

Therefore!
iy =Y TI@D) (V2 ey,
2\ VA
2 v/2

—t? 2 —t?
- e —2t%e " dt
VT Jo >
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M,1M_; monotone? (VIII)

Therefore!

\/ T 8 \/’7 4 —t2
"0 fpe ) et

>0.

So My1M_; is monotone in y! v
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M1 M_; monotone? (IX)
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Appendix X 2 combo! (1)

Split the sum in half to get

K—1 K_1
T 2=2 K—-1-2
erm Z( W)( " >

w=0
K/2—1

=2 Y (K—1—2w)<KV;1>
w=0
+2 Kzl (K—1—2W)<KV;1>.

w=K/2
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Appendix X 2 combo! (11

Letting s := K — 1 — w gives

K/2—1

K-1
T 2=2 K—-1-2
em2=2 3 W< - )
K-1
2 -K+1 .
+ Z (-K + +S)<K—1—s>

s=K/2—-1
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Appendix X 2 combo! (l11)

Therefore,
K/2—1
K—-1
T 2 =2 K—-1-2
em2=2 3 W< - )
K/2 1

—2 Z K —1—2s) <K5_1>

=0.
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What does frustration look like?

Figure: Each dot represents a distinct 6;(t) over time under using a
coupled oscillator model, with zero natural frequencies and random +1
coupling strengths. Here, N = 75, and we used a fourth-order
Runge-Kutta integration with a step size of 0.002 across 2000 recorded
steps, and initial phases distributed as a normal about 0. Each frame
represents 10 steps.

BJOL Volcano Transitions



Daido’s dynamics: J =4

Figure: Distribution of local fields. Each dot represents a distinct Pj(t)
over time under using Daido's setup, with normally distributed coupling
strengths and natural frequencies. Here, N =500, J = 4 and we used a
fourth-order Runge-Kutta integration with a step size of 0.01, 3600
recorded steps, and uniformly random initial phases. Each frame
represents 10 steps.
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Daido’s dynamics: J =4

Figure: Distribution of phases versus natural frequencies. Each dot
represents a distinct 6;(t) over time under using Daido’s setup, with
normally distributed coupling strengths and natural frequencies. Here,
N =500, J =4 and we used a fourth-order Runge-Kutta integration
with a step size of 0.01, 3600 recorded steps, and uniformly random
initial phases. Each frame represents 10 steps.
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Daido’s dynamics: J = 14

Figure: Distribution of local fields. Each dot represents a distinct Pj(t)
over time under using Daido's setup, with normally distributed coupling
strengths and natural frequencies. Here, N = 500, J = 14 and we used a
fourth-order Runge-Kutta integration with a step size of 0.01, 3600
recorded steps, and uniformly random initial phases. Each frame
represents 10 steps.
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Daido’s dynamics: J = 14

Figure: Distribution of phases versus natural frequencies. Each dot
represents a distinct 6;(t) over time under using Daido’s setup, with
normally distributed coupling strengths and natural frequencies. Here,
N =500, J = 14 and we used a fourth-order Runge-Kutta integration
with a step size of 0.01, 3600 recorded steps, and uniformly random
initial phases. Each frame represents 10 steps.
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New dynamics: J =1

Figure: Distribution of local fields. Each dot represents a distinct Pj(t)
over time under using our setup, with an interaction-vector based
coupling and Cauchy distributed natural frequencies. Here, N = 2500,
K =6, J =1 and using a fourth-order Runge-Kutta integration with a
step size of 0.01, 3600 recorded steps, and uniformly random initial
phases. Each frame represents 100 steps.
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New dynamics: J =1

Figure: Distribution of semi-fields. Each dot represents a distinct Fp,(t)
over time under using our setup, with an interaction-vector based
coupling and Cauchy distributed natural frequencies. Here, N = 2500,
K =6, J =1 and using a fourth-order Runge-Kutta integration with a
step size of 0.01, 3600 recorded steps, and uniformly random initial
phases. Each frame represents 100 steps.
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New dynamics: J =1

Figure: Distribution of phases versus natural frequencies. Each dot
represents a distinct 6;(t) over time under using our setup, with an
interaction-vector based coupling and Cauchy distributed natural
frequencies. Here, N = 2500, K =6, J = 1 and using a fourth-order
Runge-Kutta integration with a step size of 0.01, 3600 recorded steps,
and uniformly random initial phases. Each frame represents 100 steps.
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New dynamics: J =1

Figure: Density of phase offsets from local fields versus coupling strength
across all pairs of oscillators j and k. Darker cells correspond to higher
densities. This simulation used our setup with an interaction-vector
based coupling and Cauchy distributed natural frequencies. Here,

N = 2500, K =6, J =1 and using a fourth-order Runge-Kutta
integration with a step size of 0.01, 3600 recorded steps, and uniformly
random initial phases. Each frame represents 100 steps.

