Plant invasion dynamics: a birth-jump approach

Nancy Rodríguez

SIAM Conference on Applications of Dynamical Systems

イロン イヨン イヨン イヨン

- Understanding the mechanisms behind plant invasion is important.
- Invasion patterns depend on many factors, *e.g.* scale, dispersal mechanism, environment, etc.
- Motivation: How does dispersal mechanisms affect the advance of a species, and an ecotone, on an environmental gradient?

Figure: Mikania Micrantha

- An aquatic invasive plant, Eurasian watermilfoil, reduced Vermont lakeside property values by 16% and Wisconsin lakeside property by 13%.
- Salt Cedar, an invasive tree, costs the Western states \$420-2,800 annual per 2.5 acres in water loss, as well as flood control losses.
- Annually, non-native species borne in the ballast or the hulls of ships cost the Great Lakes Regions \$ 200 million to control.

U.S. Fish & Wildlife Service

More Facts about the Cost of Invasives

- If Failers and quaga massel invado the Columbia River, they could cost hydroslectric facilities alone up to 220-300 million annually. This does not include costs associated with environmential damages or increased operating expenses to hatcheries and water discrimints.
- Annually, the Massachusetta Department of Conservation and Recreation spends \$200,000 on staff, \$50,000 on equipment and \$25,000 on publications related to zebra musued prevention and control. The state will spend an additional \$71,000 over 5 monthu to install new boar many monthers for zebra musues.
- An aquatic invasive plant, Eurasian watermiliful, reduced Venuont lakefront property values up to 16 percent and Wisconsin lakefront property values by 13 percent.
- Prom 2010 to 2020, an invarive forest pathogen (Platoplations renserven), called radden and death, is projected to cost ELA million in true treatment, removal and replacement costs, corresponding to a \$130 million loss in residential property values for California.
- Sub codar (Tomoriok spp.), an invasive tree, costs the western states \$460-2,800 annually per 2.6 acres (1 hoctare) in water loss (matricipal, agricultural and hydropower) as well as flood control losses. Endication and re-vegetation projects are estimated to be \$7,600 per 2.6 acres.
- · Annually, black and Norway rate consume stored grains and destroy other property valued over \$19 billion
- Annually, nonnative species borne in the ballast or hulls of ships cost the Great Lakes Region \$200 million to control.

U.S. agriculture loses \$13 billion annually in crops from invasive insects, such as vine mealybugs.

- Classical Reaction Diffusion: $u_t = \Delta u + f(u)$
 - Logistic: f(u) = u(1 u).
 - Allee Effect: $f(u) = u(1-u)(1-\theta)$.
- Position-Jump Process:

$$u_t = \int \mathcal{J}(x,y)u(y,t) dy - \int \mathcal{J}(y,x)u(x,t) dy + f(u).$$

- J(x, y) probability that a particle in y will jump to x.
- Invasion: Solutions of the form U(x ct) that satisfy the ODE:

$$\begin{cases} -cU' = U'' + f(U) \\ U(-\infty) = 1 \text{ and } U(+\infty) = 0. \end{cases}$$

・ロン ・四 と ・ ヨ と ・ ヨ と …

æ

- Process where reproduction and dispersal are inextricably linked:
 - Ovarian cancer (T. Hillen, H. Enderling, P. Hahnfeld 13')
 - Spread of wildfires (T. Hillen, B. Greese, J. Martin, G. de Vries 15')
 - Plant dynamics (N. Rodríguez and G. Malanson)

э

・ロト ・回ト ・ヨト ・ヨト

- Process where reproduction and dispersal are inextricably linked:
 - Ovarian cancer (T. Hillen, H. Enderling, P. Hahnfeld 13')
 - Spread of wildfires (T. Hillen, B. Greese, J. Martin, G. de Vries 15')
 - Plant dynamics (N. Rodríguez and G. Malanson)

$$u_t(x,t) = \underbrace{\int_{\mathbb{R}^2} S(x,y)\beta(u(y,t),y)g(u(x,t),x)u(y,t) dy}_{\text{Birth-jump process}} -\delta(u(x,t),x)u(x,t),$$

・ロト ・個ト ・ヨト ・ヨト

- Notation
 - \mathbb{R}^2 : a lattice with $\vec{x}_{ij} = (i\ell, j\ell)$ with $i, j \in \{0, \pm 1, \pm 2, \dots, \pm n, \dots\}$.
 - Discretize time into periods of δt time.
 - Let $n_{ij}(t)$ be the number of plants at location \vec{x}_{ij} :

of plants at time $t + \delta t$ = arriving seeds that germinate - dying plants from time t.

