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Introduction

o Understanding the mechanisms behind
plant invasion is important.

@ Invasion patterns depend on many

factors, e.g. scale, dispersal Figure: Mikania Micrantha
mechanlsm, environment, etc.

@ Motivation: How does dispersal
mechanisms affect the advance of a
species, and an ecotone, on an
environmental gradient?
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Invasive Species

US. Fish & Wildiife Service

@ An aquatic invasive plant, Eurasian The Cost of Invasive Species

watermilfoil, reduced Vermont lakeside

property values by 16% and Wisconsin - -
lakeside property by 13%. SENpers EESeuee  gEmeamnh
L
o Salt Cedar, an invasive tree, costs the iﬁimm: .
Western states $420-2,800 annual per SRR e
2.5 acres in water loss, as well as flood LT L A

control losses.

@ Annually, non-native species borne in
the ballast or the hulls of ships cost the
Great Lakes Regions $ 200 million to
control.
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Models for Invasion

o Classical Reaction Diffusion: vz = Au+ f(u)
o Logistic: f(u) = u(1l — u).
o Allee Effect: f(u) = u(1 — u)(1—6).

@ Position-Jump Process:

e = / T(x.y)uly. t) dy— / T(y, %)u(x, t) dy+F(u).

o J(x,y) probability that a particle in y will
jump to x.

@ Invasion: Solutions of the form U(x — ct)
that satisfy the ODE:

—cU' =U"+f(U)
{ U(—o0) =1 and U(+0o0) = 0.
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Birth-jump Process

@ Process where reproduction and dispersal are inextricably linked:

e Ovarian cancer (T. Hillen, H. Enderling, P. Hahnfeld 13")
o Spread of wildfires (T. Hillen, B. Greese, J. Martin, G. de Vries 15")
e Plant dynamics (N. Rodriguez and G. Malanson)
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Uf(X7 t) = /]Rz S(XaY)ﬁ(u(y7 t),y)g(U(X, t),X)U(y, t) dy 75(“()(’ t),X)U(X, t)7

Birth-jump process
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Individual Based Model

@ Notation
o R?: a lattice with X; = (i€, j¢) with i,j € {0,£1,+2,...,£n,... }.

o Discretize time into periods of §t time.

o Let njj(t) be the number of plants at location Xj;:

# of plants at time t 4 Jt = arriving seeds that germinate
— dying plants from time t.

@ Ignore time-delay.
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Individual Based Model

Proliferation: production of seeds that end in location X and germinate.

Let pg(y) be probability that a plant at location y will produce a seed during the
period (t,t + dt).

@ Let sy be the relocation probabilities: the probability that a seed from a plant at
location ¥ will land in location X.

Let pg(X) be the probability that a seed at location X will germinate.
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Individual Based Model

@ Proliferation term at Xj:

D" pa(Km)Pe (%) 55,5 Mhm(t).
k=—o00 m=—oc0o
@ Survival term:
(1 = ps)ni(t),

o Final equation:

ni(t+6t) = ng(£) =Y > Pp(Xim)Pg(%5) 5,5 tem(t) — Ps (%) ni(£)-

k=—0c0 m=—o0
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Proliferation, Germination Probabilities, and Relocation Kernel

@ Assume a Poisson process for proliferation, germination, and decay:
pa(%y) = 1 — e PG,
@ Remark: density-dependence.

@ Relocation Kernel:
e Wind

o Animals

o Gravity

o Dispersal via each method p; with Zizl pk = 1.
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Continuum Derivation

Density:
B u(x, t) = n; /0.

@ Rewrite:

u(x, t +dt) — u(x, t 1 & > R o R
(R0 ) _ L S™ S oS5y )

k=—00 m=—o0

1 o
— Seps(R)u(x, 1)

@ A Taylor series expansion for pg(Xim)pg(Xj) and ps then yields:

w(xt) =S po / Sa(x, ) Buly ), ) etx, £, xYuy, ) cy

—0(u(x, t), x)u(x, t).
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Diffusion Limit (R)

@ Approximate the proliferation term:
[ Sttt 0,580y 1.ty ) dy
@ Let h(y,t) = B(u(y, t),y)u(y, t) and 8 is regular enough:

st y2mCr. ot Dy = e e 0.0 0% ) — )

= g(u(x. 1), 3 ()0 h(x. t)
k=0
oo
k
= g(u(x, t),x) > Me(x)05[B(u(x, t), x)u(x, t)],
k=0
@ Moments 1
k
Mi(x) = = | S y)ly —x)" dy
k! Jr
@ If the moments exist and form an asymptotic sequence one can safely truncate after the first few
moments.
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Symmetric Potential with Finite Second Moment

@ Obtaining:

[ ur =dg(u)(B(u)u(x; 1) + (g(u)B(u) — 8(u))u(x; 1),

where d = Ei:l pnM3 and 22:1 pnMg = 1.

@ Remarks:
o g and (3 appear in both reaction and diffusion
o Asymmetric potentials
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Symmetric Potential with Finite Second Moment

@ Obtaining:

[ ur =dg(u)(B(u)u(x; 1) + (g(u)B(u) — 8(u))u(x; 1),

where d = Ei:l pnM3 and 22:1 pnMg = 1.

