The Generalized Kuramoto Model: Odd Dimensions are Different; Even Dimensions are Deceptively Similar

Sarthak Chandra, Michelle Girvan, Edward Ott University of Maryland, College Park

Presented at: SIAM DS19, 21st May 2019

Introduction

- The Kuramoto model is quite well known with several applications
- Our generalization is primarily motivated by:
 - Description of alignment of directions in two dimensions, hence used for alignment of herds of animals on a plane
 - XY model of interacting spins with frozen-in noise
- How do you describe higher-dimensional analogues of these problems?

2D Kuramoto Model: Equations

$$\partial_t \theta_i = \frac{K}{N} \sum_{j=1}^N \sin(\theta_j - \theta_i) + \omega_i$$

- θ_i represents the phase of each oscillator, representing a twodimensional unit vector as a point on a circle
- ω_i represents the natural frequency of each oscillator
- *K* is the coupling strength

2D Kuramoto Model: Equations

$$\partial_t \theta_i = \frac{K}{N} \sum_{j=1}^N \sin(\theta_j - \theta_i) + \omega_i$$

$$\omega_i \text{s chosen according to a distribution } g(\omega)$$

2D Kuramoto Model: Equations

$$\partial_t \theta_i = \frac{K}{N} \sum_{j=1}^N \sin(\theta_j - \theta_i) + \omega_i$$

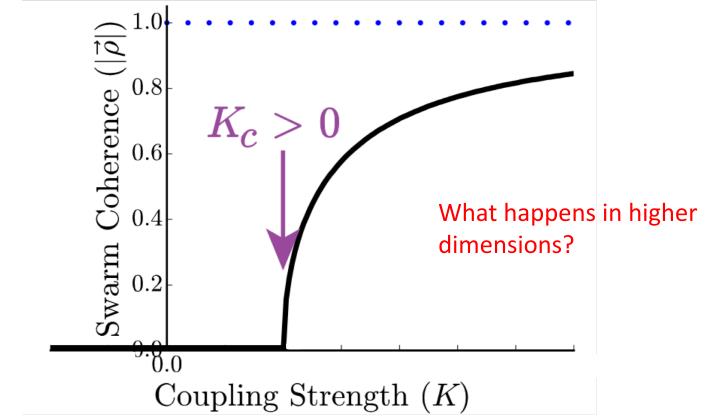
Can define an "order parameter", ho

$$\rho = \frac{1}{N} \sum_{j=1}^{N} e^{\iota \theta_j} = r e^{\iota \psi}$$

$$\partial_t \theta_i = Kr \sin(\psi - \theta_i) + \omega_i$$

		θ_j
(ρ	
		•
		5

2D Kuramoto Model: Phase Transition



How do we generalize the Kuramoto Model?

$$\partial_t \overrightarrow{\sigma_i} = \frac{K}{N} \sum_{j=1}^{N} \left(\overrightarrow{\sigma_j} - \left(\overrightarrow{\sigma_j} \cdot \overrightarrow{\sigma_i} \right) \overrightarrow{\sigma_i} \right) + W_i \overrightarrow{\sigma_i}$$

$$|\overrightarrow{\sigma_i}(t)| = 1$$

 $W_i = -W_i^T$

- $\overrightarrow{\sigma_i}$ is a unit vector in *D* dimensions representing the state of each agent
- W_i represents the natural rotation of each agent

Olfati-Saber, IEEE (2006); Zhu, Phys. Lett. A (2013)

How do we generalize the Kuramoto Model?