• Ignore time-delay.

<ロト <回ト < 回ト < 回ト

- Proliferation: production of seeds that end in location \vec{x}_{ij} and germinate.
- Let $p_{\beta}(\vec{y})$ be probability that a plant at location \vec{y} will produce a seed during the period $(t, t + \delta t)$.
- Let $s_{\vec{x}\vec{y}}$ be the relocation probabilities: the probability that a seed from a plant at location \vec{y} will land in location \vec{x} .
- Let $p_g(\vec{x})$ be the probability that a seed at location \vec{x} will germinate.

• Proliferation term at \vec{x}_{ij} :

$$\sum_{k=-\infty}^{\infty}\sum_{m=-\infty}^{\infty}p_{\beta}(\vec{x}_{km})p_{g}(\vec{x}_{ij})s_{\vec{x}_{km}\vec{x}_{ij}}n_{km}(t).$$

• Survival term:

$$(1-p_{\delta})n_{ij}(t),$$

• Final equation:

$$n_{ij}(t+\delta t)-n_{ij}(t)=\sum_{k=-\infty}^{\infty}\sum_{m=-\infty}^{\infty}p_{\beta}(\vec{x}_{km})p_{g}(\vec{x}_{ij})s_{\vec{x}_{km}\vec{x}_{ij}}n_{km}(t)-p_{\delta}(\vec{x}_{ij})n_{ij}(t).$$

2

イロト イヨト イヨト イヨト

• Assume a Poisson process for proliferation, germination, and decay:

$$p_{\beta}(\vec{x}_{ij}) = 1 - e^{-\tilde{\beta}(\vec{x}_{ij}, \mathbf{n}_{ij})\delta t}$$

- Remark: density-dependence.
- Relocation Kernel:
 - Wind
 - Animals
 - Gravity
- Dispersal via each method p_i with $\sum_{k=1}^{3} p_k = 1$.

・ロン ・四 と ・ ヨ と ・ ヨ と …

ABM Result

2

• Density:

$$u(\mathbf{x},t)=n_{ij}/\ell^2.$$

• Rewrite:

$$egin{aligned} & rac{u(\mathbf{x},t+\delta t)-u(\mathbf{x},t)}{\delta t}=rac{1}{\delta t}\sum_{k=-\infty}^{\infty}\sum_{m=-\infty}^{\infty}p_{eta}(ec{x}_{km})p_{eta}(ec{x}_{ij})s_{ec{x}_{ij}ec{x}_{ij}}u(ec{y}_{km},t)\ & -rac{1}{\delta t}p_{\delta}(ec{x}_{ij})u(\mathbf{x},t). \end{aligned}$$

• A Taylor series expansion for $p_{\beta}(\vec{x}_{km})p_{g}(\vec{x}_{ij})$ and p_{δ} then yields:

$$u_t(x,t) = \sum_{n=1}^{3} p_n \int_{\mathbb{R}} S_n(x,y) \beta(u(y,t),y) g(u(x,t),x) u(y,t) dy$$
$$-\delta(u(x,t),x) u(x,t).$$

・ロト ・個ト ・ヨト ・ヨト

• Approximate the proliferation term:

$$\int_{\mathbb{R}} S(x, y)g(u(x, t), x)\beta(u(y, t), y)u(y, t) dy$$

• Let $h(y, t) = \beta(u(y, t), y)u(y, t)$ and β is regular enough:

$$\begin{split} \int_{\mathbb{R}} S(x,y)h(y,t)g(u(x,t))dy &= \int_{\mathbb{R}} S(x,y)g(u(x,t),x) \sum_{k=0}^{\infty} \frac{1}{k!} \partial_x^k h(x,t)(y-x)^k dy \\ &= g(u(x,t),x) \sum_{k=0}^{\infty} M_k(x) \partial_x^k h(x,t) \\ &= g(u(x,t),x) \sum_{k=0}^{\infty} M_k(x) \partial_x^k [\beta(u(x,t),x)u(x,t)], \end{split}$$

Moments

$$M_k(x) = \frac{1}{k!} \int_{\mathbb{R}} S(x, y) (y - x)^k \, dy$$

• If the moments exist and form an asymptotic sequence one can safely truncate after the first few moments.

