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Introduction IPCC and health issues

Aerosol, why is it worth understanding them?

1) Implication in the climate change

IPCC reports website [PAB`14, PAP`13] and earlier work [CSH`92].
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Introduction IPCC and health issues

Aerosol, why is it worth understanding them?

2) Public health impact: in Europe „ 403000 deaths per year due to PM2.5
(cardiovascular diseases „ 1830000)

Figure: Loss in life expectancy attributable to exposure to fine particulate matter - 2000
(European Environment Agency)
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Introduction what is an aerosol system?

vapors
water (250 pm)
sulfuric acid (400 pm)
amonia (200 pm)

Aerosol system

air

molecule clusters

Anthropogenic sources

coal ashes (20 µm)

metal fume (500 nm)

asbestos (100 µm)

quartz (10 µm)

Natural sources
volcanic ashes (50 µm)

sea spray (1 µm)

1„2 nm

natural dust (50 µm)
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Introduction what is an aerosol system?

Aerosol system
approximations

chamber
particle inlet

particles
stable molecule

clusters=

smallest particles

measurement
device

vapor

Ozon et. al Distributed Parameter Identification Snowbird, Utah, May 22 3 / 19



Introduction abstract representation of an aerosol system
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Representation of an aerosol system:
box model: uniform in space
size perfectly describes a particle

Therefor, the system can be represented
by a size density.
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Introduction How does an aerosol system evolve?

Brownian motion

+

sticking collision

state uptq state upt` δtq

Coagulation

For the Brownian coagulation, the collision frequency factor is given by [FW66]:

βpv1, v2q “
2kbT
3µ

´

v
1
3
1 ` v

1
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2

¯

˜
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v
1
3
1

`
1

v
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¸

where T is the temperature, µ is the fluid viscosity and v1 and v2 the volumes of
the coagulating particles
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Introduction How does an aerosol system evolve?

vapor flux toward

the particle

volume vptq volume vpt` δtq

Condensation

c0

cs

c0

cs

The growth rate of a particle of diameter dptq and denoted g depends on many
parameters:

gptq “ fpdpar, dvap,
λ

`
, ηpar, ηvap, rXs . . .q

where λ is the mean free path of the particle and ` the characteristic size of the
problem — dpar, dvap — the particle and vapor diffusivity ηpar and ηvap, the vapor
concentration rXs, etc. For more details cf. [SP98, Hin12].
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Introduction How does an aerosol system evolve?

some unstable clusters

the energy barrier

unstable clusters (t) stable cluters (t` δt)

Nucleation

c0 c0

undergo some events

may be overcome

The nucleation rate also depends on many parameters — especially if more than
one kind of vapor is involved — but two mechanisms — kinetic and activation —
can be described a polynomial function of the vapor concentration:

Jptq “ arXs2 ` brXs

whose coefficient a and b are not well defined [RSK`07, SP98]
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Introduction How does an aerosol system evolve?

sedimentation

linear loss

wall deposition

state uptq state upt` δtq

The losses due to sedimentation or deposition on the wall of a chamber can be
characterized by a single coefficient

λ “ fpv, . . .q

where v is the particle size. It may depend on the shape of the chamber and on
other parameters.
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Introduction Evolution model

How to describe the evolution of a population of aerosols whose characteristics
depend on size? Size-structured Population Balance Equation (PBE).

Bu

Bt
`
Bgu

Bs
“ Fnpt, s, u; θq

This PBE is a scalar conservation law where u is the particle size density, g the
growth rate and Fn is the term that describes the mechanisms that make the
density evolve — it depends on some parameter θ. We refer to this equation as the
General Dynamic Equation for aerosols, or simply GDE.

Note: without going into details, each aerosol particle cannot be described only by
a size. By nature, particles are complex objects of different shape, size and chemical
composition, but we model them as spherical objects of equivalent volume without
considering chemistry. Therefore, it cannot be a perfectly precise model (source of
uncertainty, potentially modelled by SPDE).
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Introduction Evolution model

Putting all terms together, the GDE becomes:

Bu

Bt
pt, vq `

Bgu

Bv
pt, vq

looooooooooomooooooooooon

scalar conservation law

“

ż v´v‹

v‹

βvps, v ´ squpt, squpt, v ´ sqds
looooooooooooooooooooooomooooooooooooooooooooooon

coagulation source

´ upt, vq

ż 8

v‹

βvpv, squpt, sqds
loooooooooooooooomoooooooooooooooon

coagulation sink

´ λpt, vqupt, vq
loooooomoooooon

linear losses

` Spt, vq
loomoon

sources

with the conditions

up0, vq “ u0pvq initial condition
gpt, v‹qupt, v‹q “ Jptq lower boundary: nucleation
gpt, v8qupt, v8q “ Lptq upper boundary: loss pL “ 0 if v8 large enoughq
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What is the problem we are trying to solve?