$$\partial_t \overrightarrow{\sigma_i} = \frac{K}{N} \sum_{j=1}^{N} \left(\overrightarrow{\sigma_j} - \left(\overrightarrow{\sigma_j} \cdot \overrightarrow{\sigma_i} \right) \overrightarrow{\sigma_i} \right) + W_i \overrightarrow{\sigma_i}$$

$$|\overrightarrow{\sigma_i}(t)| = 1$$

 $W_i = -W_i^T$

• In 2 dimensions, if we set

$$\overrightarrow{\sigma_i} = \begin{pmatrix} \cos \theta_i \\ \sin \theta_i \end{pmatrix} \quad \text{and} \quad W_i = \begin{pmatrix} 0 & \omega_i \\ -\omega_i & 0 \end{pmatrix}$$

then this reduces to the Kuramoto model as earlier

Olfati-Saber, IEEE (2006); Zhu, Phys. Lett. A (2013)

Generalized Kuramoto Model: D = 3

$$\partial_t \overrightarrow{\sigma_i} = \frac{K}{N} \sum_{j=1}^{N} \left(\overrightarrow{\sigma_j} - \left(\overrightarrow{\sigma_j} \cdot \overrightarrow{\sigma_i} \right) \overrightarrow{\sigma_i} \right) + \underbrace{W_i \overrightarrow{\sigma_i}}_{\overrightarrow{\omega_i} \times \overrightarrow{\sigma_i}}$$

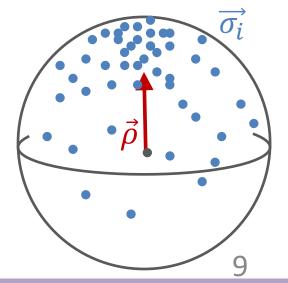
$$|\overrightarrow{\sigma_i}(t)| = 1$$

 $W_i = -W_i^T$

Can define an order parameter, $\vec{\rho}$ as earlier

$$\vec{\rho} = \frac{1}{N} \sum_{i=1}^{N} \vec{\sigma_i}$$

$$\partial_t \overrightarrow{\sigma_i} = K[\overrightarrow{\rho} - (\overrightarrow{\rho} \cdot \overrightarrow{\sigma_i})\overrightarrow{\sigma_i}] + \overrightarrow{\omega_i} \times \overrightarrow{\sigma_i}$$



Generalized Kuramoto Model: D = 3

$$\partial_t \overrightarrow{\sigma_i} = \frac{K}{N} \sum_{j=1}^{N} \left(\overrightarrow{\sigma_j} - \left(\overrightarrow{\sigma_j} \cdot \overrightarrow{\sigma_i} \right) \overrightarrow{\sigma_i} \right) + \underbrace{W_i \overrightarrow{\sigma_i}}_{\overrightarrow{\omega_i} \times \overrightarrow{\sigma_i}}$$

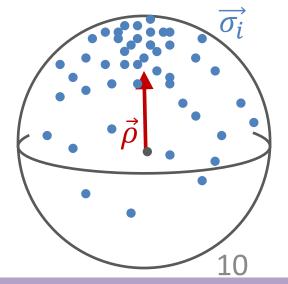
$$|\overrightarrow{\sigma_i}(t)| = 1$$

 $W_i = -W_i^T$

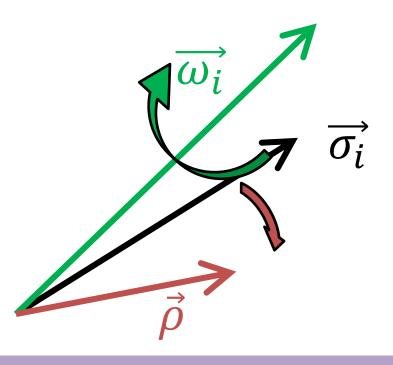
Can define an order parameter, $\vec{\rho}$ as earlier

$$\vec{\rho} = \frac{1}{N} \sum_{i=1}^{N} \vec{\sigma_i}$$

$$\partial_t \overrightarrow{\sigma_i} = K[\overrightarrow{\rho} - (\overrightarrow{\rho} \cdot \overrightarrow{\sigma_i})\overrightarrow{\sigma_i}] + \overrightarrow{\omega_i} \times \overrightarrow{\sigma_i}$$



