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Introduction
• The Kuramoto model is quite well known with several applica8ons
• Our generaliza8on is primarily mo8vated by:

– Descrip8on of alignment of direc8ons in two dimensions, hence used for 
alignment of herds of animals on a plane

– XY model of interac8ng spins with frozen-in noise
• How do you describe higher-dimensional analogues of these problems?
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2D Kuramoto Model: Equations

• !" represents the phase of each oscillator, representing a two-
dimensional unit vector as a point on a circle

• #" represents the natural frequency of each oscillator
• $ is the coupling strength
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2D Kuramoto Model: Equations
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4$s chosen according 
to a distribution 5(4)
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2D Kuramoto Model: Equa2ons
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2D Kuramoto Model: Phase Transi6on
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What happens in higher 
dimensions?



How do we generalize the Kuramoto Model?

7Olfati-Saber, IEEE (2006);   Zhu, Phys. Lett. A (2013)

• !" is a unit vector in # dimensions representing the state of 

each agent

• $"represents the natural rotation of each agent
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How do we generalize the Kuramoto Model?

8Olfa8-Saber, IEEE (2006);   Zhu, Phys. LeK. A (2013)

• In 2 dimensions, if we set

then this reduces to the Kuramoto model as earlier
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Generalized Kuramoto Model: ! = 3
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Can define an order parameter, ;⃗ as earlier
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Generalized Kuramoto Model: ! = 3
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Generalized Kuramoto Model: ! = 3
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Generalized Kuramoto Model: ! = 3
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Distribution of Rotations
• Assume that the natural rota3ons !" are sampled from a 

distribu3on #(!)
• Cannot shi7 the mean of #(!) like in the case of & = 2

• We consider #(!) such that
# ! = ) !* + ,!

where +[,!] is the uniform distribu3on on the sphere, and 
) !* is a unimodal distribu3on
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Discontinuous Phase Transition!

14SC, M. Girvan, E. Ott, PRX 2019



Discontinuous Phase Transition!
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Discontinuous Jump!

Non-Hysteretic 
Transition!

Critical Coupling constant !" = $ !

% = $. ' for 
( → $* for all 

+(-$) Stability is weaker than 
exponential!
Perturbations decay as // 1

SC, M. Girvan, E. Ott, PRX 2019



Theory Predicts Numerical Results Well
• We can derive a theory for the magnitude of coherence as a 

func9on of ! based on arguments of  fixed points for the 
agents
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What about " > 3 ?

SC, M. Girvan, E. Ott, PRX 2019



Discon'nui'es are Characteris'c of Odd !

17



Even ! appear similar to ! = 2
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Even ! appear similar to ! = 2
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• Initialize a "⃗ = 0 state with 
uniformly random %& on sphere

• Evolve system with a given ' and 
note the final equilibrium value of 
|"⃗|

What is a Phase Transition Really?

20
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• Initialize a "⃗ = 0 state with 
uniformly random %& on sphere

• Evolve system with a given ' and 
note the final equilibrium value of 
|"⃗|

What is a Phase Transi=on Really?
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) = 4

So what’s going on?
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The Tale of Incoherent ( "⃗ = 0) States
• In % = 2,

– For ' < ') single stable "⃗ = 0
state

– "⃗ = 0 state loses stability at ')
– Stable "⃗ > 0 state only for ' > ')

• In even % > 2,
– For ' < ') multiple incoherent states
– Each loses stability at different '
– When a state loses it’s stability before ') the 

system is pushed away from the "⃗ = 0
state, only to fall back to another incoherent 
state

– All of them lose stability by ')
– Stable coherent state only for ' > ')
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The Tale of Incoherent ( "⃗ = 0) States
• In % = 2,

– For ' < ') single stable "⃗ = 0
state

– "⃗ = 0 state loses stability at ')
– Stable "⃗ > 0 state only for ' > ')

• In even % > 2,
– For ' < ') multiple "⃗ = 0 states
– Each loses stability at different ' < ')
– When a state loses it’s stability the system is 

pushed away from "⃗ = 0, only to fall back 
to another "⃗ = 0 state which is stable for 
that '

– All of them lose stability by ')
– Stable "⃗ > 0 state only for ' > ')
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The Tale of Incoherent States: Summary
• In even dimensions larger than ! = 2 there are multiple (an infinite 

number!) stable incoherent ( %⃗ = 0) states
• Despite remaining in the regime ' < ') there are multiple transitions 

among incoherent states which leave signatures in transient dynamics
• After transition, the new incoherent state is stable for the given value of '
• Macroscopic phase transition to coherent state ( %⃗ > 0) occurs at ')

24SC, E. Ott, Chaos 2019



Infinite Size Limit?
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Infinite Size Limit?

• Most cases of interest have ! ≫ 1
• Methods to analyze the system?
• Assume that the agents can be represented by a distribution $('⃗,), *)
• Represent dynamics of individual agents as flow of this distribution
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Ott-Antonsen Ansatz
• Ott & Antonsen (2008) derived a method to analyze the two-

dimensional Kuramoto model in the infinite size limit
• We use a generalization of their method to arbitrary 

dimensions

27E. Ott, T.M. Antonsen Chaos 2008



Generalized Ott-Antonsen Ansatz

• The assumed form is shown to describe an invariant manifold, 
which is numerically found to be attracting

• Obtain a reduced set of equations for "⃗($, &)
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()
(& + +, ⋅ ) .⃗,$, & (/.⃗ = 0

Assume the following form for ) .⃗,$, &

) .⃗,$, & = 23
(1 − |"⃗($, &)|7)389
|.⃗ − "⃗($, &)|7(389)

SC, M. Girvan, E. OE, Chaos 2019



Reduced Equations Fit Numerics Well

29

! = 0.1;
& = 10' for the full system



Generalized Ott-Antonsen Ansatz
• What else does the Generalized Ott-Antonsen Ansatz apply 

to?
– Communities of interacting agents
– Network based coupling
– Generalizations of related models (e.g., Kuramoto-Sakaguchi model, 

time-delayed Kuramoto model, etc.)

– Very large class of problems involving interacting agents in !
dimensions

30SC, M. Girvan, E. OL, Chaos 2019



Do These Results Actually Apply Anywhere?

• We have unexpected results, but do they hold closer to 
application?

• Let’s take a brief look at the collective behavior of animals:
– Agents move in the direction of their !"
– Coupling is only local
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Herding and Flocking Animals

32

! = 2 ! = 3

25 neighbors in locality; % = 325 neighbors in locality; % = 5



Herding and Flocking Animals
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! = 2 ! = 3

(rad indicates the number of neighbors used for locality)

Still continue to see different behavior in 
odd and even dimensions!



Conclusions
• The Kuramoto model shows remarkably different behavior in 

different dimensions
• The Kuramoto model in odd dimensions shows a discontinuous, 

non-hysteretic phase transition at a critical coupling !" = 0
• The Kuramoto model in even dimensions appears to demonstrate 

similar behavior to the standard Kuramoto model; However, it has 
remarkably rich dynamics hidden in it’s transient dynamics

• Ott-Antonsen methods generalize to higher dimensions 
• The Generalized Kuramoto model gives good intuition for systems 

with additional complexities
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