BJOL Volcano Transitions



New dynamics: J =1

Figure: Distribution of local fields and semi-fields. Each dot represents a
distinct P;j(t) or F,, over time under using our setup, with an
interaction-vector based coupling and Cauchy distributed natural
frequencies. Here, N = 2500, K = 6, J = 1 and using a fourth-order
Runge-Kutta integration with a step size of 0.01, 3600 recorded steps,
and uniformly random initial phases. Each frame represents 100 steps.
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New dynamics: J =1

Figure: Distribution of phases versus natural frequencies. This
simulation used our setup with an interaction-vector based coupling and
Cauchy distributed natural frequencies. Here, N = 2500, K =6, J =1
and using a fourth-order Runge-Kutta integration with a step size of
0.01, 3600 recorded steps, and uniformly random initial phases. Each
frame represents 100 steps.
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New dynamics: J =1

Figure: Combination of all other videos. This simulation used our setup
with an interaction-vector based coupling and Cauchy distributed natural
frequencies. Here, N = 2500, K = 6, J = 1 and using a fourth-order
Runge-Kutta integration with a step size of 0.01, 3600 recorded steps,
and uniformly random initial phases. Each frame represents 100 steps.
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New dynamics: J =3

Figure: Distribution of local fields. Each dot represents a distinct Pj(t)
over time under using our setup, with an interaction-vector based
coupling and Cauchy distributed natural frequencies. Here, N = 2500,
K =6, J =3 and using a fourth-order Runge-Kutta integration with a
step size of 0.01, 3600 recorded steps, and uniformly random initial
phases. Each frame represents 100 steps.
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New dynamics: J =3

Figure: Distribution of semi-fields. Each dot represents a distinct Fp,(t)
over time under using our setup, with an interaction-vector based
coupling and Cauchy distributed natural frequencies. Here, N = 2500,
K =6, J =3 and using a fourth-order Runge-Kutta integration with a
step size of 0.01, 3600 recorded steps, and uniformly random initial
phases. Each frame represents 100 steps.
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New dynamics: J =3

Figure: Distribution of phases versus natural frequencies. Each dot
represents a distinct 6;(t) over time under using our setup, with an
interaction-vector based coupling and Cauchy distirbuted natural
frequencies. Here, N = 2500, K = 6, J = 3 and using a fourth-order
Runge-Kutta integration with a step size of 0.01, 3600 recorded steps,
and uniformly random initial phases. Each frame represents 100 steps.
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New dynamics: J =3

Figure: Density of phase offsets from local fields versus coupling strength
across all pairs of oscillators j and k. Darker cells correspond to higher
densities. This simulation used our setup with an interaction-vector
based coupling and Cauchy distributed natural frequencies. Here,

N = 2500, K =6, J =3 and using a fourth-order Runge-Kutta
integration with a step size of 0.01, 3600 recorded steps, and uniformly
random initial phases. Each frame represents 100 steps.
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New dynamics: J =3

Figure: Distribution of local fields and semi-fields. Each dot represents a
distinct P;j(t) or F,,(t) over time under using our setup, with an
interaction-vector based coupling and Cauchy distributed natural
frequencies. Here, N = 2500, K = 6, J = 3 and using a fourth-order
Runge-Kutta integration with a step size of 0.01, 3600 recorded steps,
and uniformly random initial phases. Each frame represents 100 steps.
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New dynamics: J =3

Figure: Distribution of phases versus natural frequencies. This
simulation used our setup with an interaction-vector based coupling and
Cauchy distributed natural frequencies. Here, N = 2500, K =6, J =3
and using a fourth-order Runge-Kutta integration with a step size of
0.01, 3600 recorded steps, and uniformly random initial phases. Each
frame represents 100 steps.
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New dynamics: J =3