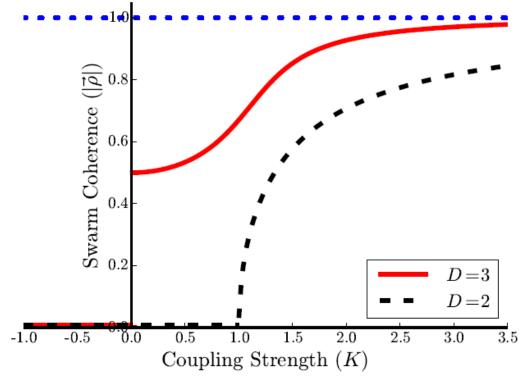
Generalized Kuramoto Model: D = 3 $\partial_t \vec{\sigma_i} = K[\vec{\rho} - (\vec{\rho} \cdot \vec{\sigma_i})\vec{\sigma_i}] + \vec{\omega_i} \times \vec{\sigma_i}$ Generalized Kuramoto Model: D = 3 $\partial_t \vec{\sigma_i} = K[\vec{\rho} - (\vec{\rho} \cdot \vec{\sigma_i})\vec{\sigma_i}] + \vec{\omega_i} \times \vec{\sigma_i}$



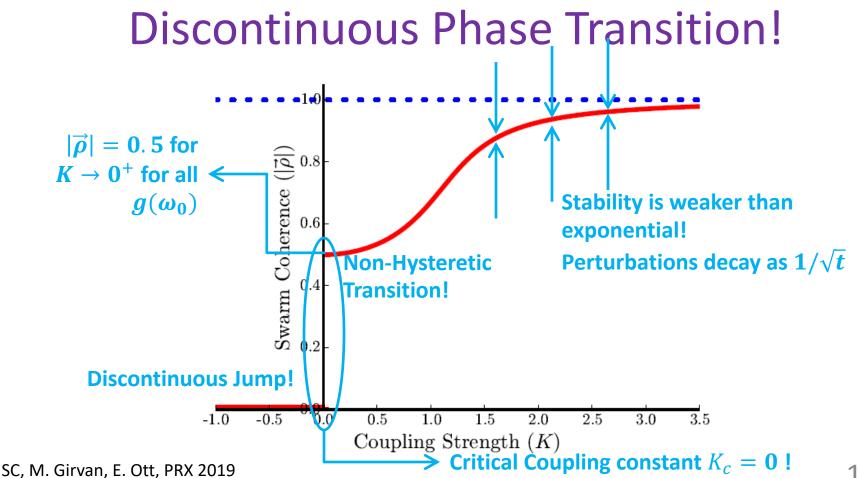
Distribution of Rotations

- Assume that the natural rotations $\overrightarrow{\omega_i}$ are sampled from a distribution $G(\overrightarrow{\omega})$
- Cannot shift the mean of $G(\vec{\omega})$ like in the case of D = 2
- We consider $G(\vec{\omega})$ such that $G(\vec{\omega}) = g(\omega_0)U[\widehat{\omega}] \qquad (\vec{\omega} = \omega_0\widehat{\omega})$ where $U[\widehat{\omega}]$ is the uniform distribution on the sphere, and $g(\omega_0)$ is a unimodal distribution

Discontinuous Phase Transition!