2

イロン イヨン イヨン イヨン

• Obtaining:

$$u_t = dg(u)(\beta(u)u(x,t))_{xx} + (g(u)\beta(u) - \delta(u))u(x,t),$$

where
$$d = \sum_{n=1}^{3} p_n M_2^n$$
 and $\sum_{n=1}^{3} p_n M_0^n = 1$.

- Remarks:
 - g and β appear in both reaction and diffusion
 - Asymmetric potentials

イロト イヨト イヨト イヨト

• Obtaining:

$$u_t = dg(u)(\beta(u)u(x,t))_{xx} + (g(u)\beta(u) - \delta(u))u(x,t),$$

where
$$d = \sum_{n=1}^{3} p_n M_2^n$$
 and $\sum_{n=1}^{3} p_n M_0^n = 1$.

- Remarks:
 - g and β appear in both reaction and diffusion
 - Asymmetric potentials
- Rewrite equation:

$$\frac{1}{g(u)}u_t=(D(u)u_x)_x+f(u),$$

with

$$D(u) := eta'(u)u + eta(u)$$
 and $f(u) := \left(eta(u) - rac{\delta(u)}{g(u)}
ight)u.$

э

イロト イヨト イヨト イヨト

- Non-degenerate case: D(u) > 0.
- Take as examples:

$$g(u)=\frac{1}{1+u},\ \beta(u)=\mu(\gamma+u),\ \delta(u)=\mu u,$$

with $\mu, \gamma > 0$.

- Regularity: for r > 0
 - (H1) $D \in C^{r}([0,\infty)), D(z) > 0$ for $z \in [0,1]$.
 - (H2) $g \in C^r([0,\infty)), g(z) > 0$ and g'(z) < 0 for $z \in [0,1]$.
 - (H3) $f \in C^r([0,\infty)), f'(1) < 0.$

3

・ロト ・個ト ・ヨト ・ヨト

• Let V = D(U)U' then rewrite equation system of two ODEs:

$$\begin{cases} U' = \frac{V}{D(U)}, \\ V' = -\frac{cV}{g(U)D(U)} - f(U). \end{cases}$$
(1)

イロン イ団と イヨン イヨン

• Minimum speed:

$$c^* = 2g(0)\sqrt{f'(0)D(0)}.$$

Theorem

- There exists traveling wave solutions for all $c \ge c^*$.
- No traveling wave solution exists for $c < c^*$.

- Degenerate: D(0) = 0, D(U) > 0, D'(U) > 0 and $D''(U) \neq 0$.
 - Monostable Case: $f'(0) \neq 0$
 - Bistable Degenerate Case: f'(0) = 0, f''(0) > 0

Example

$$g(u)=\frac{1}{1+u},\ \beta(u)=\mu u,\ \delta(u)=\bar{\mu}u,$$

with $0 < \bar{\mu} < \mu$.

• To maintain a logarithmic-type growth chose δ appropriately:

$$f(u) = u^2[\mu - \bar{\mu} - \bar{\mu}u]$$
 and $D(u) = 2\mu u$,

• The degeneracy of D(u) leads to our system becoming an ODE when u = 0 and a parabolic PDE for u > 0.

◆□> ◆圖> ◆恵> ◆恵> ○臣

Sharp traveling wave: If there exists a value c and $z^* \in \mathbb{R}$ such that U(x - ct) satisfies the traveling wave equation for all $z \in (-\infty, z^*)$ and

$$U(-\infty) = 1, \quad U(z^{*-}) = U(z^{*+}) = 0, \quad \text{and} \quad U(z) = 0 \text{ for } z \in (z^*, \infty);$$

$$U'(z^{*-}) = -\frac{c}{g(0)D'(0)}, \quad U'(z^{*+}) = 0, \quad U'(z) < 0 \text{ for } z \in (z^*, \infty),$$
(2)

then U(x - ct) is a traveling wave solution with speed c of the sharp-type.