The goal is to estimate some parameters not easily measured, such as:
growth rates,
nucleation rate,
loss rates

based on “easily” measured quantities such as time series of number concentrations.
The estimation is an inverse problem of the form:

pû, θ̂q P arg max
u,θ

Ppu, θ|Y, F,Hq

where Y is a dataset, F the evolution model and H the measurement model.
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State of the art We are not the first!

Discretization
Dimensionality reduction: high resolution finite difference for PBE depending on the
environment Shen et al [SSZ07], FEM for Fokker-Planck equation Harrison [Har88],
FEM for GDE Fu et al [FLWC15] Tsang and Rao [TR90].

Age-structured
History “principle of population” by T. R. Malthus [Mal98] when demography be-
gun to be a political concern, P.F. Verhulst in 1838 who formulated the “law of
population growth”, a.k.a the Verhulst-Pearl equation. Only in 1911, McKendrick
and Kesava Pai rediscovered this equation and intended to estimate the rate of
multiplication [MP11].
DPI inverse problems: birth rate estimation in Rundell [Run89], death rate estima-
tion in Rundel [Run93] or both in Cho [CK97].

Fokker-Planck
discretization and DPI by minimization of some criteria such as least square Banks et
al [BTW93] and Dimitriu [Dim02], or regularized least square Kravaris and Seinfeld
[KS85].
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State of the art We are not the first!

Sinko-Streifer
age-and-size-structured equation [SS67]: 1) a growth rate, 2) a linear loss term,
and 3) a Fredholm integral boundary condition. The DPI problem for modified
versions of the equation:

Ackleh [Ack97, Ack99]: growth, birth, fragmentation and loss rates
Banks and Fitzpatrick [BF91]: growth rate via constrained least square
Ackleh and Miller [AM18]: birth and growth rates, and sticking probability
via least square
Banks and Davis [BD07]: growth rate distribution and uncertainty estimation

GDE
The GDE for aerosol is a generalization of the Smoluchowski equation [Smo16] and
is similar to Sinko-Streifer equation, except for the Dirichlet boundary condition
and the coagulation integral terms. Only few studies for the DPI:

Ramachandran [RB10]: experimental investigation of the feasibility
Bortz et al. [BBM15, BB]: theoretical framework for the estimation of the
post-fragmentation probability density of particles
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The evolution model Discretization

The continuous form of the GDE is not really suitable for our purpose (parameter
estimation from time series of number concentration), hence we define:

@k P rr0, T ss, i P rr1, N ss, Nk
i “

1
tk`1 ´ tk

ż tk`1

tk

ż

Ωi
ups, tqdsdt

the number of particles in the size range Ωi “ pv0r
i´ 3

2
v , v0r

i´ 1
2

v s per unit of volume
(or at the lower boundary Ω1 “ rv0r

´ 1
2

v , v0r
1
2
v s). Considering a logarithmic scale

and assuming a piecewise constant approximation, the evolution equation becomes:

Nk`1
1 “ Nk

1 `∆k
t

´

Jk ´

ˆ

gk1
∆1

` λ1

˙

Nk
1 ´ C

sink
1 pNkqNk

i

¯

` εk1 (1)

Nk`1
i “ Nk

i `∆k
t

´ gki´1
∆i´1

Nk
i´1 ´

ˆ

gki
∆i
` λi

˙

Nk
i

` Csource
i pNkq ´ Csink

i pNkqNk
i

¯

` εki (2)

Note that both discretization steps — time and size — add errors. The overall
errors/uncertainties are encompassed in the terms εki .
Note everything is coded in Julia
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The evolution model Discretization

The problem we were trying to solve is continuous (state space infinite dimension):

pû, θ̂q P arg max
u,θ

Ppu, θ|Y, F,Hq

but the one we are solving is discrete (discretization by projection onto a subspace):

ppN̂k
i qi,k, pθ̂

k
i qi,kq P arg max

pNk
i
qi,k,pθki qi,k

PppNk
i qi,k, pθ

k
i qi,k|Y, F,Hq.