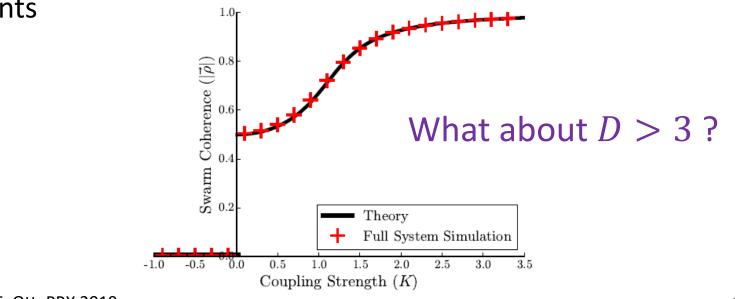


SC, M. Girvan, E. Ott, PRX 2019



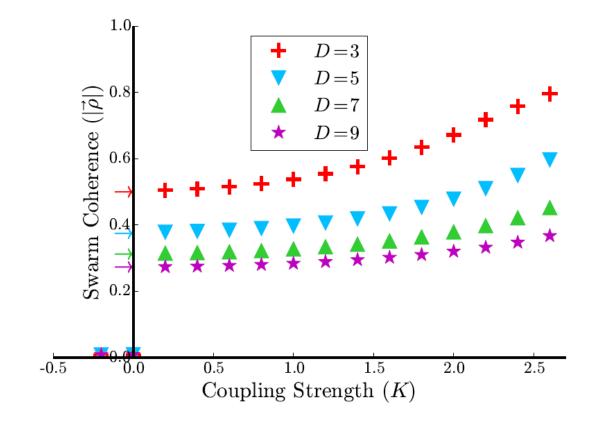
Theory Predicts Numerical Results Well

We can derive a theory for the magnitude of coherence as a function of K based on arguments of fixed points for the agents

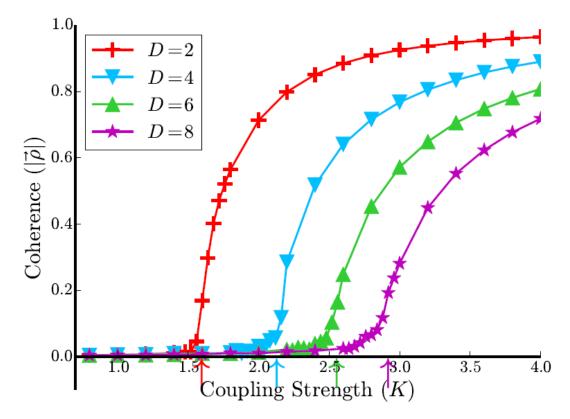


SC, M. Girvan, E. Ott, PRX 2019

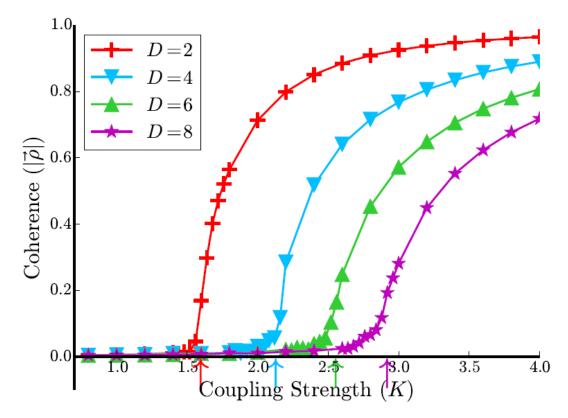
Discontinuities are Characteristic of Odd D



Even D appear similar to D = 2



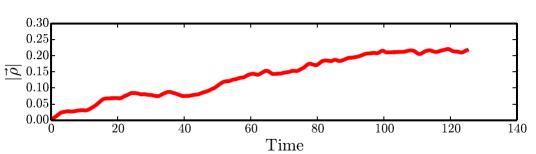
Even D <u>appear</u> similar to D = 2

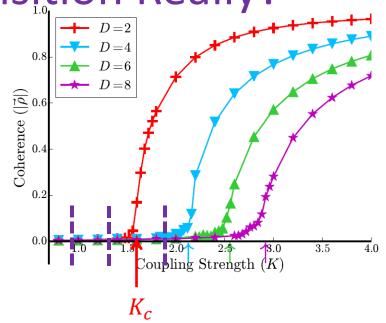


What is a Phase Transition Really?

