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Introduction

* The Kuramoto model is quite well known with several applications

* QOur generalization is primarily motivated by:

— Description of alignment of directions in two dimensions, hence used for
alignment of herds of animals on a plane

— XY model of interacting spins with frozen-in noise

* How do you describe higher-dimensional analogues of these problems?



2D Kuramoto Model: Equations
N

K
BtHi — Nz Sln(H] — Hl) + Wi

j=1

* 0, represents the phase of each oscillator, representing a two-
dimensional unit vector as a point on a circle

* w; represents the natural frequency of each oscillator
K is the coupling strength



2D Kuramoto Model: Equations

N

6t9i = %z Sln(ej — Hl) + Wi
j=1

g(@)

w;s chosen according

to a distribution g(w)




2D Kuramoto Model: Equations

N

K
0t9i = Nz Sln(ej — Hl) + Wi

j=1

Can define an “order parameter”, p

L&

_ 6, _ 0y

p = Ee‘f—re
Nj=1

0.0; = Kr sin(yp — 6;) + w;




2D Kuramoto Model: Phase Transition
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What happens in higher
dimensions?
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How do we generalize the Kuramoto Model?

N —>
K

0r0; == ) (o — (07 - 07)a;) + Wo; T
N L W, =-W,;
]:

* 0; is a unit vector in D dimensions representing the state of
each agent

W represents the natural rotation of each agent

Olfati-Saber, IEEE (2006); Zhu, Phys. Lett. A (2013) 7



How do we generalize the Kuramoto Model?

N —>
K

0i0; = — ) (07 — (07 - 07)0;) + Wio; e T
N L W, =W,
]:

* In 2 dimensions, if we set

_, _(cosb; _( 0 wi)
or= (sin Hl-) and Wi = —w; 0

then this reduces to the Kuramoto model as earlier

Olfati-Saber, IEEE (2006); Zhu, Phys. Lett. A (2013) S



Generalized Kuramoto Model: D = 3

Can define an order parameter, p as earlier
N
, 1 z_,
= — O;:
p N . l
=1

0t0; = K[p — (p - 0)0i] + w;Xg;




Generalized Kuramoto Model: D = 3

Can define an order parameter, p as earlier
N
, 1 z_,
= — O;:
p N . l
=1

0t0; = K[p — (p - 0)0i] + w;Xg;




Generalized Kuramoto Model: D = 3

0t0; = K[p — (p - 07)0i] + w;Xg;




Generalized Kuramoto Model: D = 3

0t0; = K[p — (p - 07)0i] + wiXg;




Distribution of Rotations

« Assume that the natural rotations w; are sampled from a
distribution G (w)

 Cannot shift the mean of G (w) like in the case of D = 2

« We consider G(w) such that B
G(@) = glwU[@] (W = wod)
where U|@] is the uniform distribution on the sphere, and
g(wy) is a unimodal distribution

13



Discontinuous Phase Transition!
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Discontinuous Phase Transition!

ceescaldeencncscacaaantae

|p| = 0.5 for
K — 071 for all €«—

g(wy)
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Discontinuous Jump!
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Stability is weaker than
exponential!

on-Hysteretic Perturbations decay as 1/+/t

" |Transition!
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> Critical Coupling constant K. = 0! 15



Theory Predicts Numerical Results Well

 We can derive a theory for the magnitude of coherence as a
function of K based on arguments of fixed points for the
agents Log
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What about D > 3°?

1N
I
T

j—
=
(]
[&]
=]
[]
-
(]
<=
C
@)
]
=
w2

°
o

— Theory
<+ Full System Simulation

-0 -05 '8.0 0.5 1.0 L5 2.0 2.5 3.0 3.5

Coupling Strength (K)

SC, M. Girvan, E. Ott, PRX 2019



+ » <«
+ > «x
+ > «x

+ > «4x

+ > <%

+ > <
I N
QQAQAQ|+ P&
+ >«
+ >«
+ > <
+ >
+ >

_ _ _ _ <
T T T
(|¢]) eousieyoy) wremg

S

15

10

+ > 4 x

0.5
Coupling Strength (K)

-
O
O
@
G
O
O
o
Vg
o
Q
)
o
(O
S
(qo]
-
@
Q
| -
(q0]
n
Q
=
>
-
=
-
O
O
2
QO




Even D appear similarto D = 2
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Even D appear similarto D = 2
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What is a Phase Transit
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* Initialize a |p| = 0 state with
uniformly random @; on sphere
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What is a Phase Transition Really?