Figure: Combination of all other videos. This simulation used our setup
with an interaction-vector based coupling and Cauchy distributed natural
frequencies. Here, N = 2500, K = 6, J = 3 and using a fourth-order
Runge-Kutta integration with a step size of 0.01, 3600 recorded steps,
and uniformly random initial phases. Each frame represents 100 steps.
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Local Fields

Figure: Radial distribution of local fields. Each curve represents the
averaged density over 500 simulations of Eq. (1), using N = 250, K = 4,
fourth-order Runge-Kutta integration with a step size of 0.01, 1000
transient steps, 2000 recorded steps, and uniformly random initial phases.
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Local Fields

Figure: Radial distribution of local fields. Each curve represents the
averaged density over 500 simulations of Eq. (1), using N = 250, K = 4,
fourth-order Runge-Kutta integration with a step size of 0.01, 1000
transient steps, 2000 recorded steps, and uniformly random initial phases.
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Theta distributions

Figure: Oscillator phase distributions below and above the volcano
transition. In (a), J =1; in (b), J = 3. Each panel shows results for
simulations of N = 2000 and K = 6; other parameters as in Fig. 35. (a)
Below the volcano transition, the system is incoherent. (b) Above the
volcano transition, phase-locked clusters appear.
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Convegrence to Jc =2

Figure: Critical value J. versus N and K. Each value of J. was
estimated by using a bisection method on the value of M, 1 M_; to
achieve an accuracy of < 0.02. For each J we sample Jj at least 100
times, simulate Eq. (1), evaluate M1 M_;, and keep track of the running
standard deviation of these products. If the current value of M, 1 M_; is
more than 1.5 standard deviations from 1.4694, the bisection continues;
otherwise further simulations are run, up to a maximum of 10°
simulations. Each simulation consists of 1000 transient steps followed by
2000 recorded steps of a fourth-order Runge Kutta integration with a
step size of 0.01, with initial phases all set to 0.
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Algebraic decay?

Figure: Log-log plot for the decay of the order parameter Z(t). Each
curve is the average of 750 numerical integrations of Eq. (1) for

N = 5000 oscillators starting from the in-phase state (6; = 0 for all j)
and run for 1000 steps with a step size of 0.01. Solid curves show
coupled systems with J = 10; dashed curves show uncoupled systems
with J = 0 for which the order parameter decays exponentially:

Z(t) = e~*. Simulation ran in the low-rank regime: K < log,(N). For
K =2, Z(t) decays exponentially down to the noise floor. Exponential
decay is expected in this regime because the dynamics of Eq. (1) are well
approximated by the low-dimensional system (4).
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Algebraic decay?

Figure: Log-log plot for the decay of the order parameter Z(t). Each
curve is the average of 750 numerical integrations of Eq. (1) for

N = 5000 oscillators starting from the in-phase state (6; = 0 for all j)
and run for 1000 steps with a step size of 0.01. Solid curves show
coupled systems with J = 10; dashed curves show uncoupled systems
with J = 0 for which the order parameter decays exponentially:

Z(t) = e~ . (a) Low-rank regime: K < log,(N). For K =2, Z(t)
decays exponentially down to the noise floor. Exponential decay is
expected in this regime because the dynamics of Eq. (1) are well
approximated by the low-dimensional system (4). (b) High-rank regime:
K = N =5000. When K = O(N) and J > J, the relaxation of Z slows
markedly, resembling the algebraic decay in glass.
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Algebraic decay?

Figure: Log-log plot for the decay of the order parameter Z(t). Each
curve is the average of 750 numerical integrations of Eq. (1) for

N = 5000 oscillators starting from the in-phase state (6; = 0 for all j)
and run for 1000 steps with a step size of 0.01. Solid curves show
coupled systems with J = 10; dashed curves show uncoupled systems
with J = 0 for which the order parameter decays exponentially:

Z(t) = e~ . (a) Low-rank regime: K < log,(N). For K =2, Z(t)
decays exponentially down to the noise floor. Exponential decay is
expected in this regime because the dynamics of Eq. (1) are well
approximated by the low-dimensional system (4). (b) High-rank regime:
K = N =5000. When K = O(N) and J > J, the relaxation of Z slows
markedly, resembling the algebraic decay in glass.
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