D = 2

- Initialize a $|\vec{\rho}| = 0$ state with uniformly random $\vec{\sigma_i}$ on sphere
- Evolve system with a given K and note the final equilibrium value of $|\vec{\rho}|$

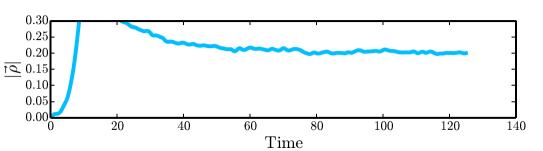


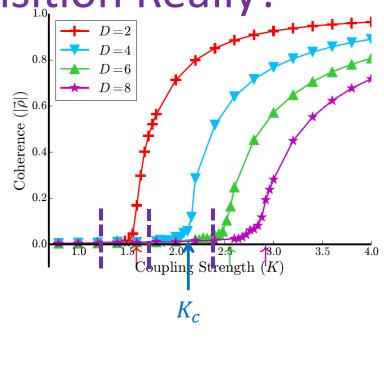


What is a Phase Transition Really?

D = 4

- Initialize a $|\vec{\rho}| = 0$ state with uniformly random $\vec{\sigma_i}$ on sphere
- Evolve system with a given K and note the <u>final equilibrium value</u> of $|\vec{\rho}|$



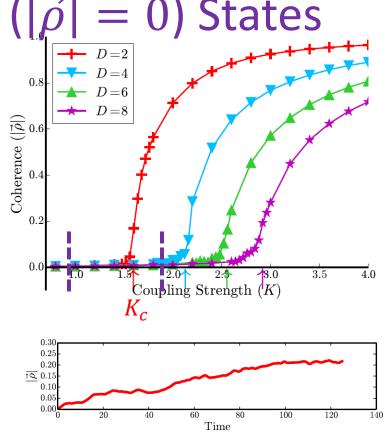


So what's going on?

21

The Tale of Incoherent ($|\vec{\rho}| = 0$) States

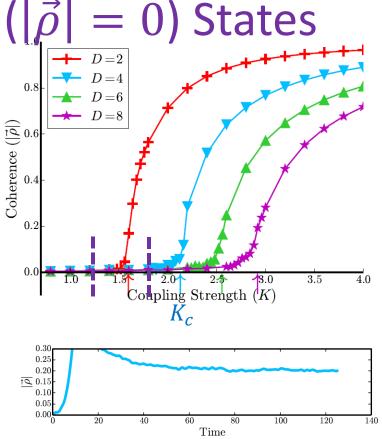
- $\ln D = 2$,
 - For $K < \frac{K_c}{c}$ single stable $|\vec{\rho}| = 0$ state
 - $|\vec{\rho}| = 0$ state loses stability at K_c
 - Stable $|\vec{\rho}| > 0$ state only for $K > K_c$



22

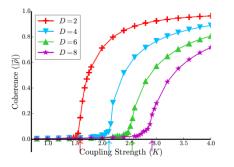
The Tale of Incoherent ($|\vec{\rho}| = 0$) States

- In D = 2,
 - For $K < \frac{K_c}{K_c}$ single stable $|\vec{\rho}| = 0$ state
 - $|\vec{\rho}| = 0$ state loses stability at K_c
 - Stable $|\vec{\rho}| > 0$ state only for $K > K_c$
- In even D > 2,
 - For $K < K_c$ multiple $|\vec{\rho}| = 0$ states
 - Each loses stability at different $K < K_c$
 - When a state loses it's stability the system is pushed away from $|\vec{\rho}| = 0$, only to fall back to *another* $|\vec{\rho}| = 0$ state which is stable for that *K*
 - All of them lose stability by K_c
 - Stable $|\vec{\rho}| > 0$ state only for $K > K_c$



The Tale of Incoherent States: Summary

- In even dimensions larger than D = 2 there are multiple (an infinite number!) stable incoherent ($|\vec{\rho}| = 0$) states
- Despite remaining in the regime $K < K_c$ there are multiple transitions among incoherent states which leave *signatures in* <u>transient dynamics</u>
- After transition, the new incoherent state is stable for the given value of K
- Macroscopic phase transition to coherent state ($|\vec{\rho}| > 0$) occurs at K_c



SC, E. Ott, Chaos 2019

Infinite Size Limit?