Initialize a |p| = 0 state with
uniformly random @; on sphere
Evolve system with a given K and

note the final equilibrium value of
10|
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So what’s going on?
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The Tale of Incoherent (|p| = 0) States
 InD =2,

— For K < K, single stable [p] = 0
state

— |p| = 0 state loses stability at K.

— Stable |p| > 0 state only for K > K.
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The Tale of Incoherent (|p| = 0) States
InD = 2,
— For K < K_ single stable |p| = 0
state
— |p| = 0 state loses stability at K.
— Stable |p| > 0 state only for K > K.

Ineven D > 2,
For K < K. multiple |g| = 0 states
Each loses stability at different K < K,

. . 2. 2: :0
When a state loses it’s stability the system is obpling Strength EFK)
pushed away from |g| = 0, only to fall back K¢
to another |p| = 0 state which is stable for

that K i SN—
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All of them lose stability by K.
Stable |p| > 0 state only for K > K,




The Tale of Incoherent States: Summary

* In even dimensions larger than D = 2 there are multiple (an infinite
number!) stable incoherent (|p| = 0) states

* Despite remaining in the regime K < K, there are multiple transitions
among incoherent states which leave signatures in transient dynamics

» After transition, the new incoherent state is stable for the given value of K
» Macroscopic phase transition to coherent state (|p| > 0) occurs at K.

e (|7])
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Infinite Size Limit?




Infinite Size Limit?

N

— K — > > > —
atO'i = NE(O'] — (O'] . O'l')O'i) + Wio-i
j=1

Most cases of interest have N > 1

Methods to analyze the system?

Assume that the agents can be represented by a distribution f (g, W, t)
Represent dynamics of individual agents as flow of this distribution

aa—];+ Vs (F(G,W,1)9,6) =0



Ott-Antonsen Ansatz

 Ott & Antonsen (2008) derived a method to analyze the two-
dimensional Kuramoto model in the infinite size limit

* We use a generalization of their method to arbitrary
dimensions

E. Ott, T.M. Antonsen Chaos 2008



Generalized Ott-Antonsen Ansatz
% + Vs (f(3,W,1)0,6) =0

Assume the following form for f (g, W, t)

, (1—law, )%

* The assumed form is shown to describe an invariant manifold,
which is numerically found to be attracting

 Obtain a reduced set of equations for a (W, t)

SC, M. Girvan, E. Ott, Chaos 2019 28



Reduced Equations Fit Numerics Well
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Generalized Ott-Antonsen Ansatz

* What else does the Generalized Ott-Antonsen Ansatz apply

to?

Communities of interacting agents
Network based coupling

Generalizations of related models (e.g., Kuramoto-Sakaguchi model,
time-delayed Kuramoto model, etc.)

Very large class of problems involving interacting agents in D
dimensions

SC, M. Girvan, E. Ott, Chaos 2019 30



Do These Results Actually Apply Anywhere?

* We have unexpected results, but do they hold closer to
application?
e Let’s take a brief look at the collective behavior of animals:

— Agents move in the direction of their o;
— Coupling is only local




Herding and Flocking Animals

25 neighbors in locality; K = 5 25 neighbors in locality; K = 3




Herding and Flocking Animals

Still continue to see different behavior in
odd and even dimensions! D=3
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Conclusions

The Kuramoto model shows remarkably different behavior in
different dimensions

The Kuramoto model in odd dimensions shows a discontinuous,
non-hysteretic phase transition at a critical coupling K. = 0

The Kuramoto model in even dimensions appears to demonstrate
similar behavior to the standard Kuramoto model; However, it has
remarkably rich dynamics hidden in it’s transient dynamics

Ott-Antonsen methods generalize to higher dimensions

The Generalized Kuramoto model gives good intuition for systems
with additional complexities
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