(日) (四) (空) (空) (空)

• Variational formula for speed:

$$=\frac{\int_0^{U(-\infty)}D(w)h(w)dw}{\int_{-\infty}^{z^*}\frac{D(U)}{g(U)}(U')^2 dz}$$

- Existence:
 - (i) has no traveling wave solutions for speed $c < c^*$.

С

- (ii) has a traveling wave solution $U(x c^*t)$ of the sharp-type satisfying (2).
- (iii) for $c > c^*$ has a strictly monotone continuously differentiable traveling wave solution U(x ct) satisfying $U(-\infty) = 1$ and $U(+\infty) = 0$.

<ロト </p>

Illustration

Figure: $c > c^*$: C^r traveling wave.

Figure: $c = c^*$: Sharp traveling wave.

イロト イヨト イヨト イヨト

2

Idea of Proof

• Traveling wave solutions satisfy:

$$D(U)U'' + D'(U)(U')^2 + f(U) + rac{c}{g(U)}U' = 0,$$

• ODE form:

$$\begin{cases} U' = V, \\ D(U)V' = -D'(U)V^2 - f(U) - \frac{c}{g(U)}V. \end{cases}$$

• Change of variables:

$$\tau = \int_0^z \frac{ds}{D(u(s))} \Rightarrow \frac{d\tau}{dz} = \frac{1}{D(u(z))},$$

to get

$$U' = D(U)V,$$

$$V' = -D'(U)V^2 - f(U) - \frac{c}{g(U)}V.$$

2

イロン イヨン イヨン イヨン

• System:

$$\begin{cases} U' = \underbrace{D(U)V}_{F(U,V)},\\ V' = \underbrace{-D'(U)V^2 - f(U) - \frac{c}{g(U)}V}_{G(U,V)}. \end{cases}$$

• Steady-states are
$$P_0 := (0,0), P_1 := (1,0), P_c := \left(0, -rac{c}{g(0)D'(0)}
ight).$$

- P_c depends on the speed c
- Saddle-node bifurcation for c = 0

æ

イロン イヨン イヨン イヨン

• At P₀ we have:

$$J[F,G]_{(0,0)} = \begin{bmatrix} 0 & 0 \\ -f'(0) & -\frac{c}{g(0)} \end{bmatrix}$$

- Eigenvalues $\lambda_1 = 0$ and $\lambda_2 = -\frac{c}{g(0)} < 0$, with respective eigenvectors $(c/g(0), -f'(0))^T$ and $(0, 1)^T$.
- Hence *P*₀ is a non-hyperbolic equilibrium and we need to do a second-order approximation of that system.
- Following the techniques of Andronov et al. to get that P_0 is a saddle node.
- P_1, P_c a saddle point.

- Monotonicity of trajectories
- Uniqueness of sharp wave speed
- Non-existence for small speeds
- Existence of a wave for large enough speeds for $c \ge \sqrt{M}$ with

$$M := \max_{s \in (0,1)} 4D'(u)f(u)g^{2}(u).$$

- Existence of a sharp wave for speed c^* .
 - Monotonicity of trajectory with respect to c.
 - The critical speed

$$c^* = \inf \{c > 0 : U_c = 1, v_c < 0\}.$$

is well defined and $V_{c^*} = 0$.

・ロン ・四 と ・ ヨン ・ ヨン

Dispersal Kernels

• Kernel effect: Uniform, Gaussian, and Cauchy.

2

- Linear gradient in direction of movement.
- Affects birth, establishment, and death.

- Fatter tails lead to faster advance.
- Environmental gradients will slow the advance.
- Analysis on the nonlocal equation is still at a very infant stage
- Cauchy problem
- Planar traveling wave solutions
 - Existence and uniqueness
 - Qualitative behavior: asymptotic rates, monotonicity
 - Stability

<ロト <回ト < 回ト < 回ト

- George Malanson
- NSF
- You all!

2

・ロト ・四ト ・ヨト ・ヨト