Infinite Size Limit?

$$\partial_t \overrightarrow{\sigma_i} = \frac{K}{N} \sum_{j=1}^{N} \left(\overrightarrow{\sigma_j} - \left(\overrightarrow{\sigma_j} \cdot \overrightarrow{\sigma_i} \right) \overrightarrow{\sigma_i} \right) + W_i \overrightarrow{\sigma_i}$$

- Most cases of interest have $N \gg 1$
- Methods to analyze the system?
- Assume that the agents can be represented by a distribution $f(\vec{\sigma}, W, t)$
- Represent dynamics of individual agents as flow of this distribution

$$\frac{\partial f}{\partial t} + \nabla_{S} \cdot (f(\vec{\sigma}, \boldsymbol{W}, t)\partial_{t}\vec{\sigma}) = 0$$

Ott-Antonsen Ansatz

- Ott & Antonsen (2008) derived a method to analyze the *twodimensional* Kuramoto model in the infinite size limit
- We use a generalization of their method to arbitrary dimensions

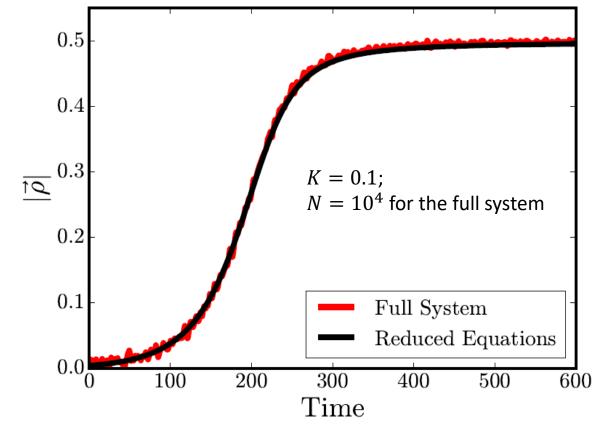
Generalized Ott-Antonsen Ansatz $\frac{\partial f}{\partial t} + \nabla_{S} \cdot (f(\vec{\sigma}, W, t)\partial_{t}\vec{\sigma}) = 0$

Assume the following form for $f(\vec{\sigma}, W, t)$

$$f(\vec{\sigma}, W, t) = C_D \frac{(1 - |\vec{\alpha}(W, t)|^2)^{D-1}}{|\vec{\sigma} - \vec{\alpha}(W, t)|^{2(D-1)}}$$

- The assumed form is shown to describe an invariant manifold, which is numerically found to be attracting
- Obtain a reduced set of equations for $\vec{\alpha}(W, t)$