@ Remarks:
o g and (3 appear in both reaction and diffusion
o Asymmetric potentials

@ Rewrite equation:

1

ﬁ“t = (D(u)ux)x + f(u),

with

D(u) := B'(u)u+ B(u) and f(u):= (g(u) - %) u
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C" Traveling Wave Solutions

o Non-degenerate case: D(u) > 0.

@ Take as examples:

g(u) = 15 B =y + ), 3(u) = o,

with p,~y > 0.
@ Regularity: for r >0
(H1) D € C7([0,0)), D(z) > 0 for z € [0,1].
(H2) g€ C"([0,00)), g(z) >0 and g'(z) < 0 for z € [0, 1].
(H3) f e ([0, 00)), f/(1) < O.
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Non-degenerate case: C" Traveling Wave Solutions

o Let V = D(U)U’ then rewrite equation system of two ODEs:
’ _ \4
L P, 1)
Vi = —swom — V)

@ Minimum speed:

¢* = 2g(0)1/F/(0)D(0).

There exists traveling wave solutions for all ¢ > c*.

No traveling wave solution exists for ¢ < c*.
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Degenerate Case: Sharp Traveling Wave Solutions

Degenerate: D(0) =0, D(U) > 0,D’(U) > 0 and D"(U) # 0.
o Monostable Case: f/(0) # 0
o Bistable Degenerate Case: f/(0) =0, f”/(0) > 0

Example

1 _
g(u) = g B(u) = pu, 6(u) = fiu,
with 0 < i < p.

@ To maintain a logarithmic-type growth chose § appropriately:
f(u) = o’[u—fi— ] and D(u) = 2uu,

The degeneracy of D(u) leads to our system becoming an ODE when u =0 and a
parabolic PDE for u > 0.
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Sharp Traveling Wave Solutions

Sharp traveling wave: If there exists a value ¢ and z* € R such that U(x — ct) satisfies
the traveling wave equation for all z € (—o0, z*) and

U(—c0) =1, Uz )=U(z"")=0, and U(z) =0 forz e (z*,0);

U'(z'") = —m7 U'(z**)=0, U'(z)<O0forze (z",00), 2)

then U(x — ct) is a traveling wave solution with speed c of the sharp-type.

| e

smoath traveling wave sharp type traveling wave
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Sharp Traveling Wave Solutions

@ Variational formula for speed:

L D(w)h(w)dw

e (U dz

o Existence:
(i) has no traveling wave solutions for speed ¢ < c*.

(ii) has a traveling wave solution U(x — c*t) of the sharp-type satisfying (2).

(iii) for ¢ > c¢* has a strictly monotone continuously differentiable traveling wave solution
U(x — ct) satisfying U(—o0) =1 and U(+o0) = 0.
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Illustration

Solution at various times.

Solution at various times.
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*: Sharp traveling wave.

Figure: ¢ > ¢*: C' traveling wave.
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Idea of Proof

@ Traveling wave solutions satisfy:

DWﬂW+UUMUf+ﬂw+g

e ODE form:

U =yv,
{ D(U)V' = —D'(U)V? — f(U) — =55 V.

o Change of variables:

:fgﬁféﬂ: L
o D(u(s)) = dz  D(u(2))’
to get

{ U =D(U)V,

!l ’ 2 @
V! = —D(U)V? — £(U) — 5 V-
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Idea of Proof

@ System:

U =D(U)V,

N——
F(U,V)
V/ = —D'(U)V* - f(U) — ——— V.
OV - F) -
G(U,V)

o Steady-states are Py := (0,0), P, := (1,0), Pc := (0, —m) .

@ P. depends on the speed ¢

@ Saddle-node bifurcation for c = 0
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Local Analysis

o At Py we have:

0 0
JIF, Glo,0) = / c
—£'(0) —z0
@ Eigenvalues \;1 =0 and X2 = —ﬁ < 0, with respective eigenvectors

(c/g(0), —f'(0))" and (0,1)".

@ Hence Py is a non-hyperbolic equilibrium and we need to do a second-order
approximation of that system.

@ Following the techniques of Andronov et al. to get that P, is a saddle node.

@ P1, P. a saddle point.
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Non-Local Analysis

@ Monotonicity of trajectories
@ Uniqueness of sharp wave speed
@ Non-existence for small speeds

o Existence of a wave for large enough speeds for ¢ > v M with

M := max 4D’ (u)f(u)g*(u).
s€(0,1)

o Existence of a sharp wave for speed c*.
o Monotonicity of trajectory with respect to c.
o The critical speed
c*=inf{c>0:Uc=1,v. <0}.
is well defined and V.« = 0.
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Dispersal Kernels

o Kernel effect: Uniform, Gaussian, and Cauchy.
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Environmental Gradient, Stress Gradient Feedback, Different Kernels
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Discussion

o Fatter tails lead to faster advance.

@ Environmental gradients will slow the advance.

@ Analysis on the nonlocal equation is still at a very infant stage
o Cauchy problem

o Planar traveling wave solutions

o Existence and uniqueness
o Qualitative behavior: asymptotic rates, monotonicity
o Stability
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Thank you to...

o George Malanson
o NSF

@ You all!
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