We use the Fixed Interval Kalman Smoother.
Note: the question of the convergence of the discrete solution to the continuous
one will not be considered, but I assume that it does converge.
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Fixed Interval Kalman Smoother: FIKS

Kalman Filter (KF) [Kal60]
Estimation of the expected state and its uncertainty

Xk|k “ ErXk|Yks and Γk|k “ CovrXk|Yks,

Initialization
Set X0|0 P RN and Γ0|0 P RNˆN (Prior knowledge)
Recursion
While k ď K, do
Prediction
Xk|k´1 “ F k´1 `Xk´1|k´1˘ (state expectation)
Γk|k´1 “ BF k´1Γk´1|k´1pBF k´1qT ` Γk´1

w (state covariance)
Calculation of Kalman’s gain
Kk “ Γk|k´1pHkqT pHkΓk|k´1pHkqT ` Γkvq´1

Updating
Γk|k “ pI ´KkHkqΓk|k´1

Xk|k “ Xk|k´1 `Kkpyk ´HkXk|k´1q
Update iterator
k ð k ` 1

end(while)
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Fixed Interval Kalman Smoother: FIKS

Fixed Interval Kalman Smoother (FIKS) [KS06]

Xk|K “ ErXk|YKs and Γk|K “ CovrXk|YKs,

Initialization
Run KF and store all variables
Set XK

smo “ XK|K and ΓKsmo “ ΓK|K
k Ð K ´ 1
Recursion
While k ě 1, do
Compute smoothing gain
Kk

smo “ Γk|kpBF k`1qT pΓk`1|kq´1

Smoothing
Xk

smo “ Xk|k `Kk
smo

`

Xk`1
smo ´X

k`1|k˘

Γksmo “ Γk|k `Kk
smo

`

Γk`1
smo ´ Γk`1|k˘ pKk

smoq
T

Update iterator
k ð k ´ 1

end(while)
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Fixed Interval Kalman Smoother: FIKS

To run the FIKS algorithm, we need the following elements:
Evolution model (with its error covariance matrix)
Measurement model (with its error covariance matrix)
Data: simulation or measurement (with its error covariance
matrix)
Initial guesses: state and covariance

So far, we have
the evolution model of the number concentrations

and we still need:
the evolution models of the parameters
the measurement model
the data
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Parameter evolution model

Surrogate evolution models

Time invariant Some parameter are time invariant, so their time evolution model is
a random walk:

k ě 1, pk`1 “ pk ` ηk, with ηk „ N p0,Γηq

where Γη is the covariance of the model uncertainty.

Ozon et. al Distributed Parameter Identification Snowbird, Utah, May 22 11 / 19



Parameter evolution model

Second order If a parameter is known to evolve smoothly with time, it can be
modelled as a second order stochastic process such as:

Gk “

„

pk

pk´1



“

„

2rp ´r2
p

1 0

 „

pk´1

pk´2



`

„

ηk
0



“ BprpqG
k´1 `

„

ηk

0



where rp is the smoothness lever and ηk „ N p0, σ2
ηq with ση controlling the am-

plitude of the process. The latter is given by its covariance matrix defined by:

ΓkG “ covpGkq “ BprpqΓk´1
G Bprpq

T `

„

σ2
η 0

0 0



.

We are interested in the asymptotic behavior, i. e. ΓkG “ Γk´1
G “ Γ8G “

„

σ2
p c
c σ2

p



,

and how the variance of η controls the variance of p, σ2
p. By expanding the previous

relation, we find that:

σ2
η “ σ2

p

ˆ

1´ r2
p

ˆ

4` r2
p

ˆ

1´ 8
1` r2

p

˙˙˙

, c “
2rp

1` r2
p

σ2
p.
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Parameter evolution model

Size correlation Some parameters are distributed, yet, the size dependence may be
unknown or only approximately known. For most parameter, it is safe to assume
that size dependence is continuous, and even rather smooth.
Let pk P RN follow a random walk, the covariance Γη contains the size dependence
information, and it can be constructed as:

Γη “ D̃
1
2 D̄´

1
2 Γ̄D̄´ 1

2 D̃
1
2

where Γ̄ is the Toeplitz matrix build with the sequence pσ̄iqiPrr1,Nss which determines
how the size dependence evolves with the size difference. We choose the sequence

@i P rr1, N ss, σ̄i “ σ̄0e
1´i
δ

with δ so that only the first δ neighboring sizes significantly contribute to the
evolution of one variable. The diagonal matrix D̄ “ σ̄2

1IN normalize the covariance
Γ̄ and the diagonal matrix D̃ “ diagprσ2

η,1 σ
2
η,2 . . . σ

2
η,N sq scales the variance of

each size.
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Parameter evolution model

Size correlation
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Figure: Creation of the covariance matrix of a model. a) size-dependence of the
variances, b) correlation, c) Toeplitz matrix of the correlation, and d) covariance matrix
of the model.
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Parameter constraints

What if we know the possible range of a parameter?

Lower bound a

ζ P R, α ą 0, p “ a`
1
α

log
`

1` eαζ
˘

,

Range ra, bs

ζ P R, α ą 0, p “ a`
b´ a

1` 1
αe
´αζ

Monotone: increasing

p1 P R, i ą 1, ζi P R, αi ą 0, pi “ pi´1 `
1
αi

log
`

1` eαiζi
˘
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Data acquisition

DMA
This device acts as a selector of near monodisperse size distribution around a
given size di; its size discrimination power determines the sets tdiuiPrr1,Nss and
t∆iuiPrr1,Nss. For each channel, we denote the time invariant kernel ψi, which mod-
els the efficiency of the device. The number concentration at the outlet of the DMA
is approximated by:

zki “
1

∆t

ż t0`k∆t

t0`pk´1q∆t

ż

ωi

ψipsqups, tqdsdt` ιki “ ϕki ` ι
k
i

where ωi is the support of ψi — where it is not null — and ιki accounts for the
model uncertainties. The number of particle is then obtained by multiplying by the
volume.
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Data acquisition

CPC
Let the number concentration of particles at the inlet of a CPC is zki (coming from
the ith channel of the DMA), the output yki is modeled by:

yki “
ỹki
V
, with ỹki „ PoissonpV zki q

where V is the volume of sample used in the CPC for counting. In most cases,
the number of particle in the CPC is large enough (V zki ą 20), thus the Poisson
distribution can satisfactorily be approximated by:

yki „ N pzki ,
zki
V
q.

Note that from this model it is clear that the quality of the measurement is directly
link to the volume of the sample.
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Data simulation

We use simulated data in order to evaluate the performance of the method
dense discretization of the size space
non-approximated measurement model (Gaussian kernel and Poisson noise)

The dense discretization of the size space may lead to spurious oscillation (or di-
verge) if the following condition on the time step is not met:

0 ă ∆k
t ă

1
max
i
t
gk
i

∆i
` λi ` Csink

i pNkqu

.

For a acceptable approximation of the size density the size discretization must be
small enough: it implies a very small time step.
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Data simulation

Nucleation event
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Figure: Simulation of a nucleation event. a) Number concentration contour plot, b)
growth rate, c) nucleation rate at 14.1nm, and d) wall loss rate.
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Data simulation

CLOUD simulation
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Figure: Simulation of a steady state. 1) Number concentration contour plot, 2) growth
rate, 3) nucleation rate, and 4) wall loss rate.
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Results

Nucleation event
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Figure: Estimation of the parameter of the GDE for aerosols from a simulated nucleation
event data: 1) growth rate, 2) nucleation rate, 3) loss rate, and 4) number concentration.
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Results

CLOUD simulation
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Figure: Estimation of the parameter of the GDE for aerosols from a simulated transition
to steady state data: 1) growth rate, 2) nucleation rate, 3) loss rate, and 4) number
concentration.
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Conclusions

Take home messages:
The requirements for applying the method are “weak”: 1) the model must be
well approximated by their Jacobian, and 2) the errors can be approximated
as Gaussian
The Fixed Interval Kalman Smoother is a suitable tool for the estimation of
the GDE parameters along with uncertainties
Need surrogate evolution models for the parameters of interest

Future work?
Estimate coagulation coefficient
CVG of the discrete to the continuous problem
address the case of purely steady state (MAP estimate, but no uncertainty)
more realistic model of the measurement device
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