Reduced Equations Fit Numerics Well

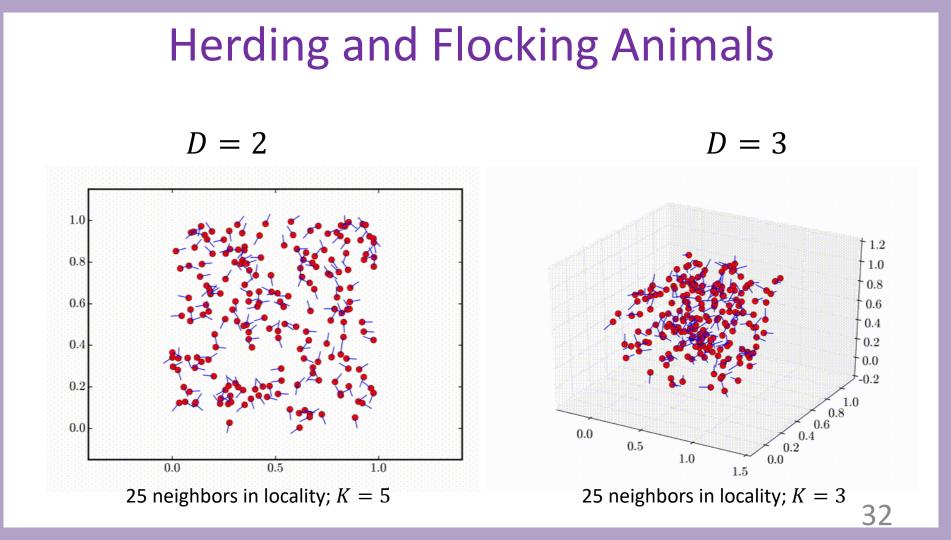


Generalized Ott-Antonsen Ansatz

- What else does the Generalized Ott-Antonsen Ansatz apply to?
 - Communities of interacting agents
 - Network based coupling
 - Generalizations of related models (e.g., Kuramoto-Sakaguchi model, time-delayed Kuramoto model, etc.)
 - Very large class of problems involving interacting agents in *D* dimensions

Do These Results Actually Apply Anywhere?

- We have unexpected results, but do they hold closer to application?
- Let's take a brief look at the collective behavior of animals:
 - Agents move in the direction of their $\overrightarrow{\sigma_i}$
 - Coupling is only local



Herding and Flocking Animals

Still continue to see different behavior in

odd and even dimensions!

D = 2

0.6r 0.9rad=99* * * * * * 0.80.5rad=1490.7rad=199Coherence $(|\vec{\rho}|)$ 0.3 0.5 Coherence $(\begin{vmatrix} \overline{\rho} \\ \rho \end{vmatrix})$ 0.5 0.4 0.3 \bigstar rad=249 0.3 \star \star rad=2 \star rad=4 \star rad=9 0.2 \star \star rad=19 0.10.1 \bigstar \bigstar rad=49 0.0 L 0.5 -0.20.2 0.4 0.8 0.00.6 1.02.02.51.01.5Coupling Strength (K)Coupling Strength (K)

(rad indicates the number of neighbors used for locality)

D = 3

Conclusions

- The Kuramoto model shows remarkably different behavior in different dimensions
- The Kuramoto model in **odd dimensions** shows a discontinuous, non-hysteretic phase transition at a critical coupling $K_c = 0$
- The Kuramoto model in **even dimensions** <u>appears</u> to demonstrate similar behavior to the standard Kuramoto model; However, it has remarkably rich dynamics hidden in it's *transient* dynamics
- Ott-Antonsen methods generalize to higher dimensions
- The Generalized Kuramoto model gives good intuition for systems with additional complexities

References

- Reza Olfati-Saber. "Swarms on sphere: A programmable swarm with synchronous • behaviors like oscillator networks." Decision and Control, 2006 45th IEEE Conference on. IEEE, 2006.
- Jiandong Zhu. "Synchronization of Kuramoto model in a high-dimensional linear space." Physics Letters A 377.41 (2013): 2939-2943.
- Edward Ott; and Thomas M. Antonsen. "Low dimensional behavior of large systems of globally coupled oscillators." Chaos: An Interdisciplinary Journal of Nonlinear Science 18.3 (2008): 037113.
- Sarthak Chandra; Michelle Girvan; and Edward Ott. "Continuous versus discontinuous transitions in the D-dimensional generalized Kuramoto model: Odd D is different." Physical Review X 9.1 (2019): 011002.
- Sarthak Chandra; Michelle Girvan; and Edward Ott. "Complexity reduction ansatz for • systems of interacting orientable agents: Beyond the Kuramoto model." Chaos: An Interdisciplinary Journal of Nonlinear Science 29.5 (2019): 053107.
- Sarthak Chandra; and Edward Ott. "Observing microscopic transitions from macroscopic • bursts: Instability-mediated resetting in the incoherent regime of the D-dimensional generalized Kuramoto model." Chaos: An Interdisciplinary Journal of Nonlinear Science 29.3 (2019): 033124.